
1

Geometry:
CamerasCameras

Outline

• Setting up the camera• Setting up the camera
• Projections

– Orthographic
– Perspective

2

Controlling the camera
• Default OpenGL camera: At (0, 0, 0)T in world coordinates looking in Z

direction with up vector (0, 1, 0)T

– Up vector controls camera roll (rotation around z-axis)Up vector controls camera roll (rotation around z axis)
• Changing position: gluLookAt()

– eye = (eyeX, eyeY, eyeZ)T: Desired camera position
– center = (centerX, centerY, centerZ)T: Where camera is

looking
– up = (upX, upY, upZ)T:

Camera’s “up” vector

from Woo et al.

The Viewing Volume

• Definition: The region of 3-D space visible in
th ithe image

• Depends on:
– Camera position,

orientation
– Field of view,

image si eimage size
– Projection type

• Orthographic
• Perspective

courtesy of N. Robins

3

gluLookAt(): Details

• To build the camera coordinate system, and find the rigid
transformation between world system and camera system.

• Steps
1. Compute vectors u, v, n defining new camera axes in world coordinates
2. Compute location of old camera position in terms of new location’s

coordinate system
3. Fill in rigid transform matrix

from Hill

center

gluLookAt(): Axes

• Form basis vectors
– New camera Z axis: n = eye - centerNew camera Z axis: n eye center
– New camera X axis: u = up x n
– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

4

gluLookAt(): Axes

• Form basis vectors
– New camera Z axis: n = eye - centerNew camera Z axis: n eye center
– New camera X axis: u = up x n
– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

gluLookAt(): Axes

• Form basis vectors
– New camera Z axis: n = eye - centerNew camera Z axis: n eye center
– New camera X axis: u = up x n
– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors
up

from Hill

center

up

5

gluLookAt(): Axes

• Form basis vectors
– New camera Z axis: n = eye - centerNew camera Z axis: n eye center
– New camera X axis: u = up x n
– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

gluLookAt(): Axes

• Form basis vectors
– New camera Z axis: n = eye - centerNew camera Z axis: n eye center
– New camera X axis: u = up x n
– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

6

gluLookAt(): Axes

• Form basis vectors
– New camera Z axis: n = eye - centerNew camera Z axis: n eye center
– New camera X axis: u = up x n
– New camera Y axis: v = n x u (not necessarily

same as up)

• Normalize so that these are unit vectors

from Hill

center

gluLookAt(): Axes

• Now make 3 x 3 rotation matrix from
formula on rigid transform slide:formula on rigid transform slide:

• Since , this is the same as:

7

gluLookAt(): Location

• : World origin in camera coordinates• : World origin in camera coordinates

from Hill

center
origin

-eye

gluLookAt(): Location

• : World origin in camera coordinates• : World origin in camera coordinates

• -eye is in world coordinates, so project on
camera axes:

from Hill

center
origin

-eye

8

gluLookAt(): Matrix

• Letting and writing the vector• Letting and writing the vector
components as u = (ux, uy, uz)T, etc.,
the final transformation matrix is given by:

Transformations vs. Projections

• Transformation: Mapping within n-D space
– Moves points around, effectively warping spacep , y p g p

• Projection: Mapping from n-D space down to lower-
dimensional subspace
– E.g., point in 3-D space to point on plane (a 2-D entity) in that

space
– We will be interested in such 3-D to 2-D projections where the

plane is the image

Parallel projection along direction d onto a plane
from Hill

9

Parallel Projections

Oblique: d in general position
relative to plane normal n

Orthographic: d parallel to n

from Hill

Orthographic Projection

• Projection direction d is aligned with Z axis
• Viewing volume is “brick”-shaped region inViewing volume is brick shaped region in

space
– Not the same as image size

• No perspective effects—distant objects look
same as near ones, so camera (x, y, z) =>
image (x, y)

from Hill

10

Orthographic Projection in OpenGL

• Setting up the viewing volume (VV):
– glOrtho()g ()

• left, right, bottom, top: Coordinates of sides of viewing
volume

• znear, zfar: Distance to arbitrarily designated front, back sides
of VV

– Negative = Behind camera
– gluOrtho2D(): glOrtho() with near = -1, far = 1

• Modifies top 4 x 4 matrix of GL_PERSPECTIVE matrix
stackstack
– Applied after GL_MODELVIEW transformation has put things in

camera coordinates
– Actual matrix scales viewing volume (VV) to canonical VV

(CVV): Cube extending from -1 to 1 along each dimension

Perspective with a Pinhole Camera

from Forsyth & Ponce

Instead of single direction d characteristic of parallel projections,

rays emanating from single point c define perspective projection

c

11

Perspective Projection

c

from Forsyth & Ponce

Perspective Projection: Viewing Volume

• Characteristic shape is a frustum—a
truncated pyramid

12

Perspective Projection: Properties

• Far objects appear smaller than near ones
• Lines are preserved• Lines are preserved
• Parallel lines in plane Π converge

at infinity

from Hill

Pinhole Camera Terminology

Image plane

Image center/
Principal pointFocal length

Optical axis

Principal plane

Camera center

Principal point

Image point

Camera point

g

13

• Letting the camera coordinates of the
projected point be

Perspective Projection

projected point be
leads by similar triangles to:

Perspective Projection Matrix

• Using homogeneous coordinates, we can describe a
perspective transformation with a 4 x 4 matrix

lti li timultiplication:

(by the rule for converting between homogeneous and
regular coordinates—this is called the perspective
division)

• Projection to (u, v)T is again accomplished by simply
dropping the z coordinate

14

Perspective Projections in OpenGL
• glFrustum() sets transformation to CVV

– Arguments like glOrtho(), but znear, zfar must be
positivep

• A final transform, GL_VIEWPORT (see glViewport()) shifts NDC
to image coordinate origin and scales to fit window

from Woo et al.

gluPerspective()

• Simplifies call to glFrustum()
• Arguments:• Arguments:

– fovy: Field of view angle (degrees) in Y direction
– aspect: Ratio of width to height of viewing frustum
– near, far: Same as glFrustum()

from Woo et al.

