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ABSTRACT

Imbalance oriented selection scheme was recently proposed
to select good candidates of interest points [1]. In this pa-
per, we propose a method to quantify the local diversity of
imbalance of an image point, which provides us a new in-
terest strength assignment scheme. We test the proposed ap-
proach by repeatability evaluation and stereo matching and
obtain promising results.

Index Terms— Interest points, imbalance, diversity

1. INTRODUCTION

Many existing interest point detectors include two basic steps:
one step is to assign interest strength to images by certain fil-
tering techniques such as Gaussian derivative and its variants
[2, 3], Difference of Gausssian [4], and Laplacian [5]; the
other step is to select a candidate set by non-maximum sup-
pression. The interest points are then defined as the candi-
dates of largest strengths.

A new candidate selection scheme, called imbalance ori-
ented selection, was recently proposed to address sparsely-
textured images. This scheme chooses image points whose
zero-/first-order intensities can be clustered into two imbal-
anced classes as candidates. Unlike the non-maximum sup-
pression, under imbalance oriented selection, there can be
more than one interest point in a local window, which not
only preserves good candidates in sparsely-textured images,
but also improves the localization accuracy of interest points.
Extensive experiments on repeatability evaluation were pre-
sented to confirm this advantage of imbalance oriented se-
lection in [1]. However, the detector developed in [1] still
follows the conventional filter based interest strength assign-
ment scheme, and it is difficult for the detector to distinguish
interest points from edge points if images are textureless.

In this paper, we propose to investigate the local diversity
of imbalanced points. The basic idea is to categorize imbal-
anced points by the so-called index of the maximum differ-
ence [1] (details are given in Section 2). Fig. 1 shows an
example of an image point of most diverse imbalance in an
image of two polygons.

Fig. 1. The most diverse imbalanced point.

2. IMBALANCE ORIENTED SELECTION

Imbalance oriented selection aims to minimize the occur-
rences of edge points [1]. Since edge points have similar local
appearances (i.e., not distinctive to each other), they increase
the chance of mismatching in the higher-level applications.
Edge points can be characterized as points of balanced local
appearances. As shown in Fig. 2 (a), intensities are supposed
to change slightly at the same side of an edge while they
change significantly across an edge. Here, n = 8 directions
are considered. A long (short) arrow indicates a strong (weak)
intensity change along the associated direction. The number
of long arrows is equal to the number of short arrows, which
indicates the balance nature of an edge point. Fig. 2 (b) shows
a case where the number of long arrows is not equal to the
number of short arrows, which characterizes an interest point
as an imbalanced point.

In [1], the authors proposed a sorting based approach to
cluster the arrows into the two classes, as illustrated in the
lower part of Fig. 2 (a) and (b). More specifically, the ap-
proach first sorts those first-order changes in increasing or-
der, and then look for the first-order change whose difference
with the next first-order change is maximum. The rank of this
first-order change is called the index of the maximum differ-
ence, e.g., the circled numbers in Fig. 2 (a) and (b). In [1],
the authors further consider a point whose index of maximum
difference is larger than n/2 as a redundant point because of
its co-occurrence of a certain point whose index of maximum
difference is less than n/2.

It is clear that a larger n (more directions) gives more
precise characterization of the imbalance of an image point.
However, a larger n also increases computational cost. In this
paper, we apply Bresenham’s line algorithm to efficiently ex-
tract line segments for the computation of first-order change



Fig. 2. (a) An edge point of balanced local appearance, where
the index of maximum difference is 4 (half of 8 directions);
(b) An imbalanced point, where the index of maximum dif-
ference is 2.

in each direction in order to reduce the computational cost.

3. DIVERSITY OF IMBALANCE

Imbalanced points can be contiguous. The underlying ratio-
nale is that regions such as the one around a triangle vertex
contain rich geometry information, and thus deserve more
number of interest points. Fig. 3 (a) shows the zoom-in upper
region of the triangle overlaid by a number of detected imbal-
anced points labeled by their indices of maximum difference,
where the number of directions n is set to be 64 (we will fix
this number in the rest of this paper). This figure shows a typ-
ical behavior of imbalance oriented selection different from
non-maximum suppression. The distribution of the index of
maximum difference in the region (Fig. 3 (a)) supports the
above rationale very well.

We can observe, from Fig. 3 (a), that an imbalanced point
closer to the boundary of the corner region has smaller in-
dex of maximum difference, which is consistent with the in-
tuition very well. However, due to digitization phenomenon
(discrete space), we also observe certain counter-intuitive ex-
ample, e.g., the pixel labeled by 6, in the bottom-left part of
the illustrated image.

We propose an approach to address the digitization chal-
lenge by introducing the diversity of imbalance. More specif-
ically, for each imbalanced point p, we accumulate the oc-
currence of imbalanced points of different index of maximum
difference in its neighborhood O(p). So, the number of oc-
currence (denoted by o) of imbalanced points in a neighbor-
hood implies the rank of imbalance diversity of a point p. We
quantify the rank of diversity by the number n/2 − o (note
that o is never over n/2). Smaller ranks indicate higher diver-
sity. Fig. 3 (b) shows the zoom-in upper region of the triangle
overlaid by a number of detected imbalanced points labeled
by diversity strength, where O(p) is a 7×7 window. Roughly

speaking, the most diverse points are in the middle of the clus-
ter of imbalanced points detected in the corner region.

(a) (b)

Fig. 3. Zoom in a corner region of the triangle: (a) showing
the index of maximum difference; (b) showing the diversity
strength
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Fig. 4. Keypoints vs. imbalanced points.

Fig. 4 presents the interest points detected by the proposed
detector and keypoint detector on three images of different
types of textures: polygon, stop sign, and wallpaper. The
keypoints detected in the polygon image illustrate a common
phenomenon of scale-space point detectors.

4. EXPERIMENTS

In this section, we will first test the repeatability of the pro-
posed detector, and then its performance on stereo matching.

4.1. Repeatability evaluation

We test the repeatability of the proposed detector across im-
age rotations, compared with the imbalanced point detector
[1] and keypoint detector [4]. We follow the definition of ε-
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Fig. 5. Repeatability

repeatability rate proposed in [2]. The range of rotation angles
is θi = −45◦ + (i− 1)× 10, i = 1 . . . 10.

Fig. 5 shows the ε = 1.5 repeatability rate, on three im-
ages in Fig. 4. Note that the first image is basically textureless
(some edge points have blending intensities though), the sec-
ond one contains simple intensity information, and the third
one contains sparse textures. It is very interesting that the
proposed detector performs extremely well on the texture-
less polygon image while the keypoint detector performs ex-
tremely poor. For the image of a stop sign, it is still clear
for us to observe the superiority of diversity based detector
over filter based detector. For the wallpaper image (of more
textures), the proposed detector achieves the highest repeata-
bility rate too.

4.2. Stereo matching

We now test the proposed detector, compared with the key-
point detector (with SIFT descriptor) [4], on stereo match-
ing with epipolar geometry estimation [6]. It is well-known
that the estimation of epipolar geometry is sensitive to mis-
matching and inaccurate localization. So stereo matching and
epipolar geometry estimation can test not only the localization
accuracy of detected image points but also the distinctiveness
of the local appearances of detected image points. For an im-
balanced point, we use its 5 × 5 window normalized by its
local orientation as the descriptor, where the orientation is es-
timated by applying SVD to the distribution of neighboring
imbalanced points.

Given an image, we apply vertical or horizontal perspec-
tive transformation to synthesize the second image. This ap-
proach provides a convenient way to evaluate estimated point
correspondence. Note that the epilines associated with the
vertical perspective transformation are expected to be hori-
zontally parallel, and the epilines associated with horizontal
perspective transformation are expected to be vertically paral-
lel. Similar to [4], we apply the commonly used scheme to es-
timate point correspondence and epipolar geometry, i.e., first
initialize point correspondence by correlation of the descrip-
tors of detected points, and then apply RANSAC to prone out-
liers.

Fig. 6 shows the results of matched points and estimated

epilines on three different types of sparsely-textured images:
face, wall paper, and sky. The left two columns are results ob-
tained from the keypoint detector, and the right two columns
from the proposed detector. We can observe that the epilines
computed from the proposed detector are perfectly consistent
with the expectation.

5. CONCLUSIONS

In this paper, we propose a novel detector that detects im-
age points based on the diversity of imbalance. It differs
from existing detectors that apply conventional filtering tech-
niques, e.g., Gaussian, DoG, and Laplacian, to assign interest
strength. By repeatability evaluation and stereo matching, we
have shown the superiority of proposed detectors.
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Fig. 6. Point matching and epipolar geometry estimation: Keypoint vs. Proposed


