Quick Links
-Search Website
-Have A Question?
-Wallace News
-About This Site

General
Misinformation Alert!
Wallace Bio & Accomplishments
Wallace Chronology
Frequently Asked Questions
Wallace Quotes
Wallace Archives
Miscellaneous Facts
Links

Bibliography / Texts
Wallace Writings Bibliography
Texts of Wallace Writings
Texts of Wallace Interviews
Wallace Writings: Names Index
Wallace Writings: Subject Index
Writings on Wallace
Wallace Obituaries
Wallace's Most Cited Works

Features
Taxonomic / Systematic Works
Wallace on Conservation
Smith on Wallace
Research Threads
Wallace Images
Just for Fun
Frequently Cited Colleagues
Wallace-Related Maps & Figures

Alfred Russel Wallace : Alfred Wallace : A. R. Wallace :
Russel Wallace : Alfred Russell Wallace (sic)

 
 
The Climate and Physical Aspects of the Equatorial Zone (S288: 1878)

 
Editor Charles H. Smith's Note: An essay specially written for the collection Tropical Nature and Other Essays (S719) in 1878. Original pagination indicated within double brackets. To link directly to this page, connect with: http://people.wku.edu/charles.smith/wallace/S288.htm


[[p. (1)]] The three Climatal Zones of the Earth--Temperature of the Equatorial Zone--Causes of the Uniform High Temperature near the Equator--Influence of the Heat of the Soil--Influence of the Aqueous Vapour of the Atmosphere--Influence of Winds on the Temperature of the Equator--Heat due to the Condensation of Atmospheric Vapour--General features of the Equatorial Climate--Uniformity of the Equatorial Climate in all parts of the globe--Effects of Vegetation on Climate--Short Twilight of the Equatorial Zone--The aspect of the Equatorial Heavens--Intensity of meteorological phenomena at the Equator--Concluding Remarks.

     It is difficult for an inhabitant of our temperate land to realize either the sudden and violent contrasts of the arctic seasons or the wonderful uniformity of the equatorial climate. The lengthening or the shortening days, the ever-changing tints of spring, summer, and autumn, succeeded by the leafless boughs of winter, are constantly recurring phenomena which represent to us the established course of nature. At the equator none of these changes occur; there is a perpetual equinox and [[p. 2]] a perpetual summer, and were it not for variations in the quantity of rain, in the direction and strength of the winds, and in the amount of sunshine, accompanied by corresponding slight changes in the development of vegetable and animal life, the monotony of nature would be extreme.

     In the present chapter it is proposed to describe the chief peculiarities which distinguish the equatorial from the temperate climate, and to explain the causes of the difference between them,--causes which are by no means of so simple a nature as are usually imagined.

     The three great divisions of the earth--the tropical, the temperate, and the frigid zones, may be briefly defined as the regions of uniform, of variable, and of extreme physical conditions respectively. They are primarily determined by the circumstance of the earth's axis not being perpendicular to the plane in which it moves round the sun; whence it follows that during one half of its revolution the north pole, and during the other half the south pole, is turned at a considerable angle towards the source of light and heat. This inclination of the axis on which the earth rotates is usually defined by the inclination of the equator to the plane of the orbit, termed the obliquity of the ecliptic. The amount of this obliquity is 23 1/2 degrees, and this measures the extent on each side of the equator of what are called the tropics, because within these limits the sun becomes vertical at noon twice a year, and at the extreme limit once a year, while beyond this distance it is never vertical. It will be evident, however, from the nature of the case, that the two lines which mark the limits of the geographical "tropics" will not define any abrupt [[p. 3]] change of climate or physical conditions, such as characterise the tropical and temperate zones in their full development. There will be a gradual transition from one to the other, and in order to study them separately and contrast their special features we must only take into account the portion of each in which these are most fully exhibited. For the temperate zone we may take all countries situated between 35° and 60° of latitude, which in Europe will include every place between Christiana and Algiers, the districts further south forming a transitional belt in which temperate and tropical features are combined. In order to study the special features of tropical nature, on the other hand, it will be advisable to confine our attention mainly to that portion of the globe which extends for about twelve degrees on each side of the equator, in which all the chief tropical phenomena dependent on astronomical causes are most fully manifested, and which we may distinguish as the "equatorial zone." In the debateable ground between these two well contrasted belts local causes have a preponderating influence; and it would not be difficult to point out localities within the temperate zone of our maps, which exhibit all the chief characteristics of tropical nature to a greater degree than other localities which are, as regards geographical position, tropical.

    Temperature of the Equatorial Zone.--The most characteristic, as it is the most important feature in the physical conditions of the great equatorial zone is the wonderful uniformity of its temperature, alike throughout the changes of day and night, and from one part of the year to another. As a general rule, the greatest heat of the day does not exceed 90° or 91° [[p. 4]] Fahr., while it seldom falls during the night below 74° Fahr. It has been found by hourly observations carried on for three years at the meteorological observatory established by the Dutch government at Batavia, that the extreme range of temperature in that period was only 27° Fahr., the maximum being 95° and the minimum 68°. But this is, of course, very much beyond the usual daily range of the thermometer, which is, on the average, only a little more than 11° Fahr.; being 12.6° in September when it is greatest, and only 8.1° in January, when it is least.

     Batavia, being situated between six and seven degrees south of the equator, may be taken as affording a fair example of the climate of the equatorial zone; though, being in an island, it is somewhat less extreme than many continental localities. Observations made at Para, which is continental and close to the equator, agree however very closely with those at Batavia; but at the latter place all the observations were made with extreme care and with the best instruments, and are therefore preferred as being thoroughly trustworthy.1 The accompanying diagram, showing by curves the monthly means of the highest and lowest daily temperatures at Batavia and London, is very instructive; more especially when we consider that the maximum of temperature is by no means remarkably different in the two places, 90° Fahr. being sometimes reached with us and not being often very much exceeded at Batavia.

[[p. 5]]

    [[p. 6]] Causes of the Uniform High Temperature near the Equator.--It is popularly supposed that the uniform high temperature of the tropics is sufficiently explained by the greater altitude, and therefore greater heating-power, of the midday sun; but a little consideration will show that this alone by no means accounts for the phenomenon. The island of Java is situated in from six and a half to eight and a half degrees of south latitude, and in the month of June the sun's altitude at noon will not be more than from 58° to 60°. In the same month at London, which is fifty-two and a half degrees of north latitude, the sun's noonday altitude is 62°. But besides this difference of altitude in favour of London there is a still more important difference; for in Java the day is only about eleven and a half hours long in the month of June, while at London it is sixteen hours long, so that the total amount of sun-heat received by the earth must be then very much greater at London than at Batavia. Yet at the former place the mean temperature of the day and night is under 60° Fahr., while in the latter place it is 80° Fahr., the daily maximum being on the average in the one case about 68° and in the other about 89°.

    Neither does the temperature at the same place depend upon the height of the sun at noon; for at Batavia it is nearly vertical during October and February, but these are far from being the hottest months, which are May, June, and September; while December, January, and February are the coldest months, although then the sun attains nearly its greatest altitude. It is evident, therefore, that a difference of 30° in the altitude of the sun at noon has no apparent influence in raising the temperature of a place near the equator, and we must [[p. 7]] therefore conclude that other agencies are at work which often completely neutralise the effect which increased altitude must undoubtedly exert.

    There is another important difference between the temperate and tropical zones, in the direct heating effect of the sun's rays independently of altitude. In England the noonday sun in the month of June rarely inconveniences us or produces any burning of the skin; while in the tropics, at almost any hour of the day, and when the sun has an elevation of only 40° or 50°, exposure to it for a few minutes will scorch a European so that the skin turns red, becomes painful, and often blisters or peels off. Almost every visitor to the tropics suffers from incautious exposure of the neck, the leg, or some other part of the body to the sun's rays, which there possess a power as new, as it is at first sight inexplicable, for it is not accompanied by any extraordinary increase in the temperature of the air.

    These very different effects, produced by the same amount of sun-heat poured upon the earth in different latitudes is due to a combination of causes. The most important of these are, probably,--the constant high temperature of the soil and of the surface-waters of the ocean,--the great amount of aqueous vapour in the atmosphere,--the great extent of the intertropical regions which cause the winds that reach the equatorial zone to be always warm,--and the latent heat given out during the formation of rain and dew. We will briefly consider the manner in which each of these causes contributes to the degree and the uniformity of the equatorial temperature.

    [[p. 8]] Influence of the Heat of the Soil.--It is well known that at a very moderate depth the soil maintains a uniform temperature during the twenty-four hours; while at a greater depth even the annual inequalities disappear, and a uniform temperature, which is almost exactly the mean temperature of the locality, is constantly maintained throughout the year. The depth at which this uniform temperature is reached is greater as the annual range of temperature is greater, so that it is least near the equator, and greatest in localities near the arctic circle where the greatest difference between summer and winter temperature prevails. In the vicinity of the equator, where the annual range of the thermometer is so small as we have seen that it is at Batavia, the mean temperature of about 80° Fahr. is reached at a depth of four or five feet. The surplus heat received during the day is therefore conducted downwards very slowly, the surface soil becomes greatly super-heated, and a large portion of this heat is given out at night and thus keeps up the high temperature of the air when the sun has ceased to warm the earth. In the temperate zones, on the other hand, the stratum of uniform earth-temperature lies very deep. At Geneva it is not less than from thirty to forty feet, and with us it is probably fifty or sixty feet, and the temperature found there is nearly forty degrees lower than at the equator. This great body of cool earth absorbs a large portion of the surface heat during the summer, and conducts it downwards with comparative rapidity, and it is only late in the year (in July and August) when the upper layers of the soil have accumulated a surplus store of solar heat that a sufficient quantity is radiated at [[p. 9]] night to keep up a high temperature in the absence of the sun. At the equator, on the other hand, this radiation is always going on, and earth-heat is one of the most important of the agencies which tend to equalise the equatorial climate.

    Influence of the Aqueous Vapour of the Atmosphere.--The aqueous vapour which is always present in considerable quantities in the atmosphere, exhibits a singular and very important relation to solar and terrestrial heat. The rays of the sun pass through it unobstructed to the earth; but the warmth given off by the heated earth is very largely absorbed by it, thus raising the temperature of the air; and as it is the lower strata of air which contain most vapour these act as a blanket to the earth, preventing it from losing heat at night by radiation into space. During a large part of the year the air in the equatorial zone is nearly saturated with vapour, so that, notwithstanding the heat, salt and sugar become liquid, and all articles of iron get thickly coated with rust. Complete saturation being represented by 100, the daily average of greatest humidity at Batavia reaches 96 in January and 92 in December. In January, which is the dampest month, the range of humidity is small (77 to 96), and at this time the range of temperature is also least; while in September, with a greater daily range of humidity (62 to 92) the range of temperature is the greatest, and the lowest temperatures are recorded in this and the preceding month. It is a curious fact, that in many parts of England the degree of humidity as measured by the comparative saturation of the air, is as great as that of Batavia or even greater. A register kept at Clifton [[p. 10]] during the years 1853-1862 shows a mean humidity in January of 90, while the highest monthly mean for the four years at Batavia was 88; and while the lowest of the monthly means at Clifton was 79.1, the lowest at Batavia was 78.9. These figures however represent an immense difference in the quantity of vapour in every cubic foot of air. In January at Clifton, with a temperature of 35° to 40° Fahr., there would be only about 4 to 4 1/2 grains of vapour per cubic foot of air, while at Batavia, with a temperature from 80° to 90° Fahr., there would be about 20 grains in the same quantity of air. The most important fact however is, that the capacity of air for holding vapour in suspension increases more rapidly than temperature increases, so that a fall of ten degrees at 50° Fahr. will lead to the condensation of about 1 1/2 grains of vapour, while a similar fall at 90° Fahr. will set free 6 1/2 grains. We can thus understand how it is that the very moderate fall of the thermometer during a tropical night causes heavier dews and a greater amount of sensible moisture than are ever experienced during much greater variations of temperature in the temperate zone. It is this large quantity of vapour in the equatorial atmosphere that keeps up a genial warmth throughout the night by preventing the radiation into space of the heat absorbed by the surface soil during the day. That this is really the case is strikingly proved by what occurs in the plains of Northern India, where the daily maximum of heat is far beyond anything experienced near the equator, yet, owing to the extreme dryness of the atmosphere, the clear nights are very cold, radiation being sometimes so rapid that water placed in shallow pans becomes frozen over.

    [[p. 11]] As the heated earth, and everything upon its surface, does not cool so fast when surrounded by moist as by dry air, it follows, that even if the quantity and intensity of the solar rays falling upon two given portions of the earth's surface are exactly equal, yet the sensible and effective heat produced in the two localities may be very different according as the atmosphere contains much or little vapour. In the one case the heat is absorbed more rapidly than it can escape by radiation; in the other case it radiates away into space, and is lost, more rapidly than it is being absorbed. In both cases an equilibrium will be arrived at, but in the one case the resulting mean temperature will be much higher than in the other.

    Influence of Winds on the Temperature of the Equator.--The distance from the northern to the southern tropics being considerably more than three thousand miles, and the area of the intertropical zone more than one-third the whole area of the globe, it becomes hardly possible for any currents of air to reach the equatorial belt without being previously warmed by contact with the earth or ocean, or by mixture with the heated surface-air which is found in all intertropical and sub-tropical lands. This warming of the air is rendered more certain and more effective by the circumstance, that all currents of air coming from the north or south have their direction changed owing to the increasing rapidity of the earth's rotational velocity, so that they reach the equator as easterly winds, and thus pass obliquely over a great extent of the heated surface of the globe. The causes that produce the westerly monsoons act in a similar manner, so that on the equator direct north or [[p. 12]] south winds, except as local land and sea breezes, are almost unknown. The Batavia observations show, that for ten months in the year the average direction of the wind varies only between 5° and 30° from due east or west, and these are also the strongest winds. In the two months--March and October--when the winds are northerly, they are very light, and are probably in great part local sea-breezes, which, from the position of Batavia, must come from the north. As a rule, therefore, every current of air at or near the equator has passed obliquely over an immense extent of tropical surface and is thus necessarily a warm wind.

    In the north temperate zone, on the other hand, the winds are always cool, and often of very low temperature even in the height of summer, due probably to their coming from colder northern regions as easterly winds, or from the upper parts of the atmosphere as westerly winds; and this constant supply of cool air, combined with quick radiation through a dryer atmosphere, carries off the solar heat so rapidly that an equilibrium is only reached at a comparatively low temperature. In the equatorial zone, on the contrary, the heat accumulates, on account of the absence of any medium of sufficiently low temperature to carry it off rapidly, and it thus soon reaches a point high enough to produce those scorching effects which are so puzzling when the altitude of the sun or the indications of the thermometer are alone considered. Whenever, as is sometimes the case, exceptional cold occurs near the equator, it can almost always be traced to the influence of currents of air of unusually low temperature. Thus in July near the Aru islands, the writer experienced a strong south-east wind which [[p. 13]] almost neutralised the usual effects of tropical heat although the weather was bright and sunny. But the wind, coming direct from the southern ocean during its winter without acquiring heat by passing over land, was of an unusually low temperature. Again, Mr. Bates informs us that in the Upper Amazon in the month of May there is a regularly recurring south wind which produces a remarkable lowering of the usual equatorial temperature. But owing to the increased velocity of the earth's surface at the equator a south wind there must have been a south-west wind at its origin, and this would bring it directly from the high chain of the Peruvian Andes during the winter of the southern hemisphere. It is therefore probably a cold mountain wind, and blowing as it does over a continuous forest it has been unable to acquire the usual tropical warmth.

    The cause of the striking contrast between the climates of equatorial and temperate lands at times when both are receiving an approximately equal amount of solar heat may perhaps be made clearer by an illustration. Let us suppose there to be two reservoirs of water, each supplied by a pipe which pours into it a thousand gallons a day, but which runs only during the daytime, being cut off at night. The reservoirs are both leaky, but while the one loses at the rate of nine hundred gallons in the twenty-four hours the other loses at the rate of eleven hundred gallons in the same time, supposing that both are kept exactly half full and thus subjected to the same uniform water-pressure. If now both are left to be supplied by the above-mentioned pipes the result will be, that in the one which loses by leakage less than it receives the water will rise day by [[p. 14]] day, till the increased pressure caused the leakage to increase so as exactly to balance the supply; while in the other the water will sink till the decreasing pressure causes the leakage to decrease so as to balance the supply, when both will remain stationary, the one at a high the other at a low average level, each rising during the day and sinking again at night. Just the same thing occurs with that great heat-reservoir the earth, whose actual temperature at any spot will depend, not alone upon the quantity of heat it receives, but on the balance between its constantly varying waste and supply. We can thus understand how it is that, although in the months of June and July Scotland in latitude 57° north receives as much sun-heat as Angola or Timor in latitude 10° south, and for a much greater number of hours daily, yet in the latter the mean temperature will be about 80° Fahr., with a daily maximum of 90° to 95°, while in the former the mean will be about 60° Fahr. with a daily maximum of 70° or 75°; and, while in Scotland exposure to the full noonday sun produces no unpleasant heat-sensations, a similar exposure in Timor at any time between 9 A.M. and 3 P.M. would blister the skin in a few minutes almost as effectually as the application of scalding water.

    Heat Due to the Condensation of Atmospheric Vapour.--Another cause which tends to keep up a uniform high temperature in the equatorial, as compared with the variable temperatures of the extra-tropical zones, is the large amount of heat liberated during the condensation of the aqueous vapour of the atmosphere in the form of rain and dew. Owing to the frequent near approach of the equatorial atmosphere to the [[p. 15]] saturation point, and the great weight of vapour its high temperature enables it to hold in suspension, a very slight fall of the thermometer is accompanied by the

condensation of a large absolute quantity of atmospheric vapour, so that copious dews and heavy showers of rain are produced at comparatively high temperatures and [[p. 16]] low altitudes. The drops of rain rapidly increase in size while falling through the saturated atmosphere; and during this process as well as by the formation of dew, the heat which retained the water in the gaseous form, and was insensible while doing so, is liberated, and thus helps to keep up the high temperature of the air. This production of heat is almost always going on. In fine weather the nights are always dewy, and the diagram on the preceding page showing the mean monthly rainfall at Batavia and Greenwich proves that this source of increased temperature is present during every month in the year, since the lowest monthly fall at the former place is almost equal to the highest monthly fall at the latter.

    It may perhaps be objected, that evaporation must absorb as much heat as is afterwards liberated by condensation, and this is true; but as evaporation and condensation occur usually at different times and in different places, the equalising effect is still very important. Evaporation occurs chiefly during the hottest sunshine, when it tends to moderate the extreme heat, while condensation takes place chiefly at night in the form of dew and rain, when the liberated heat helps to make up for the loss of the direct rays of the sun. Again, the most copious condensation both of dew and rain is greatly influenced by vegetation and especially by forests, and also by the presence of hills and mountains, and is therefore greater on land than on the ocean; while evaporation is much greater on the ocean, both on account of the less amount of cloudy weather and because the air is more constantly in motion. This is particularly the case throughout that large [[p. 17]] portion of the tropical and subtropical zones where the trade-winds constantly blow, as the evaporation must there be enormous while the quantity of rain is very small. It follows, then, that on the equatorial land-surface there will be a considerable balance of condensation over evaporation which must tend to the general raising of the temperature, and, owing to the condensation being principally at night, not less powerfully to its equalisation.

    General Features of the Equatorial Climate.--The various causes now enumerated are sufficient to enable us to understand how the great characteristic features of the climate of the equatorial zone are brought about; how it is that so high a temperature is maintained during the absence of the sun at night, and why so little effect is produced by the sun's varying altitude during its passage from the northern to the southern tropic. In this favoured zone the heat is never oppressive, as it so often becomes on the borders of the tropics; and the large absolute amount of moisture always present in the air, is almost as congenial to the health of man as it is favourable to the growth and development of vegetation.2 Again, the lowering of the temperature at night is so regular and yet so strictly limited in amount, that, although never cold enough to be unpleasant, the nights are never so oppressively hot as to prevent sleep. During the wettest months of the year, it is rare to have many days in succession [[p. 18]] without some hours of sunshine, while even in the driest months there are occasional showers to cool and refresh the overheated earth. As a result of this condition of the earth and atmosphere, there is no check to vegetation, and little if any demarcation of the seasons. Plants are all evergreen; flowers and fruits, although more abundant at certain seasons, are never altogether absent; while many annual food-plants as well as some fruit-trees produce two crops a year. In other cases, more than one complete year is required to mature the large and massive fruits, so that it is not uncommon for fruit to be ripe at the same time that the tree is covered with flowers, in preparation for the succeeding crop. This is the case with the Brazil nut tree, in the forests of the Amazon, and with many other tropical as with a few temperate fruits.

    Uniformity of the Equatorial Climate in all Parts of the Globe.--The description of the climatal phenomena of the equatorial zone here given, has been in great part drawn from long personal experience in South America and in the Malay Archipelago. Over a large portion of these countries the same general features prevail, only modified by varying local conditions. Whether we are at Singapore or Batavia; in the Moluccas, or New Guinea; at Para, at the sources of the Rio Negro, or on the Upper Amazon, the equatorial climate is essentially the same, and we have no reason to believe that it materially differs in Guinea or the Congo. In certain localities, however, a more contrasted wet and dry season prevails, with a somewhat greater range of the thermometer. This is generally associated with a sandy soil, and a less dense forest, or with an open and more [[p. 19]] cultivated country. The open sandy country with scattered trees and shrubs or occasional thickets, which is found at Santarem and Monte-Alegre on the lower Amazon, are examples, as well as the open cultivated plains of Southern Celebes; but in both cases the forest country in adjacent districts has a moister and more uniform climate, so that it seems probable that the nature of the soil or the artificial clearing away of the forests, are important agents in producing the departure from the typical equatorial climate observed in such districts. The almost rainless district of Ceara on the North-East coast of Brazil and only a few degrees south of the equator, is a striking example of the need of vegetation to react on the rainfall. We have here no apparent cause but the sandy soil and bare hills, which when heated by the equatorial sun produce ascending currents of warm air and thus prevent the condensation of the atmospheric vapour, to account for such an anomaly; and there is probably no district where judicious planting would produce such striking and beneficial effects. In Central India the scanty and intermittent rainfall, with its fearful accompaniment of famine, is no doubt in great part due to the absence of a sufficient proportion of forest-covering to the earth's surface; and it is to a systematic planting of all the hill tops, elevated ridges, and higher slopes that we can alone look for a radical cure of the evil. This would almost certainly induce an increased rainfall; but even more important and more certain, is the action of forests in checking evaporation from the soil and causing perennial springs to flow, which may be collected in [[p. 20]] vast storage tanks and will serve to fertilise a great extent of country; whereas tanks without regular rainfall or permanent springs to supply them are worthless. In the colder parts of the temperate zones, the absence of forests is not so much felt, because the hills and uplands are naturally clothed with a thick coating of turf which absorbs moisture and does not become over-heated by the sun's rays, and the rains are seldom violent enough to strip this protective covering from the surface. In tropical and even in south-temperate countries, on the other hand, the rains are periodical and often of excessive violence for a short period; and when the forests are cleared away the torrents of rain soon strip off the vegetable soil, and thus destroy in a few years the fertility which has been the growth of many centuries. The bare subsoil becoming heated by the sun, every particle of moisture which does not flow off is evaporated, and this again reacts on the climate, producing long-continued droughts only relieved by sudden and violent storms, which add to the destruction and render all attempts at cultivation unavailing. Wide tracts of fertile land in the south of Europe have been devastated in this manner, and have become absolutely uninhabitable. Knowingly to produce such disastrous results would be a far more serious offence than any destruction of property which human labour has produced and can replace; yet we ignorantly allow such extensive clearings for coffee cultivation in India and Ceylon, as to cause the destruction of much fertile soil which generations cannot replace, and which will surely, if not checked in time, [[p. 21]] lead to the deterioration of the climate and the permanent impoverishment of the country.3

    Short Twilight of the Equatorial Zone.--One of the phenomena which markedly distinguish the equatorial from the temperate and polar zones, is the shortness of the twilight and consequent rapid transition from day to night and from night to day. As this depends only on the fact of the sun descending vertically instead of obliquely below the horizon, the difference is most marked when we compare our midsummer twilight with that of the tropics. Even with us the duration of twilight is very much shorter at the time of the equinoxes, and it is probably not much more than a third shorter than this at the equator. Travellers usually exaggerate the shortness of the tropical twilight, it being sometimes said that if we turn a page of the book we are reading when the sun disappears, by the time we turn over the next page it will be too dark to see to read. With an average book and an average reader this is certainly not true, and it will be well to describe as correctly as we can what really happens.

    In fine weather the air appears to be somewhat more transparent near the equator than with us, and the intensity of sunlight is usually very great up to the moment when the solar orb touches the horizon. As soon as it has disappeared the apparent gloom is proportionally great, but this hardly increases perceptibly during the first ten minutes. During the next ten minutes however it becomes rapidly darker, and at the end of [[p. 22]] about twenty-five minutes from sunset the complete darkness of night is almost reached. In the morning the changes are perhaps even more striking. Up to about a quarter past five o'clock the darkness is complete; but about that time a few cries of birds begin to break the silence of night, perhaps indicating that signs of dawn are perceptible in the eastern horizon. A little later the melancholy voices of the goatsuckers are heard, varied croakings of frogs, the plaintive whistle of mountain thrushes, and strange cries of birds or mammals peculiar to each locality. About half-past five the first glimmer of light becomes perceptible; it slowly becomes lighter, and then increases so rapidly that at about a quarter to six it seems full daylight. For the next quarter of an hour this changes very little in character; when, suddenly, the sun's rim appears above the horizon, decking the dew-laden foliage with glittering gems, sending gleams of golden light far into the woods, and waking up all nature to life and activity. Birds chirp and flutter about, parrots scream, monkeys chatter, bees hum among the flowers, and gorgeous butterflies flutter lazily along or sit with fully expanded wings exposed to the warm and invigorating rays. The first hour of morning in the equatorial regions possesses a charm and a beauty that can never be forgotten. All nature seems refreshed and strengthened by the coolness and moisture of the past night; new leaves and buds unfold almost before the eye, and fresh shoots may often be observed to have grown many inches since the preceding day. The temperature is the most delicious conceivable. The slight chill of early dawn, which was itself agreeable, is succeeded by an invigorating warmth; and the intense [[p. 23]] sunshine lights up the glorious vegetation of the tropics, and realises all that the magic art of the painter or the glowing words of the poet, have pictured as their ideals of terrestrial beauty.

    The Aspect of the Equatorial Heavens.--Within the limits of the equatorial zone the noonday sun is truly vertical twice every year, and for several months it passes so near the zenith that the difference can hardly be detected without careful observation of the very short shadows of vertical objects. The absence of distinct horizontal shadows at noon which thus characterises a considerable part of the year, is itself a striking phenomenon to an inhabitant of the temperate zones; and equally striking is the changed aspect of the starry heavens. The grand constellation Orion, passes vertically overhead, while the Great Bear is only to be seen low down in the northern heavens, and the Pole star either appears close to the horizon or has altogether disappeared according as we are north or south of the equator. Towards the south the Southern Cross, the Magellanic clouds, and the jet-black "coal sacks" are the most conspicuous objects invisible in our northern latitudes. The same cause that brings the sun overhead in its daily march equally affects the planets, which appear high up towards the zenith far more frequently than with us, thus affording splendid opportunities for telescopic observation.

    Intensity of Meteorological Phenomena at the Equator.--The excessive violence of meteorological phenomena generally supposed to be characteristic of the tropics is not by any means remarkable in the equatorial zone. Electrical disturbances are much more frequent, but not [[p. 24]] generally more violent than in the temperate regions. The wind-storms are rarely of excessive violence, as might in fact be inferred from the extreme steadiness of the barometer, whose daily range at Batavia rarely exceeds one-eighth of an inch, while the extreme range during three years was less than one-third of an inch! The amount of the rainfall is very great, seventy or eighty inches in a year being a probable average; and as the larger part of this occurs during three or four months, individual rainfalls are often exceedingly heavy. The greatest fall recorded at Batavia during three years was three inches and eight-tenths in one hour,4 but this was quite exceptional, and even half this quantity is very unusual. The greatest rainfall recorded in twenty-four hours is seven inches and a quarter; but more than four inches in one day occurs only on two or three occasions in a year. The blue colour of the sky is probably not so intense as in many parts of the temperate zone, while the brilliancy of the moon and stars is not perceptibly greater than that of our clearest frosty nights, and is undoubtedly much inferior to what is witnessed in many desert regions, and even in Southern Europe.

    On the whole, then, we must decide, that uniformity and abundance, rather than any excessive manifestations, are the prevailing characteristic of all the climatal phenomena of the equatorial zone.

    Concluding Remarks.--We cannot better conclude our account of the equatorial climate than by quoting the following vivid description of the physical phenomena which occur during the early part of the dry season at Para. It is taken from Mr. Bates' Naturalist [[p. 25]] on the Amazons, and clearly exhibits some of the more characteristic features of a typical equatorial day.

    "At that early period of the day (the first two hours after sunrise) the sky was invariably cloudless, the thermometer marking 72° or 73° Fahr.; the heavy dew or the previous night's rain, which lay on the moist foliage, becoming quickly dissipated by the glowing sun, which, rising straight out of the east, mounted rapidly towards the zenith. All nature was fresh, new leaf and flower-buds expanding rapidly. * * * The heat increased hourly, and towards two o'clock reached 92° to 93° Fahr., by which time every voice of bird and mammal was hushed. The leaves, which were so moist and fresh in early morning, now became lax and drooping, and flowers shed their petals. On most days in June and July a heavy shower would fall some time in the afternoon, producing a most welcome coolness. The approach of the rain-clouds was after a uniform fashion very interesting to observe. First, the cool sea-breeze which had commenced to blow about ten o'clock, and which had increased in force with the increasing power of the sun, would flag, and finally die away. The heat and electric tension of the atmosphere would then become almost insupportable. Languor and uneasiness would seize on every one, even the denizens of the forest betraying it by their motions. White clouds would appear in the east and gather into cumuli, with an increasing blackness along their lower portions. The whole eastern horizon would become almost suddenly black, and this would spread upwards, the sun at length becoming obscured. Then the rush of a mighty wind is heard through the forest, swaying the tree-tops; a vivid flash of lightning bursts forth, then a [[p. 26]] crash of thunder, and down streams the deluging rain. Such storms soon cease, leaving bluish-black motionless clouds in the sky until night. Meantime all nature is refreshed; but heaps of flower-petals and fallen leaves are seen under the trees. Towards evening life revives again, and the ringing uproar is resumed from bush and tree. The following morning the sun again rises in a cloudless sky; and so the cycle is completed; spring, summer, and autumn, as it were in one tropical day. The days are more or less like this throughout the year. A little difference exists between the dry and wet seasons; but generally, the dry season, which lasts from July to December, is varied with showers, and the wet, from January to June, with sunny days. It results from this,--that the periodical phenomena of plants and animals do not take place at about the same time in all species, or in the individuals of any given species, as they do in temperate countries. In Europe, a woodland scene has its spring, its summer, its autumnal, and its winter aspects. In the equatorial forests the aspect is the same or nearly so every day in the year: budding, flowering, fruiting, and leaf-shedding are always going on in one species or other. It is never either spring, summer, or autumn, but each day is a combination of all three. With the day and night always of equal length, the atmospheric disturbances of each day neutralising themselves before each succeeding morn: with the sun in its course proceeding midway across the sky, and the daily temperature almost the same throughout the year--how grand in its perfect equilibrium and simplicity is the march of Nature under the equator!"


Notes Appearing in the Original Work

1. "Observations Made at the Magnetical and Meteorological Observatory at Batavia. Published by order of the Government of Netherlands India. Vol. I. Meteorological, from Jan. 1866 to Dec. 1868; and Magnetical, from July 1867 to June 1870. By Dr. P. A. Bergsma. Batavia, 1871." This fine work is entirely in English. [[on p. 4]]
2. Where the inhabitants adapt their mode of life to the peculiarities of the climate, as is the case with the Dutch in the Malay Archipelago, they enjoy as robust health as in Europe, both in the case of persons born in Europe and of those who for generations have lived under a vertical sun. [[on p. 17]]
3. For a terrible picture of the irreparable devastation caused by the reckless clearing of forests see the third chapter of Mr. Marsh's work The Earth as Modified by Human Action. [[on p. 21]]
4. On January 10th, 1867, from 1 to 2 A.M. [[on p. 24]]


*                 *                 *                 *                 *

Return to Home