Geometry:
Cameras

Outline

e Setting up the camera
e Projections

— Orthographic

— Perspective

Controlling the camera

e Default OpenGL camera: At (0, 0, 0)T in world coordinates looking in Z
direction with up vector (0, 1, 0)T
— Up vector controls camera roll (rotation around z-axis)
e Changing position: gluLookAt()
— eye = (eyeX, eyeY, eyeZ)": Desired camera position
— center = (centerX, centerY, centerZ)": Where camera is
looking
— up = (uUpX, upY, up2)™: y
Camera’s “up” vector

The Viewing Volume

e Definition: The region of 3-D space visible in
the image
e Depends on:

— Camera position,
orientation

— Field of view,
Image size
— Projection type
= Orthographic
* Perspective

gluLookAt(): Details

e To build the camera coordinate system, and find the rigid
transformationjM between world system and camera system.

e Steps
1. Compute vectors U, Vv, n defining new camera axes in world coordinates

2. Compute location q,w of old camera position in terms of new location’s
coordinate system

3. Fill'in rigid transform matrix %NI

center =t ==

“from Hill

gluLookAt(): Axes

= Form basis vectors
— New camera Z axis: N = eye - center
— New camera X axis: U = UP X N

— New camera Y axis: V = N X U (not necessarily
same as UP)
* Normalize so that these are unit vectors

center © =+

from Hill

gluLookAt(): Axes

= Form basis vectors
— New camera Z axis: N = eye - center
— New camera X axis: U = UP X N

— New camera Y axis: V = N X U (not necessarily
same as UP)
* Normalize so that these are unit vectors

R
n
[.
A v A
—_—
o R\ I’
_— |
|
|
|

center © <= =

| —
AN
e

from Hill

gluLookAt(): Axes

e Form basis vectors

— New camera Z axis: N = eye - center
— New camera X axis: U = UP X N

— New camera Y axis: V = N X U (not necessarily
same as UP)
* Normalize so that these are unit vectors

LI - | —
ove P D v
¥ \\L
o

- |
center - =~ _

from Hill

gluLookAt(): Axes

= Form basis vectors
— New camera Z axis: N = eye - center
— New camera X axis: U = UP X N

— New camera Y axis: V = N X U (not necessarily
same as UP)
* Normalize so that these are unit vectors

oY
n
u N\'A‘-: .
5 v
VAN
—
[e]

- |
center - =~ _

from Hill

gluLookAt(): Axes

= Form basis vectors
— New camera Z axis: N = eye - center

— New camera X axis: U = UP X N

— New camera Y axis: V = N X U (not necessarily
same as UP)
* Normalize so that these are unit vectors

e D \n\‘

- |
center - =~ _

from Hill

gluLookAt(): Axes

= Form basis vectors
— New camera Z axis: N = eye - center
— New camera X axis: U = UP X N

— New camera Y axis: V = N X U (not necessarily
same as UP)
* Normalize so that these are unit vectors

|
- |
center - =~ _

gluLookAt(): Axes

e Now make 3 x 3 rotation matrix from
formula on rigid transform slide:

%}R — (CiWach)c kW)

 Since %,R =WRYT | this is the same as:

WiT uT
_ . . T_ . _ .
CR = Wi, VieVke)T = ;\f.u% = v§
k n

C

gluLookAt(): Location

. cow : World origin in camera coordinates

I\;_ /

center ©=F o
origin

)

gluLookAt(): Location

. cow : World origin in camera coordinates

* -eye is in world coordinates, so project on
camera axes:

Coyy = (—eye - u, —eye - v, —eye - n)7|

I\;_ /

center = o
origin

)

gluLookAt(): Matrix

 Letting t =“0y and writing the vector
components as U = (U,, Uy, u,)’, etc.,
the final transformation matrix is given by:

Uz Uy Uz Iz
Vr Yy V2 ty
Ng Ny Nz 1z

O 0 0 1

e —

Transformations vs. Projections

e Transformation: Mapping within N-D space
— Moves points around, effectively warping space

e Projection: Mapping from n-D space down to lower-
dimensional subspace
— E.g., point in 3-D space to point on plane (a 2-D entity) in that
space

— We will be interested in such 3-D to 2-D projections where the
plane is the image

viewplane 7 ~ P
- - ,

from Hill
Parallel projection along direction donto a plane

Parallel Projections

1))
¥ _\'
d il
| & P
" A r P d
- B < n v ~*
e S | | :\:_9-:_ - el
~ o
s
/ s
£ P g
x X
from Hill
Oblique: d in general position Orthographic: d parallel to n

relative to plane normal N

Orthographic Projection

« Projection direction d is aligned with Z axis

e Viewing volume is “brick”-shaped region in
space
— Not the same as image size

* No perspective effects—distant objects look
same as near ones, so camera (X, y, z) =>

image (X, Y)

viewplane

camera
view volume

far plane
image produced

from Hill

Orthographic Projection in OpenGL

e Setting up the viewing volume (VV):
— glortho()

- left, right, bottom, top: Coordinates of sides of viewing
volume

= znear, zfar: Distance to arbitrarily designated front, back sides
of VW

— Negative = Behind camera
— gluOrtho2D(): glOrtho() with near = -1, far =1
e Modifies top 4 x 4 matrix of GL_PERSPECT I VE matrix
stack

— Applied after GL_MODELVIEW transformation has put things in
camera coordinates

— Actual matrix scales viewing volume (VV) to canonical VV
(CVV): Cube extending from -1 to 1 along each dimension

Perspective with a Pinhole Camera

image
plane

pinhole ¢ .-~ virtual
image

from Forsyth & Ponce

Instead of single direction d characteristic of parallel projections,
rays emanating from single point C define perspective projection

10

Perspective Projection

image

from Forsyth & Ponce

Perspective Projection: Viewing Volume

e Characteristic shape is a frustum—a
truncated pyramid

11

Perspective Projection: Properties

e Far objects appear smaller than near ones
e Lines are preserved
e Parallel lines in plane IT converge

at infinity

uuuuuuuu

Pinhole Camera Terminology

Primsipal plane

Y

Im lane

Principal point

Optical axis _ Z

—O0 Xecam

Camera cente

Xem

Camera point

Image point

-~

12

Perspective Projection

e Letting the camera coordinates of the
projected point be Xcam = (&, y, 2)
leads by similar triangles to:

= u)= fz/=
Hm = v) T\ fy/z

Xcam
f
v Y

T

Perspective Projection Matrix

= Using homogeneous coordinates, we can describe a
perspective transformation with a 4 x 4 matrix
multiplication:

1 0 O 0 T x f:c/z
01 0 O Y11= Y | 5| fy-
0O O 1 0 Z z ¥
0O 0 1/f O 1 z/f

(by the rule for converting between homogeneous and
regular coordinates—this is called the perspective
division)

e Projection to (u, V)T is again accomplished by simply
dropping the Z coordinate

13

Perspective Projections in OpenGL

e glFrustum() sets transformation to CvV
— Arguments like glOrtho(), but znear, zfar must be
positive

Y

4 A

from Woo et al.

e Afinal transform, GL_VIEWPORT (see glViewport()) shifts NDC
to image coordinate origin and scales to fit window

gluPerspective()

« Simplifies call to glFrustum()

e Arguments:
— Fovy: Field of view angle (degrees) in Y direction
— aspect: Ratio of width to height of viewing frustum
— near, far: Same as glFrustum(Q)

- from Woo et al.

4
3

14

