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Oscillatory and monotonic modes of long-wave Marangoni convection in a thin film
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We study long-wave Marangoni convection in a layer heated from below. Using the scaling k:O(\e’E),
where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this
set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously
found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and
oscillatory patterns can be found near the stability threshold.
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I. INTRODUCTION

Marangoni convection in a liquid layer with upper free
boundary is a classical problem in the dynamics of thin films
and in the pattern formation [1,2]. In the pioneer theoretical
paper, Pearson [3] analyzed the linear stability of the layer
with a nondeformable free surface. He considered two cases
of thermal boundary conditions at the substrate: the ideal and
poor heat conductivity, when either the temperature or the
heat flux are specified. In the latter case he found a mono-
tonic long-wave instability mode for heating from below and
zero Biot number Bi. For Bi<<1 the critical wave number k
is proportional to Bi!/4 [1]. Many authors extended the analy-
sis in order to include the deformation of the free surface.
Review of analytical and numerical works can be found in
[1]. In particular, several oscillatory modes were revealed,;
these modes were reported only for heating from above.

In the case of heating from below, a nonlinear analysis for
ideally conductive substrate was performed in Ref. [4]: it
was shown that the subcritical bifurcation occurs and insta-
bility with necessity results in film rupture. The behavior of
perturbations near the stability threshold was studied in [5]
for the case of a poorly conductive substrate. Under assump-
tion of large gravity, and, hence, small surface deflection, the
amplitude equation was derived and the subcritical bifurca-
tion was found.

In this paper, we demonstrate the existence of a new os-
cillatory mode of long-wave instability for the film heated
from below. Using the scaling k=O(yBi), which was first
suggested in Ref. [6], we derive a set of amplitude equations.
Linear stability analysis gives both the monotonic and the
oscillatory modes. Pattern selection near the stability thresh-
old clearly demonstrates that instability does not necessarily
lead to rupture and that both steady and oscillatory regimes
can be found experimentally within certain domains of pa-
rameters.

II. PROBLEM FORMULATION

We consider a three-dimensional thin liquid film of the
unperturbed height H,, on a planar horizontal substrate heated
from below. The heat conductivity of the solid is assumed
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small in comparison with the one of the liquid, thus the con-
stant vertical temperature gradient —A is prescribed at the
substrate. (The Cartesian reference frame is chosen such that
the x and y axes are in the substrate plane and the z axis is
normal to the substrate.)

The dimensionless boundary-value problem governing the
fluid dynamics reads:

1
F(V,+V~VV)=—Vp+V2V—GeZ, (1a)
T,+v-VT=V?*T, V .v=0, (1b)
v=0, T,=-1 at z=0, (2a)

3 -n=(p-CaK)n-MV (T

=), V,T=-BiT,

hy=w-v-Vh at z=h(x,y,t). (2b)

Here, v=(u,w) is the fluid velocity (where u is the velocity
in the substrate plane and w is the z component), T is the
temperature, p is the pressure in the liquid, ¥ is the viscous
stress tensor, & is the dimensionless height of the film, e, is
the unit vector directed along the z axis, n and 7 are the
normal and tangent unit vectors to the free surface, respec-
tively, K is the mean curvature of the free surface. The di-
mensionless parameters entering the above set of equations
are the capillary number, the Marangoni number, the Galileo
number, the Biot number, and the Prandtl number:

G= g—Hg, Bi= q—HO,

15% K

2
Ca= ﬂ, M=- —GTAHO,
X X
and P=v/y. Here, oy=do/dT; o, g, q, Kk, X, vand 5
are the surface tension, acceleration of gravity, heat transfer
rate, thermal conductivity, thermal diffusivity, kinematic and
dynamics viscosity, respectively.
Below we study a large-scale convection using the set of
Egs. (1) and (2).

III. AMPLITUDE EQUATIONS

We rescale the coordinates and the time as follows:
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Y=¢y, 1=¢€41, (3)

where €<<1 is the ratio of H to a typical horizontal length
scale. The temperature field is represented as T=—z+Bi™!
+60X,Y,1+0().

We assume large values of Ca and small values of Bi,

Ca=€’C, Bi=é€g. (4)

X = ex,

Thus we deal with the intermediate asymptotics between the
conventional long-wave mode, Bi=0(¢€*) [5], and the case of
finite Bi [3]. These cases correspond to 8=0 and B— o,
respectively.

Substituting the rescaled fields into Egs. (1) and (2) and
applying the conventional technique of the lubrication ap-
proximation (see [2]), we arrive at

3 2
=Y. {%vm%vw-m] -V

h6,=V-(hV ) - %(Vh)z—ﬂ(e—h) +j-V(0-h)

4 3
+V{%VH+%V(9—M]- (6)

Here [I=Gh—CV>?h and V is a two-dimensional gradient
with respect to X and Y.

Equations (5) and (6) form a closed set of the amplitude
equations governing the nonlinear interaction of two well-
known long-wave modes: the Pearson’s mode (h=1) [3] and
the surface deformation-induced mode. (Note that the latter
mode with #=const emerges only in the case of the conduc-
tive substrate [4].) Conductive state obviously corresponds to
h=0=1.

IV. LINEAR STABILITY ANALYSIS

Substituting the perturbed fields 7=1+¢ and 6=1+0 into
Egs. (5) and (6), linearizing the equations for perturbations
about the equilibrium, and representing the perturbation
fields proportional to exp(A7+ikX), one arrives at

2
)\2+)\{,8+k2(1 * 3 )} +%(,8+k2)(~}

Mk G
——|1+—=]=o0, (7)
2 72

where G =G+ Ck?. Equation (7) possesses both real (mono-
tonic instability) and complex (oscillatory instability) solu-
tions.

For the monotonic mode N=0 at the stability border, thus
the marginal stability curve is given by

-
g CAdly ®)
k(72 + G)

These marginal curves have a minimum at the finite values
of k only if
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FIG. 1. (a) Marginal stability curves M.(k) for G=10: solid
lines correspond to the monotonic mode, dashed ones—to the os-
cillatory mode; B=1,10,40 for lines 1, 2, and 3, respectively. (b)
The domain of oscillatory instability. The dashed vertical line marks
the boundary of the long-wave instability, Eq. (9).

BC <72, 9)

otherwise the minimal value, ME.’"), is achieved in the limit
k— o, i.e., the long-wave mode is not critical. Hereafter we
assume that the inequality (9) holds; since the limit C=0 is
well studied [10], for all computations we can set C=1 with-
out loss of generality [11]. The critical wave number mate-
rializing the minimum of the marginal stability curve, Eq.
(8), is

BCG +\728CG(G +72 - BC)
C(72 - BO) '

(k(m))2 -

For the oscillatory mode the marginal stability curve is
determined by the expression

~ 3
M0=3+G+k—zﬁ. (10)

The imaginary part of the growth rate for neutral perturba-
tions is

2
)\,-Elm()\)=%\/(72+5)(Mm—M0), (11)

i.e., the oscillatory mode is present only at M (k) <M, (k).
Minimization of the Marangoni number with respect to k
gives

| 3 1/4
M =3+ G +2v3pC, kﬁ”):(—f) : (12)

Examples of the marginal stability curves for these modes
are shown in Fig. 1(a). Domains of monotonic and oscilla-
tory instability are demonstrated in Fig. 1(b). It is clear that
the oscillatory mode is critical for SC>17.4 and G<17.2.
Take, for instance, a layer of water of thickness H
=107 cm. Then G=0.1, Ca=~ 10* and Bi has to be approxi-
mately 1073 in order to provide the required value of SC:; this
value seems achievable in experiments.

Equations (10)—(12) indicate why the oscillatory mode
has not been found earlier. As we have emphasized above, all

previous studies deal with either G>1 [3], or B=0 [5], or
C=0 [6]. In these cases the oscillatory mode does not exist.
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FIG. 2. (Color online) Pattern selection for the monotonic mode.
(a) and (b)—the domains of stability for Rolls (marked with “R”)
and Squares (“S”) on the square lattice. Solid (dashed) lines sepa-
rate between supercritical and subcritical branching for Rolls
(Squares). The latter domains are marked by “sub. R” (“sub. S”).
Dotted lines separate domains of stability for Rolls and Squares.
Dashed-dotted line in panel (a) is the locus of points N=0; in the
vicinity of this curve Eq. (17) holds. Diamond (circle) shows the
threshold value G, (G,) for pattern selection on the hexagonal
lattice.

V. WEAKLY NONLINEAR ANALYSIS
A. Monotonic mode

Here we study the nonlinear dynamics of perturbations at
small supercriticality, M —Mg’”) ~0, see Ref. [7]. To this end,
we represent the primary part of the small perturbation of &
in the form:

n

&= A, exp(ik;- R) +c.c. (13)
j=1

where c.c. denotes complex conjugate terms and kj=k(c’”).
(The primary part of @ is expressed in terms of &) The
amplitudes A; are functions of a slow time. For square
(n=2) and hexagonal (n=3) lattices, the wave vectors are

Kk, =k.(1,0), k,=k.,(0,1) (14)

1 =
l(1 =kc(1?o)’ k2,3 = Ekc(_ 1v * \3)5 (15)

respectively.
For square lattice, the amplitude equations read

A= (y-KlAP-KSpA;, j=1.2, (16)

where S,=3/|A|>. Here, the dot denotes the derivatives with
respect to the slow time, and y~ M —M(Cm) is the real growth
rate. The Landau constants, K, and K;, are real; they are
cumbersome and, thus, are not presented here. Results of the
numerical calculations are shown in Fig. 2. One can readily
see that supercritical branching occurs only in two domains
of parameters. These domains are situated either at rather
small values of BC, Fig. 2(a), or at sufficiently small G, Fig.
2(b). In the former case Rolls are selected everywhere except
for a very small region shown in the inset. In the latter case
Squares are selected everywhere excluding the small region
where Rolls are stable.

For hexagonal lattice, the resonant quadratic interaction
results in the following amplitude equation:
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A= yA| = NASAS — (Ko|A | + K Sp)A,, (17)

and a similar equations for A, ;. (Hereafter the asterisk de-
notes the complex-conjugate terms.) Generally speaking, the
quadratic term prevails over cubic ones, which leads to sub-
critical excitation of the hexagonal patterns through a tran-
scritical bifurcation [7]. However, N=0 at the dashed-dotted
line shown in Fig. 2(a) and in the vicinity of this line Eq.
(17) becomes appropriate.

Among the variety of possible patterns [7], three are im-
portant. They are Rolls with A;#0, A,=A3=0 and two
types of Hexagons with A;=A,=A;=A:H" for A>0 and H~
in the opposite case. In the former case the flow is upward in
the center of the convective cell, whereas in the latter case it
is downward.

Pattern selection on a hexagonal lattice is shown in Fig.
2(a). At G< G, =8.20 there are no stable solutions; the sub-
critical bifurcation occurs for Rolls and one branch of Hexa-
gons (either H~ below or H* above the dashed-dotted line).
At G;<G<G,=10 Rolls are still subcritical and unstable;
stable Hexagons emerge only within the finite interval of
supercriticality. Finally, at G>G,, H (H") is stable within
the interval of supercriticality, whereas Rolls become stable
when M —Mﬁ.m ) increases.

To finalize the discussion of steady patterns, we briefly
discuss the competition of patterns on the square and hex-
agonal lattices. It is clear that at the finite values of N, Hexa-
gons emerge subcritically and no stable patterns can be
found near the stability threshold. Therefore, weakly nonlin-
ear analysis provides stable patterns only near the dashed-
dotted curve shown in Fig. 2(a), where the competition be-
tween hexagons and rolls occurs.

B. Oscillatory mode

For the oscillatory mode the solution is presented in the
form

£= 2 (A™ R+ Bie RN 1 c.c. (18)
=1

Note that the pair (A;,B;) corresponds to counterpropagating
waves, which must be taken into account separately. The
wave vectors for the square and hexagonal lattices are given
by Egs. (14) and (15), respectively.

For square lattice, the equation governing the dynamics
of the amplitudes A; reads:

Aj =[y— KolA > = K\|Bj|* = K»(Sx + Sp)IA; - KBSy,
Jj=12, (19)

where Sz=3"|B/|%, Sy\z=2A,B,. A similar pair of equations
for B; is obtained from Egs. (19) by replacement A;« B;.
The Landau coefficients K; (I=0,1,2,4) as well as the
growth rate y are now complex valued.

Equations (19) were studied in details in Ref. [8]. Using
the results of that paper, we found that traveling rolls (TR),
A;#0, A,=B,,=0 can branch either supercritically or sub-
critically [see Fig. 3(a)], whereas the remaining patterns
emerge through the direct Hopf bifurcation; TR are selected
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FIG. 3. (Color online) Pattern selection for the oscillatory con-
vection. (a) Square lattice: Domains of stability for TR (below the
dashed line) and AR (to the left of the dotted line). Above the
dashed line TR bifurcate subcritically. (b) Hexagonal lattice: Do-
mains of stability for TR (below the dashed line and to the right of
the dotted line) and TRa2 (between the dotted and the solid line) are
marked by “TR” and “TRa2,” respectively. Above the dashed line
TR bifurcate subcritically, to the left of the solid line TRa2 are
subcritical.

in the domain of supercritical excitation. Alternating Rolls
are stable within the small area marked by “AR”; here de-
pending on the initial condition the system either approaches
AR or demonstrates the infinite growth of one of the ampli-
tudes.

For hexagonal lattice, the amplitude equation governing
the dynamics of the complex amplitudes A; reads:

Aj =[y—KolA > = K||Bj|* = K,S, — K3Sp]A; - KBS ,p,
i=1,23. (20)

Three similar equations are obtained from Egs. (20) by a
replacement A; < B;.

Analysis of the Hopf bifurcation for the above set of
equations was performed in Ref. [9], where 11 limit cycles
were found and studied. Based on that paper, the results on
pattern selection are presented in Fig. 3(b). The dashed line
again separates direct and inverse Hopf bifurcations for TR,
it is obviously the same as in the panel (a). However, for the
hexagonal lattice, there appears a competition between TR
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and Traveling Rectangles 2 (TRa2, A;=B;#0, whereas all
other amplitudes vanish). The latter pattern is stable in the
domain marked by “TRa2.” The entire domain of supercriti-
cal bifurcation becomes smaller because TRa2 can bifurcate
subcritically, see Fig. 3(b). Studying the competition between
patterns on hexagonal and square lattices, we found that the
stability boundaries for both TR and TRa2 are the same as
shown in Fig. 3(b), whereas stability domain for AR nearly
disappears.

VI. CONCLUSIONS

We studied the long-wave Marangoni convection in a lig-
uid layer heated from below; the heat flux at the substrate is
specified. In such setup, an interaction of two well-known
monotonic modes of long-wave instability, the Pearson’s
mode and the surface deformation-induced mode, can result
in the emergence of a long-wave oscillatory mode. However,
the oscillatory mode has not been detected in spite of exten-
sive numerical, analytical, and experimental studies [1] since
the publication of Pearson’s paper. We succeed in such
analysis and point out the domain of parameters where the
oscillatory mode exists, which can be reached in experi-
ments.

Moreover, we point out the domains of parameters where
the convection emerges supercritically and, hence, either sta-
tionary or oscillatory terminal state with distorted surface is
stable. This result is also very unusual, since only subcritical
branching was found in the previous studies [4,5].
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