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Influence of a longitudinal and tilted vibration on stability and dewetting of a liquid film
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We consider the dynamics of a thin liquid film in the attractive substrate potential and under the action of a
longitudinal or a tilted vibration. Using a multiscale technique we split the film motion into the oscillatory and
the averaged parts. The frequency of the vibration is assumed high enough for the inertial effects to become
essential for the oscillatory motion. Applying the lubrication approximation for the averaged motion we obtain
the amplitude equation, which includes contributions from gravity, van der Waals attraction, surface tension,
and the vibration. We show that the longitudinal vibration leads to destabilization of the initially planar film.
Stable solutions corresponding to the deflected free surface are possible in this case. Linear analysis in the case
of tilted vibration shows that either stabilization or destabilization is possible. Stabilization of the dewetting
film by mechanical action (i.e., the vibration) was first reported by us [Phys. Rev. E 77, 036320 (2008)]. This
effect may be important for applications. Also, it is shown that the tilted vibration causes the averaged

longitudinal fluid flow, which can be used to transport microparticles.
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I. INTRODUCTION

Dynamics of thin liquid films was extensively studied
during the last decade both experimentally and theoretically.
The importance of such studies is emphasized by the needs
of modern nanofluidic and microfluidic technologies, which
commonly employ films in the 100—1000 A thickness
range. Reviews focusing on different subfields of research
include Refs. [1-3], as well as 12 reviews focusing on wet-
ting in the recent volume [4].

It is well known that very thin liquid films tend to dewet
from the substrate (rupture). The primary cause for dewetting
is the attractive van der Waals interaction of the film and the
substrate. Loss of stability and rupture of liquid sheets are
often undesirable and may lead to a technological or manu-
facturing process failure. Thus understanding dewetting and
finding means to control it are the important and challenging
problems.

One of the frequently used methods for controlling the
fluid flow on small-to-large spatial scales is the application
of the high-frequency vibration [5-7]. Several phenomena
may emerge when such vibration is applied, such as the os-
cillatory (pulsatile) fluid motion (Faraday instability) and the
time-averaged fluid motion. Analyses of the pulsatile motion
of the liquid layer and thin drops are carried out in Refs.
[7-9] for the transversal vibration and in Refs. [7,10,11] for
the longitudinal one.

The standard high-frequency approximation is based on
the assumption of the vibration frequency so large that the
viscosity is important only in a thin boundary layer near the
rigid wall [5,6]. This approximation works well for macro-
scopic films [7,12,13], but it fails for the thin films. None-
theless, we have recently demonstrated [14] that a hierarchy
of typical times allows for the averaged description in a thin
film system. Instead of using the standard high-frequency
approximation, we assume that the vibration period 27/ @ (i)
is on the order of the characteristic time of the transversal
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transfer of the momentum, 1513/ v, and (ii) is small compared

to the typical “horizontal time,” L%/ v. (Here I:IO is the mean-
film thickness, v is the kinematic viscosity, and L is the typi-
cal horizontal scale. L> H for the thin film.)

We [14] developed the averaged description for the case
of the vertical vibration of the substrate. We show that the
influence of the vibration is finite if the amplitude is large in

comparison with I:IO. In this case the vibration is the efficient
way to stabilize the film against the van der Waals rupture. In
this paper the approach of Ref. [14] is extended to a longi-
tudinal and a tilted vibration.

The paper is organized as follows. In Sec. II the problem
is formulated: the governing equations and the dimensionless
parameters are presented for the case of the longitudinal vi-
bration. Also in this section, using the separation of the time
scales, we split the nonlinear boundary-value problem for the
fluid flow into two coupled boundary-value problems for the
pulsatile and for the averaged flows. The pulsatile flow is
analyzed in Sec. III. The averaged amplitude equation for the
film height is obtained in Sec. IV using the solution of the
pulsatile flow. The linear stability problem for the amplitude
equation, the weakly nonlinear analysis, and the numerical
results on film dynamics are presented in Sec. V. In Sec. VI
the analysis of Secs. I-III is generalized to the case of a tilted
vibration. The conclusions are presented in Sec. VIIL.

II. FORMULATION OF THE PROBLEM

We consider a three-dimensional (3D) thin liquid film of
the unperturbed height ﬁo on a planar horizontal substrate.
The Cartesian reference frame is chosen such that the x and
y axes are in the substrate plane and the z axis is normal to
the substrate (Fig. 1).

The substrate is subject to the longitudinal harmonic vi-

bration of the amplitude b and the frequency w. We assume
that the system is not confined in the horizontal directions or
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FIG. 1. Problem geometry: the longitudinal vibration.

the vertical boundaries are motionless. Thus the substrate
motion induces the fluid motion due to viscosity and sloshing
modes are not excited.

We assume that the film height is sufficiently small, so
that the intermolecular interaction becomes important. In this
paper, as in the preceding paper [14] we consider the van der
Waals attractive potential. Generalization to other models of
wetting interactions is straightforward. Using the same scal-
ings as in Ref. [14] [i.e., the units for the time, the length, the

velocity, and the pressure are ﬁ%/ v, Hy, v/ Hy, and p(v/ Hp)?,
respectively; v is the kinematic viscosity and p is the density
of the liquid] we begin with the following dimensionless
boundary-value problem:

V.v=0, (1a)
V,+Vv-Vv==Vp+ V3 -Gee., (1b)
v=BQsin Qre, at z=0, (2a)
h+v-Vh=w,
(p+¢p—-CaK)n=n-T at z=h(x,y,1). (2b)

Here, v=(u,w) is the fluid velocity (where u is the velocity
in the substrate plane and w is the component normal to the
substrate), p is the pressure in the liquid, T is the viscous
stress tensor, & is the dimensionless height of the film, e, , are
the unit vectors directed along the x and z axes, respectively,
/ 2 - .
n=(e.—Vh)/v1+(Vh)* is the normal unit vector to the free
surface, K=V -n is the mean curvature of the free surface,

¢d=—A/h? [where A=A'/(6mp12H,) is the nondimensional
Hamaker constant], Ca=gH,/(p1?) is the capillary number
(where o is the surface tension), G,= gOI:IS/ 17 is the Galileo
number, B=l;/1:10 is the nondimensional amplitude, and ()

=wlfl(2)/ v is the nondimensional frequency.

We consider the nonlinear evolution of the large-scale
perturbations. Proceeding exactly as in Ref. [14], we first
introduce a small parameter €, which is on the order of the

ratio of the mean height I:IO to the perturbation wavelength,
ie., €<l for long waves. Next, we use conventional
stretched coordinates and the time,

T=éu,

assume large capillary number Ca=Ce > and then separate
the pulsations depending on the “fast” time 7= and the
averaged variables which depend on the “slow” time 7. The

X=ex, Y=ey,
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detailed analysis of this procedure is presented in [14]; it
results in

u=eﬁ+ﬁ, w=EW+ eW, (3a)

p=p+€'p, h=h+eh, (3b)
where all fields are O(1) quantities. The pulsations (averaged
variables) are marked by tildes (overbars). Substitution of
Egs. (3) in Egs. (1) and (2) gives two sets of equations and
boundary conditions for the pulsational and the averaged
parts of the velocity, pressure, and height.

(i) For the pulsations,

WZ: - V . ﬁ, QﬁT: - Vﬁ+ ﬁzz, (43)
pz=0, (4b)
U = BQ sin Te,, W=0 at Z=0, (4¢)

Qh,=-U-Vh+W,

U,=0, p=0 at Z=h. (4d)

Hereafter V=(dy,dy,0) is a two-dimensional (2D) projec-
tion of the gradient operator onto the X-Y plane.
(ii) For the averaged parts,

W,=-V-U, p,=-G,, (52)
U, =Vp+(U-VU+ WU,), (5b)
U=W=0 at Z=0, (5¢)

p=—{pzh) - ¢(h) - CV°,
hp==U-Vi—(UV kY +W+(Wzh),

U,=—(Uyh) at Z=h. (5d)

In set (5) the angular brackets denote averaging with respect
to the fast time 7. The boundary conditions at the free surface

have been shifted at the mean position h. Moreover, we ne-
glect all terms of order € as they are unimportant for the
further analysis. Note that the boundary-value problem gov-
erning the oscillatory motion [Egs. (4)] is linear despite the
finite intensity of the oscillatory motion [see Egs. (3a)]. Also
it can be seen that set (4) is decoupled from set (5) and thus
the solution of the former set can be immediately found. It is
worth noting that B=0O(1) (in contrast to Ref. [14], where the
amplitude of the vibration has to be large in order to provide
a finite intensity of the longitudinal motion).

II1. PULSATILE MOTION

A. Analysis of the general case

Here we assume stability of the pulsatile motion (see Sec.
III C and Appendix for the proof) and determine the solution
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FIG. 2. Dependence of the (a) real and (b) imaginary parts of /
[Egs. (8)]. Lines 1-4 correspond to Q=0hr%=0.1, 2, 10, and 100.

of Egs. (4). We seek the solution in the form

U = BQe, Re[I(X,Y,Z) exp (i7)], (6a)
W=BQ Re[K(X,Y,Z) exp (iD], (6b)
5=0, h=BRe[H(X,Y)exp (i7)]. (6¢)

Substitution of this ansatz in Egs. (4) gives the set of equa-
tions and boundary conditions governing the amplitudes of
the pulsations,

KZ=_IX’ Izz+a21=0, (73)
I=-i, K=0 at Z=0, (7b)
iH=K—1hy, 1,=0 at Z=h, (7¢)

where a?=-i).
The solution of the boundary-value problem (7) is

cos a(h-Z
D) (8a)
cos ah
— 1-cos aZ h
K=ily— 2 g=—X (8b)
cos® ah cos? ah

Note that the amplitudes K, I, and H, generally speaking,

depend on Y via h, but only the X component of VA is
important for the pulsatile motion.

Figure 2 shows I, and I; for various values of (). (Hence
and henceforth we use subscripts r and i to denote the real
and the imaginary parts, respectively.) Figure 3 presents I,

=|1| at the mean position /. Plotting these figures we use the
local frequency Q=0h?% which is determined through the
local thickness of the layer. It is obvious that 7,, rapidly de-

cays with increase in the vibration frequency. Note that If,ﬁx
is the amplitude of the surface deviation, |H | (where, of

course, hy is not a priori known).

B. Limiting cases of oscillatory motion

Case (> 1. At large ) the solution of the pulsatile mo-
tion [Egs. (8)] is small beyond the Stokes boundary layer
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FIG. 3. The value of 1,,=|I(Z=h)| vs Q.

adjacent to the substrate. Indeed, taking an obvious relation
2 cos a=~exp(ia)=exp « into account (the asterisk denotes
the complex conjugation; here we assume that «,>0), one
immediately arrives at

I=—ie 7, 9)

K=—2ie" @y, H=4e2 (10)

As Eq. (10) does not satisfy the impermeability condition,
near the substrate this asymptotic formula has to be rewrit-
ten. Expanding 1—-cos aZ in a power series at small aZ in
Eq. (8b), we obtain

K=20722, at Z—0, (11)

Of course, Egs. (10) and (11) do not match since they are the
opposite cases (VQZ>1 and VQZ<1, respectively) of the
high-frequency approximation, 1> 1, for Eq. (8b).

Since only the exponentially small terms are neglected in
Egs. (9) and (10) these asymptotic expressions can be ex-
tended even to moderate ) with high accuracy. For instance,
line 4 in Fig. 2 is indistinguishable from the curve corre-
sponding to Eq. (9) at Q=100 (|a|=10).

Case ()< 1. In the limit of small frequency the solution of
the pulsatile problem [Egs. (8)] reads

Q- 02 o
I==i-2Z(0i-2)+ ’2—42(23 _4hZ2 + 8K), (12a)

Q- 0 _
K= —hxz{l + 11—2(22— 12h2)], (12b)

2

2
H= /Zx(l —iQn* - %E“) . (12¢)
Terms up to ? are held in the expansion of the general case
solution [Egs. (8)]. This accuracy is needed to provide the
averaged effects at low frequency. The expression for I [Eq.
(12a)] explains the coincidence of line 1 in Fig. 2(b) with the
line /;=—1. Indeed, the difference between these lines is pro-
portional to 02~ 1072, which cannot be seen on the scale of
the figure. On the contrary, the real part [see Fig. 2(a)] is
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proportional to ) and the corresponding variations are suffi-
cient.

Case Q) arbitrary and 2=const. In this limit it is clear from
Egs. (8b) that the oscillatory flow is one-dimensional (1D)
and there are no oscillations of the surface height. Thus in
this case the flow is the oscillatory Couette flow generated by
the vibration of the substrate in a layer with the free surface.
Moreover, this flow differs from the well-known oscillatory
Poiseuille flow,

1= i|: 1

only in an additive constant.

It is also important to note that Eq. (9) describes the con-
ventional “Stokes layer,” i.e., the 1D flow forced by a high-
frequency oscillation of the rigid plane in a semi-infinite
space.

_cos a(ﬁ—Z)] (13)

cos ah

C. Linear stability analysis of the oscillatory flow

The finite intensity of the time-periodic solution [Egs. (3),
(6), and (8)] raises question of the solution stability. In fact,
for the longitudinal vibration the stability problem is more
simple than for the vertical one. Thus we only briefly touch
on this question referring to [14] for the details. In order to
show stability or instability, one must return to unscaled Eqgs.
(1) and (2) and represent the velocity, the pressure, and the
surface deflection in the form

V=ﬁ+eVT/eZ+V, p=p+P, h=h+eh+Y. (14)

Here in agreement with Egs. (3) the dominant parts of the
unperturbed velocity are the pulsatile ones, while for the
pressure field and the layer height the averaged parts domi-
nate over the oscillatory ones. Next, we linearize Egs. (1)
and (2) with respect to the small perturbations V, P, and Y.

Since the surface tension is large, Ca~ €2, the free sur-
face is locally undeformable. This means that the perturba-
tions are governed by the time-dependent Orr-Sommerfeld
problem, i.e., the stability problem for the periodic in time
1D flow. Moreover, this problem can be readily reduced to
the stability problem for an oscillatory Poiseuille flow (see
Appendix).

In spite of the detailed studies of the modulated Poiseuille
flow [15-18], there have been no papers that deal with the
particular case of the zero mean value of the pressure gradi-
ent. Intuitively the flow in a finite layer is more stable than
the flow in a semi-infinite space, i.e., the Stokes layer, which
is known to be stable [17]. Nevertheless we have carried out
calculations which confirm the above guess (see Appendix
and Ref. [19] for details). Therefore the oscillatory solution
[Egs. (6) and (8)] is found to be stable for any intensity of
vibration.

IV. AVERAGED MOTION

A. Analysis of the general case

Using Egs. (6), the problem for averaged fields [Egs. (5)]
can be rewritten as follows (hereafter the overbars are omit-
ted):
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on 7.

pz=—Gy, W;=-V.U, (15a)
Uy, =Vp+iB2Q? Re(I'ly + K'Ie,, (15b)
U=W=0 at Z=0, (15¢)
hy==U-Vh+W-1B2Q Re(I"H)y,
U, =-1BQ Re(l},H)e,,
p=—¢-CV*h at Z=h. (15d)

The evolutionary equation for & [the first equation in Egs.
(15d)] can be rewritten in the form

h
hT=—V-J UdZ-3B*Q Re(I"'H)y at Z=h. (16)
0

Solution of this set of equations is similar to that per-
formed in Ref. [14], and thus we omit the details. It results in
the following nonlinear equation for A:

hT: V . (%h:; V Ho) - %Bzﬂz(thzhx)X, (173)

I, = — ¢(h) — CV*h + Gyh, (17b)

0= 3(281 - 82)
"™ y2(cosh y+ cos )%’

g, =sinh ysin 7y, g, = sinh 7y cos y+ sin y cosh v,

(17¢)

where y= y"mh. This equation is the central equation of the
paper. The terms in I1 are the conventional terms resulting
from van der Waals attraction, capillarity, and gravity. The
term proportional to B*Q)? is the term resulting from the lon-
gitudinal vibration of the substrate.

The dependence of Q, is given in Fig. 4. Note that Q,
>0 except for the narrow interval 5.268 < y<8.507. There
is also an infinite set of such intervals (the second one is at
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11.69 < y<14.85), but the corresponding absolute values of
Q, are very small.

It is clear that the longitudinal vibration along the X axis
assigns the preferential direction (X) in X-Y plane. Thus the
O(2) group of symmetry, which is characteristic for the am-
plitude equations governing the thin film dynamics, is broken
for Egs. (17). However, the derived amplitude equation is
still invariant under the transformation X — —X.

B. Limiting cases 2>1 and Q<1

We first notice that the averaged effects vanish in the lim-
iting case of high frequency, 1> 1. With exponentially small
error, the oscillatory velocity given by Egs. (9) and (10) is
one dimension and uniform along the X axis. Indeed, the
only reason for the variations of the flow velocity stems from
the variation of the film height 4, and thus this nonuniformity
is exponentially small. As all known mechanisms are based
on the existence of a gradient of the kinetic energy for the
pulsations [6], it is clear that the uniform oscillatory flux is
unable to produce the averaged flow. Therefore, an averaged
flow cannot be produced neither in the boundary layer nor in
the core region. This conclusion agrees well with the asymp-
totics of Q, at large v,

6
Q= — —(sin y+cos y)e™”.
Y

Thus the only relevant limiting case is the case of low
frequency, () << 1. Integration of the boundary-value problem
for U [Eq. (15b)], and the corresponding boundary condi-
tions, results in the following solution:

1 B2Q)?
U:—Ez(zh—z)vno—

UYhge.,  (18a)

(v) 0’z 4 3 272 4
Uv =Z—E(Z +5hZ° —20h°Z° + 80h™). (18Db)

Then the following equation for the film height is obtained:
hp=V - (313 VIIT) = 5B2Q4(hhy)y, (19)

which agrees with the expansion of Q;~ 9*/30 in Eq. (17¢)
at small ().

It is seen in Eq. (19) that at (<1 the vibration impact is
determined by the squared amplitude of the pulsatile accel-
eration. This conclusion is expected in view of the similar
result for the vertical vibration.

V. FILM DYNAMICS

A. Linear stability analysis

It is convenient to rescale the amplitude equation (17a)
using X=1C/3AX, Y=\C/3AY, and T=C/(3A?)T. [Recall
that ¢=—Ah=3.] This leads to

_ [ ~ 1 _ ~
h7=V- [h3V<GOh sbTele V2h>] - V(Q,h*hy)z, (20)

where V=B202/2A and Gy=G,/3A.

PHYSICAL REVIEW E 79, 051603 (2009)

FIG. 5. Decay rates N for Go=3.33 X 107, ky=0, and ky=k. (a)
0=0.1, (b) Q=2, and (c) 2=20. (a) and (b), dashed, solid, and
dashed-dotted lines correspond to V= 0, 200, and 500, respectively;

(c) dashed, solid, and dashed-dotted lines correspond to \7=0, 2,
and 5, respectively.

Seeking the solution of Eq. (20) in the form hA=1+¢,
where ¢ is a small perturbation, one obtains

&=V(Gy— )€~ V2E] - VO, (y) &z (21)

Here y,=y/h=12Q.
For the normal perturbation & proportional to exp(ilgx)?
+ikyY—NT) the decay rate \ is:

N=(Gy— 1+ = VO, (y)ks, (22)

where I?2=I;§+IA<% is the squared wave number. In terms of the
original unscaled variables (ky,ky)

N =1[Gy-34 + CRIE - LB2020,(y)k3.  (23)

Since Q; is positive except for the narrow intervals of y
(see Fig. 4), longitudinal vibration destabilizes the film be-
yond these intervals [see Figs. 5(a) and 5(b)]. Furthermore,
one can readily see that the vibration does not impact the

behavior of perturbations with ky=0 (longitudinal rolls).
Thus stabilization of the film by application of the longitu-
dinal vibration is possible only in 2D systems, where there is

no flow in the Y direction, i.e., I::EX, I;Y=O. Below we con-
sider only the behavior of 2D perturbations, which are criti-
cal for the reasonable interval of frequencies.

The typical pictures of the decay rate for this case are
shown in Fig. 5. For stabilization [Fig. 5(c)] one needs an
extremely large frequency of the vibration. (Recall that ()
=20 corresponds to n=300 MHz for the water layer of the
height 1000 A.)

It is obvious that 1:0
ko=1+V0,(%) - G (24)

solves an algebraic equation A=0. For k< I;O an instability
takes place.

B. Weakly nonlinear analysis of 2D systems

Since only the monotonic instability is present, as the
analysis in Sec. V A confirms, we need to analyze branching
of stationary solutions. Based on the results of Sec. V A, we

consider only the 2D system, i.e., h=h(X) for the stationary
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solution. Analyzing the periodic solutions of a given wave
number k, we keep in mind that the obtained results are

appropriate for the confined systems of the length L=k
Indeed, due to symmetry the boundary conditions sz=0 are

imposed at X=0,L for the periodic solution of given wave
number k. The same boundary conditions should be set at the

impermeable boundaries X =0, L for the confined system. In
this case the spectrum of the wave numbers for the perturba-

tions is discrete and bounded from below: g(”)ZE(O)EE,

where k" is the nth eigen-wave-number corresponding to
(n+1)/2 wavelength confined into the horizontal length of

the system. Thus for k> I;(] the long wave instability does not

occur. Moreover, as it is shown below, even for k< l:o the
growth of perturbations does not necessarily lead to a rupture
in a confined system.

In the stationary case Eq. (20) can be integrated once. Due
to symmetry, the integration constant is set equal to zero.
Thus we obtain

Bh" + (h—“ + V% - éo>h' =0. (25)
Here the primes denote the derivatives with respect to ¢
El;)?, i.e., the solution is assumed to be 27 periodic in {.
To study the weakly nonlinear behavior of the perturba-
tion, we expand the surface deflection /# and the wave num-

ber k in powers of small 6,
h=1+68+ 86+ ..., k=ko+ &ky. (26)

Substituting these expansions in Eq. (25) we collect the
terms of equal order in 6. The first-order equation is

L& =Kot +[1+ V0 (%) - Golé =0.  (27)
Its solution has the form
§=acos (28)

whereas k, is given by Eq. (24).
The second-order equation is

Lé= (4= VF)&E, (29)

where
d 0i(y)
Fl = ')/(2)_ ! .
dyy %
The solution of Eq. (29) is
4-VF

&H=- 161200525.
12k2

The third-order equation is
L& =[@-VF)& 6 - 1010+ V)& -2k k&) .
(30)

where

PHYSICAL REVIEW E 79, 051603 (2009)
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The solvability condition of this equation couples the correc-
tion k, and the amplitude of the surface deviation as follows:

(4- VF1)2] a

—. (31)
6k? 8k

]‘;2=|:10+‘7F2+

If the term in the bracket is positive, then §2>0 and the
subcritical bifurcation takes place. It is obvious that the
branching solution is unstable in this case. Otherwise, the
supercritical bifurcation occurs and the stable stationary so-
lution corresponding to the deflected surface emerges.

The curve separating these two regions in the plane (V,Q)
is shown in Fig. 6. It can be readily seen that the supercritical
excitation exists only at the large enough values of V when
the destabilization effects are well pronounced. Nevertheless,
this phenomenon is quite interesting and unexpected and re-
quires an additional analysis.

C. Stationary periodic solutions

To study stationary periodic solutions of a finite amplitude
we integrate Eq. (25) with the boundary conditions,

h'=0 at /=02, (32)
and the mass conservation condition,
21
f hdl=2n. (33)
0

(Recall that for the equivalent confined system only half of
the period should be taken, i.e., {<.) This boundary-value
problem was solved by the shooting method. The numerical
results are presented in Figs. 7-10 for éo=3.33 X 1074,

The amplitude curves h,,(k) are shown for V=10 and V
=30 in Figs. 7 and 8, respectively. These figures confirm the
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FIG. 7. Variation in the maximal (the upper branches) and the
minimal (the lower branches) thicknesses of the layer with k for
V=10 and Q= 1, 1.5, and 2—solid, dashed, and dotted lines, respec-

tively. For the former case ((0=1) the value of EO is marked. Sta-
bility of the corresponding solutions is indicated by arrows.

results of the weakly nonlinear analysis: the supercritical bi-
furcation takes place for V=30.

In Fig. 7 the value of k, is marked for Q=1 (solid line).
For smaller k instability of the flat surface gives rise to a

rupture. The stationary solution exists only for k> EO, ie., all
the curves in Fig. 7 represent unstable subcritical solutions.
The lower branches of the amplitude curves in Fig. 7 can be
thought of as the boundaries of the domains of attraction for
the equilibrium state (2=1) in the framework of the evolu-
tionary problem [Eq. (20)] (or the similar equation with

=kX being introduced). An initial distortion of the surface
ho(£) with the trough deeper than h,, necessarily leads to
rupture, while an initial distortion with hy({) > h,, for any
{, 0<{<2r decays with time resulting in the equilibrium
state at T— o (see arrows in Fig. 7). Of course, this inter-
pretation is not exact, as the whole variety of the initial states
ho({) is characterized by the only value, h,,. Therefore, the
domain of attraction has to be confined by a band of finite

169
o . T
12 :\
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0.4 | \\\\\\ :- ~~~~~~~~
0 T T T ’L 1 i l .;' i iN
18(a)22 26 3k 34 © .k

FIG. 8. Variation in the maximal (the upper branches) and the
minimal (the lower branches) thicknesses of the layer with k. (a)
V= 30, Q=1, 1.5, and 2—solid, dashed, and dotted lines, respec-

tively. (b) Sketch with marked Eo and EF: solid lines correspond to
stable solutions, dashed lines correspond to unstable ones. Domains
of attraction are shown by arrows.
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T 1
27 1

FIG. 9. The shape of the free surface for \7=30, Q=2, and k
=3, 2.7, and 2.56—dotted, dashed, and solid lines, respectively. The
solid line with smaller surface deformation corresponds to the
stable state; another solid curve corresponds to unstable solutions as
well as dotted and dashed ones.

0 0.5

thickness. However, due to the fast growth of the van der
Waals potential with the decrease in k, h,, is a perfect char-
acteristic for the domain of attraction and the band thickness
is rather small. Our numerical tests based on the finite-
difference computation of Eq. (20) support this conclusion.

For larger values of V the stable distorted surface is found

within some interval, l};< k< EO [see the dashed and the dot-
ted curves in Fig. 8(a) and a schematic plot in Fig. 8(b)]. In
the latter figure domains of attraction and stability properties
of the obtained solutions are also demonstrated. Again, the

lower branch A,,(k) of the unstable solution can be thought of
as the boundary of the domain of attraction: the rupture oc-
curs for initial distortions with min hy({) <h,,; in the oppo-
site case the initial perturbation decays and the stable branch

is achieved (either the stable branch of solution for k< I;O or

h=1 for k> Igo). This problem provides an example where a
nonplanar free surface is stable in the presence of the attrac-
tive van der Waals potential.

1.5

T 1
Lpls 2 25923

FIG. 10. Variation in k, with Q for V=20, 30, and 40—lines
1-3, respectively. Here 1&:1?0 correspond to the pitchfork bifurca-

tions (dashed lines) and I%;:l:c correspond to the saddle-node bifur-
cations (solid lines). Dashed-dotted lines show the locus of cusp
points, where ky=k,; these lines correspond to k(Q) along the line
shown in Fig. 6. Part (b) of the figure is the magnified region in part

(a).
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H (x,y.1)

FIG. 11. Problem geometry: the tilted vibration.

The interval of existence of a stable solution is quite small

and for k= I;C a saddle-node bifurcation takes place [see Fig.
8(b)]. Both stable (with smaller values of |h,,—1|) and un-
stable (with larger values of |i,,—1|) branches of the solution

disappear at k= EC and do not exist at smaller k.
The typical shapes of the surface along the dotted curve in
Fig. 8(a) are presented in Fig. 9. For the smaller value of the

wave number, ;=2.56, bistability takes place, i.e., there are
two stationary shapes, the stable and unstable ones (with the
smaller and larger surface deformations, respectively).

The bifurcation lines ky(Q) and k.(Q)) are shown in Fig.
10. The stable states with the deformed free surface exist
between the corresponding solid and dashed lines. The direct
pitchfork bifurcation takes place within this interval of ().
Otherwise, the branching is subcritical.

It should be noted that k.> £\, where ki) =k, for V=0,
i.e., the critical wave number in absence of the vibration.

This inequality ensures that at k< I:Ef) there is no stable sta-
tionary states even with deformed free surface, i.e., rupture
always occurs for wave numbers in this interval. Thus the
longitudinal vibration cannot be applied for “nonlinear stabi-
lization,” i.e., in order to produce stable distorted film with

<.

VI. VIBRATION ALONG THE NEAR-VERTICAL AXIS

A. General notes and the analysis of the pulsatile motion

In this section we briefly generalize the previous analysis
(Secs. III-V and Ref. [14]) to the case of the vibration along
the axis that is tilted at a certain angle S to the substrate (see
Fig. 11). It is obvious that at the finite values of 3 the normal
component of the acceleration is unimportant. Indeed, it is
shown in Ref. [14] that the impact of vertical vibration is
finite only at large amplitudes, B=0O(e™!), while the horizon-
tal vibration becomes essential even at finite B. Therefore,
the longitudinal component of the vibration velocity is deter-
minative.

The only case where the effect of the normal acceleration
can compete with the one due to longitudinal motion is the
large amplitude almost vertical vibration, i.e., S—0. This
case is important for applications because in experiments it is
difficult to ensure the absolutely vertical axis of the oscilla-
tory motion—the horizontal components of accelerations oc-
cur inevitably.

Thus we assume that B is small, i.e., cos S~1 and the
near vertical motion of the substrate according to the law z

PHYSICAL REVIEW E 79, 051603 (2009)

=z9—B cos 7 (in the laboratory reference frame). The fluid
motion in the reference frame moving vertically with the
substrate is governed by Egs. (1) and (2); the replacements
are (i) the gravity modulation,

G(t) = Gy + BO? cos O, (34)

and (ii) the longitudinal velocity is now BB sin Qre, in
Eq. (2a).

Assuming large vibration amplitude B we present the res-
caled amplitude of the vibration b=e€B and the rescaled
angle of the vibration uw=¢€'B. Thus the amplitude of the
longitudinal motion of the substrate is wb and the limiting
case u=0 corresponds to the transversal vibration, i.e., the
results in Ref. [14] are reproduced. For the longitudinal vi-
bration it is necessary to set |u|> 1, b<<1, while keeping the
product, B=ub, finite in order to obtain the corresponding
formulas from Secs. ITI-V.

Representing all fields as the sums of the pulsatile and
averaged parts according to Eq. (3) we arrive at the follow-
ing equations for the pulsations:

W,=-V-U, QU,=-V5+U,, (35a)
pr=—b0?cos 7, (35b)
U=bmQsinr, W=0 at Z=0, (35¢)
Qh.=-U-Vh+W,
U,=0, p=0 at Z=h. (35d)

Here m = pe,. The averaged motion is described by Egs. (5).
Representing the solution of the boundary-value problem
(35) in forms

7 =bQ Re[q(X,Y,2) exp (i7)], (36a)
U =bQ Re[I(X,Y,Z) exp (iD], (36b)
W=bQ Re[K(X,Y,Z) exp (iD], (36¢)

h=bRe[H(X,Y) exp (i7)] (36d)

[cf. Egs. (20) in [14] and Egs. (6)] and solving the equations
for the amplitudes ¢, I, K, and H we obtain (hereafter the bar

over h is omitted again)

q=Qh-2), (37a)
h-Z7
1=ivh_imesei=2 (37b)
cos ah
- sin a(h — Z) —sin ah
K=-iV°h| Z+
@ cos ah
1—-cos aZ
+iVhi-M————, (37¢)
cos” ah
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H=—-V-[f(ah)hV K]+

m-Vh
o (37d)

9’
cos” ah

where M=Vh+m and

f=1-y " tany. (38)

Due to the linearity of Egs. (35) the oscillatory flow is a
superposition of the motions generated by a vertical [see
Egs. (42) in [14]] and a horizontal [Eq. (8)] vibration.

Referring to Sec. III as well as to Sec. III in Ref. [14], we
do not present the limiting cases of solution (37). Stability
analysis of the pulsatile flow gives the same critical vibration
amplitude as in the case of a vertical vibration,

Ny ()

[ th5/2 ’ (39)

where @,y is the function given in Fig. 4 in Ref. [9] (see
Ref. [19] for details).

Generally speaking solution (37) remains valid even for
the complex-valued m. This permits to consider the vertical
and horizontal vibrations to be out of phase but leads to the
cumbersome equation for the averaged fields. Thus, hereafter
we assume real m.

B. Amplitude equation and limiting cases

Solution of the averaged problem results in the amplitude

equation for the averaged height,
hr=3V - (B VII)-3b°Q%V -Q, (40a)

ZQ2
H=H0+

Re H, (40b)

Q=1[Qy VM + (0 M + 2m) - VVA] + h2Q,MM - Vi,
(40c¢)

Re H=—f,hV?h— (Vh)2+ QM -Vh.  (40d)

Here 11, and Q, are given by Egs. (17b) and (17c), respec-
tively,

021 =649, - 2q,, Q22:5611—CI2—%, (41)

cosh ycos y+1

= , 42
77 %(cosh y+ cos y)? “2)
sinh y+sin y
fr=Reflah)=1- —————. (43)
v(cosh y+ cos y)
___sinh y—siny ___cosh y—cos y
h= ¥*(cosh y+cos )’ 2= ¥*(cosh y+cos y)
(44)

The variation in the coefficients Q5;, O, and Q5 with 7y is
shown in Fig. 12, whereas f, can be found in Fig. 6(a) in Ref.
[14].
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1.2 - 0.01
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FIG. 12. Left axis—the dependence of the coefficients Q»,
(solid line) and Q; (dashed line) in Eq. (40) on v. Right
axis—0Q5(7).

For 2D case, when & depends on X and T only, the am-
plitude equation reduces to

hr= %(h3HX)X - %bzﬂzQx, (45a)
0= Q1(’}’)h2(hx + M)zhx + Qz(y)hthx(hx + ) + %,U«hthx-
(45b)

Here Q,=0Q,,+0,, [cf. Eq. (31b) in Ref. [14]].

Equations (40) coincide with Egs. (17) at |u|>1, wb
=B (the longitudinal vibration). Equations (45) for u=0 (the
vertical vibration) coincides with Egs. (30) in Ref. [14], but
the corresponding 3D analog reads

hp=3V - (PVID) - 36°Q*V -Q, (462)

Q=0,A(Vh)>V h+h[0yV?hV h+ Qs Vh-VVh],
(46b)

where M must be replaced with Vh in the definition of II
[Eq. (40d)]. It is clear that Q differs from the one defined by
Eq. (43c) in Ref. [14]. This contradiction is caused by the
calculation mistake in Ref. [14].

It is clearly seen that Eqgs. (40) contain several cross
terms, which are linear with respect to u and proportional to
the first derivative of & with respect to X. These terms re-
move the degeneracy with respect to the transformation X
——X. Only the invariance under the simultaneous transfor-
mations X ——X and p— —pu holds. Thus the presence of the
vertical vibration makes different the motion along the posi-
tive and negative directions of the X axis. Indeed, the X
component of the oscillatory velocity is in phase with the
vertical component, whereas the projection of the pulsatile
velocity on the —X axis is in counterphase. This phase shift
results in the difference after averaging.

The corresponding limits for the general case of the tilted
vibration give the following amplitude equations:

(i) Low frequency (QA<<1),

hy=3V - (B VI +b°Q*V - Q, (47a)
h7 h6
Q,= E(V%M +9M - VVh) - EMM -Vh, (47b)
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_ ¥

I=1I,- s V - (F°M). (47¢)

For the vertical vibration this leads to Eq. (47a) with
o, h°
=——(V’hVh+9V h-VVh) - —(Vh)>Vh,
Q 3 5( +9 ) ] 5( )

(48a)
_ b’ Q*

M=1I,- s V- (KVh) (48b)

instead of Eq. (44) in [14]. For the horizontal vibration Eq.
(19) is reproduced.
(ii) High frequency (2> 1),

1 b*Q)?
hT=§V-{h3V[H+ ; (Vh)z]}, (49a)
b*Q?
=1I,- 5 V - (hVh). (49b)

It is obvious that the longitudinal component of the vibration
has no impact in this limiting case (see the explanation in
Sec. IV B). Therefore, the obtained expression coincides
with the corresponding equations obtained in Ref. [12] as
well as Egs. (46) and (47) in [14].

C. Stability analysis of the flat surface

Representing 4 in the form 1+ ¢ and linearizing Eqgs. (40)
with respect to a small perturbation & results in

bzﬂz)z]
ELAR

gT=%V2[(GO—3A)§—<C+

b202<3Q2+1—Q3

> 3 ,u,V2§X + M2Q1§XX> . (50

Here y must be replaced by v, in Q;, j=1,2,3 and f, be-
cause all the coefficients are calculated for the unperturbed
state, ho=1. Substituting & proportional to exp(ikyX+ikyY
—\T) and separating real and imaginary parts of the decay
rate we arrive at

1, N0k P>,
A=K Go= 34+ R\ C+ ——f, | | - KOk,

2 2
(51)
b*Q? sinh? y—sin® y ]
N =— 2 + . (52
' ) X[ 3(cosh y+ cos y)? 2 52)

It can be readily seen that the impact of tilted vibration on
the real part of the decay rate, \,, is the superposition of
impacts from the vertical and horizontal vibrations [cf. Eq.
(72) in [14] for the former case and Eq. (23) for the latter
one]. The additional terms, linear with respect to w, provide
only the imaginary part of \.
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Thus the vertical component of the vibration is unimpor-
tant for the long wave perturbations (with k—0), and in this
case the tilted vibration, similar to the horizontal one, de-
creases the stability threshold [unless Q; <0; see the discus-
sion of Eq. (23)].

Again, the 2D perturbations (ky=0,ky=k) are critical for
0,>0 and longitudinal rolls (ky=0) are critical for narrow
intervals of (), where Q; <0. However, the latter case seems
unrealistic as very high frequencies are needed.

In confined systems with a discrete spectrum of k the
competition of the stabilizing effect of the vertical vibration
and the destabilizing effect of the horizontal one takes place.

It should be noted also that the emergence of the imagi-
nary part of \ is the indicator of the averaged transport in the
system. Indeed, the perturbations are stationary in a reference
frame moving along the X axis with a constant velocity
\;/ky. However, such a longitudinal drag is not limited by
the transport of perturbations: any admixture can be spread
over the system by means of the tilted vibration. Thus the
tilted vibration seems to be the way to transport micropar-
ticles or molecules, which is important in many microfluidic
applications.

VII. SUMMARY

We consider a thin liquid film on a planar horizontal sub-
strate subjected to a high-frequency vibration. In the absence
of a vibration, the van der Waals attraction to the substrate
destabilizes the film and causes its dewetting. In contrast to
conventional averaging method, we assume that the period of
the vibration is comparable to the time of viscous relaxation
of perturbations across the layer. This allows us to apply the
averaging method to the ultrathin films. Such analysis was
first developed in Ref. [14], where the vertical vibration is
considered and is shown to enhance film stability.

This work is a natural extension of Ref. [14]. We consider,
separately, the longitudinal and the tilted vibration. In the
former case the finite amplitude of the vibration results in
destabilization of the layer. There is also a sequence of nar-
row intervals of the vibration frequency, where stabilization
occurs in the two-dimensional problem. However, the fre-
quency must be very high (at least 300 MHz for a water layer
with the thickness of 1000 A).

Another effect of the longitudinal vibration is the emer-
gence of the supercritical branching at the sufficiently high
intensity of the vibration. In this case the deformed free sur-
face becomes stable, i.e., the instability of the flat surface
does not necessarily lead to a rupture.

For the tilted vibration the longitudinal (destabilizing)
component of the pulsatile velocity is shown to be dominant.
The only case, where the competition of the vertical and the
horizontal vibrations occurs, is the almost vertical vibration
of large amplitude. For this case the averaging procedure is
carried out and the corresponding amplitude equation is
obtained. This analysis allows us to correct the three-
dimensional generalization of the amplitude equation for the
vertical vibration [14].
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Linear stability analysis in the framework of the ampli-
tude equation indicates that both destabilization and stabili-
zation of the flat surface are possible in the case of tilted
vibration. Stabilization takes place only in the confined sys-
tems when the spectrum of perturbations is discrete and
bounded from below.

Besides, the small perturbations are oscillatory, i.e., the
drag takes place for the tilted vibration. This property can be
very important for many microfluidic applications since
some admixtures can be transported in the same manner as
the perturbations.
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APPENDIX: STABILITY OF THE TIME-PERIODIC
MOTION (PULSATILE FLOW)

It is well known [20] that 2D perturbations are critical for
either stationary or time-dependent Orr-Sommerfeld prob-
lem. This allows us to introduce a stream function ¢(x,z,1).

Setting
Y=0, U=-4¢, W=y

and separating the x coordinate by means of (x,z,?)
= lAﬁ(z,t) exp (ikx) we arrive at

D, = — ik(UgD*§— Usi) + D*), (Ala)
J=9' =0 at z=0, (A1b)
J=D*¢=0 at z=h, (Alc)

where D2y= /' —k*¢. It is convenient to rescale the vertical

coordinate and the time in such a way that 2= 1. Keeping the
same notations for the rescaled variables we obtain

D= - ik(UoD* - Ugih) + D*i, (A2a)
g=¢' =0 at z=0, (A2b)
J=D*¢=0 at z=1, (A2¢)

where

~ cos a(l —z
Uo=R Re[ly(z) exp (iQ0)], Iy=- i#.
cos &
We again use the local oscillation frequency (cf. Sec. III),
O=0kr, a=ah,
and the Reynolds number R is introduced as follows:

R=BQh. (A3)

First, we show that any constant value C, can be added to the
amplitude of the velocity oscillations Iy(z). It can be readily
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FIG. 13. Floquet exponents A vs k for synchronous perturba-
tions, R=50 000. Three lower branches of the spectrum (a)—(c) for

ﬁ:O.Z, 1, and 5—dotted, solid, and dashed lines, respectively.
seen that Egs. (A2) are invariant under transformation

N a kR =
b— CXP{ITRe(icoelm)}, Iy—Ip+Cy. (A4)
QO

Because 42/ is transformed by the periodical in time factor,
stability properties do not change under this transformation.
In particular, setting Cy=i we reduce I, to the velocity profile
of the oscillatory Poiseuille flow [Eq. (13)] or

/ _.{1 cos &(l—z)}
o=tifl-———7—"—

cos

in terms of rescaled coordinate.

Thus, the stability problem for the pulsatile flow is re-
duced to the Orr-Sommerfeld problem (A2) for the oscilla-
tory Poiseuille flow.

To solve the linear stability problem (A2) for the time-
dependent flow, we apply the following method. First, due to

Floquet theorem the amplitude of stream function 1,7; can be
represented in the form

g=e MU (z,1). (A5)

Here W(z,1) is the periodic function of time with the period
27/}, which thus can be expanded in a Fourier series as
follows:
40
W(z,0) = D, W,(2) exp (iQnr). (A6)
Substituting this ansatz into Egs. (A2), we arrive at the chain
of coupled boundary-value problems for the Fourier compo-
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nent, V,(z). Truncation of the series by replacing the upper
and lower limits of summation with N(-N) leads to the set of
4(2N+1) ordinary differential equations. This set has been
solved by the shooting method. We followed several lower
branches of the spectrum; well-pronounced stabilization of
the flow with increase in R was found for all the branches.

PHYSICAL REVIEW E 79, 051603 (2009)

The example of the computations is presented in Fig. 13,
where the three lower branches of the Floquet exponent A
are shown. The curves are obtained with N=10; the changes
caused by larger N cannot be seen on the scale of the figure.
Therefore, the oscillatory Poiseuille flow is stable even for

finite values of ().
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