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Abstract

The mathematical model for vapor-phase diffusion-assisted epitaxial lateral overgrowth in homoepitaxy

of a compound semiconductor (GaAs-type) thin film is presented. Besides diffusion in vapor phase, the

physical mechanisms contributing to the crystal growth and accounted for in the model include surface

diffusion and evaporation–recondensation. The evolution equations for the concentrations of bulk and

surface species, and for the interface shape are solved by a combination of a finite difference and boundary

element methods. Comparison of the results of the modeling to the models that ignore diffusion in vapor

shows that the latter enhances the overgrowth on the mask; the degree of this enhancement increases with
the widths of the stripe openings in the mask and of the masked regions.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Epitaxial lateral overgrowth (ELO) and selective area epitaxy (SAG) are commonly used to
grow micro-scale semiconductor crystals and thin films, which then find a broad range of
applications in special device structures such as buried heterostructure lasers, electroadsorption
modulators, light-emitting diodes, etc. [1,2]. Micrometer-scale selective growth is well achievable
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by MOCVD, MOVPE, or LPE [1–9]; moreover, recent reports demonstrate that ELO and SAG
techniques can be used to grow nanostructures by MBE [10–12].

The advances in experimental field of SAG stimulate the interest in fundamental understanding
of this specific crystal growth process. A number of models have been developed during the last
decade which consider diffusion processes in vapor phase [1,13,14], in vapor phase and on a mask
surface [15,16] or in vapor phase and on crystal surface [6]. While these models are quite successful
in predicting the observed growth rates and usually contain only few parameters, they omit
process(es) which are considered to be of secondary importance under specific realization of the
crystal growth conditions. More striking is perhaps the fact that these models do not allow studies
of evolutions of crystal shapes during the growth; these shapes are, generally, very anisotropic
[1,8] and are of a primary interest for industrial applications.

Recently, mathematical models were introduced that allow to numerically study the ELO and
SAG from vapor [17,18]. These models are formulated as free-boundary problems in two dimen-
sions (that is, normal to the substrate/mask and normal to the axis of long stripe openings etched in
the mask) and, therefore, they explicitly take into account the mask topography [17,18] and the
crystal surface anisotropy [18]. The models take surface diffusion along the mask and on the crystal
surface as dominant crystal growth mechanism and ignore diffusion in vapor phase; the effect of
vapor phase is reduced to the constant, uniform supply of precursors to the mask and crystal
surfaces. In the models, the normal velocity at any point on the crystal surface is a function of the
curvature and its derivatives; marker points on the surface are advanced using parametric evolution
equations for those points which use the normal velocity function. Every advancing step is followed
by remeshing to have an even spacing between markers. The details of the numerical algorithm
appear in [17]; the latter is similar to that of Wong et al. [19]. Models do not assume that there is or
is not lateral overgrowth a priori; the overgrowth occurs naturally during the computation.

With both models, the qualitative agreement with experiment was observed. As the crystal
grows onto the mask, a region of enhanced growth (‘‘bump’’) may form near the contact point; it
is subsequently smoothed by diffusion on the crystal surface. The anisotropic properties (surface
diffusion, energy and mobility) can greatly exaggerate the formation of distortions or bumps at
the crystal edge, and the resulting shapes show striking resemblance to some grown crystals re-
ported in the literature [1,8]. It was shown in [17] that the extent of the overgrowth onto the mask
and the height of the crystal at the middle of the stripe depend on widths of the stripe and masked
region. In particular, larger mask width results in larger crystal thickness [1,6,9], but larger stripe
width results in smaller thickness. The height of the bump depends on the value of the contact
angle between the crystal surface and the mask as well as on the widths of the stripe and masked
regions. In [18], it was also demonstrated that some choices of parameters may lead to almost
complete suppression of ELO or, on the contrary, to significant enhancement of ELO at the
expense of vertical growth. Thus, this model offers a way to quantify the effect of orienting the
growing crystal compared to the substrate, and to possibly understand how to control the shape
of the growing crystal.

In this paper, the anisotropic model of [18] is extended to include diffusion in vapor phase.
Influence of the diffusion in vapor on crystal shapes and growth rates is systematically studied
over the wide range of mask and stripe widths and comparisons are made with the results of the
‘‘constant-supply’’ models of [17,18]. Note that the new model is still formulated as ‘‘local’’, or
‘‘geometric’’ model [20]; conditions that permit such formulation are discussed in the next section.
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The paper proceeds as follows. The new model is formulated in Section 2. Numerical methods
are briefly discussed in Section 3, and Section 4 gives numerical results. Section 5 contains the
conclusions.
2. Model

Sketch of the mathematical situation is shown in Fig. 1. The length of the stripes is assumed
much larger than their widths since large aspect ratios are common in the experiments; thus, 2D
approximation can be used. Due to the periodic arrangement of the stripes, we examine the
growth behavior on a partial cross-section which is a line segment extending from the center line
of one mask surface at x0 ¼ �‘ to the center of the adjacent stripe at x0 ¼ L. The mask is assumed
to be of zero thickness since the objective of this paper is evaluation of the influence of vapor-
phase diffusion on ELO in the long run. This approximation is made because usually the mask
thickness (�0.1 lm) is much smaller than the mask width (�5 lm at least) and thus time needed to
fill a stripe with crystal is much less than the total time for the overgrowth. Extension of the model
to the case of nonzero mask thickness is straightforward.
2.1. Diffusion in vapor

Following the previous modeling efforts [1,6], [13–15], diffusion in boundary layer is considered
steady state, since it was shown in the cited works with compelling evidence that such approxi-
mation leads to models which quite accurately match crystal growth rates and growth rate
Fig. 1. A sketch of the mathematical situation. The free surface of the growing crystal (curve in two dimensions) is

defined parametrically as y0 ¼ y0ðs0; t0Þ, x0 ¼ x0ðs0; t0Þ, 06 s0 6 S0ðt0Þ, where s0 is the arc length along the curve and S0 is the

total arc length of the curve (primes denote dimensional variables). The surface is sketched such that a crystal over-

growth onto the mask is shown. / is the angle that the unit normal, q0, makes with the horizontal axis. Height of

boundary diffusion layer above the substrate is H , and hc denotes crystal height at the center of the stripe.



1442 M. Khenner / International Journal of Engineering Science 42 (2004) 1439–1457
enhancement factors over wide range of experimental growth conditions and growth times.
Therefore, the equation that describes diffusion in vapor is Laplace’s equation
Dv

o2n0v
oðx0Þ2

 
þ o2n0v
oðy0Þ2

!
¼ 0; ð2:1Þ
where Dv is diffusion coefficient, and n0v is concentration of metal-organic precursors. Boundary
conditions are specified in Section 2.4.

2.2. Surface diffusion over the mask

The interval �‘6 x0 6 0, y 0 ¼ 0 corresponds to the masked area of the substrate. Here we study
the surface diffusion of the concentration n0m ¼ n0mðx0; t0Þ of adatoms on the horizontal part of the
mask not yet covered by the growing crystal:
on0m
ot0

¼ DðmÞ
s

o2n0m
oðx0Þ2

þ J 0
i ; �‘6 x0 6 x0�ðt0Þ: ð2:2Þ
In (2.2), J 0
i is the net impinging flux of atoms from a vapor (explicit form for the flux is given in

Section 2.4). DðmÞ
s is the surface diffusivity of adatoms on the mask. Diffusion equation (2.2)

is commonly used for modeling surface diffusion on crystal and mask surfaces in MBE and
CVD (Ref. [15,21,22], for example).

Appended to (2.2) is a symmetry boundary condition,
on0m
ox0

����
ð�‘;t0Þ

¼ 0: ð2:3Þ
We assume that the adatoms close to the crystal will be absorbed quickly; thus we take the
boundary condition at the contact point to be a perfect sink:
n0mðx0�ðt0Þ; t0Þ ¼ 0: ð2:4Þ
The initial condition is chosen n0mðx0; 0Þ ¼ 0, �‘6 x6 0.

2.3. Model for the crystal surface

In this section, an expression for the normal velocity V 0
q0 of the interface between the crystal that

builds-up from the substrate on the interval 06 x0 6 L, y0 ¼ 0 and the vapor is provided, as well as
boundary and initial conditions for the parametric evolution equations that use V 0

q0 to evolve the
interface (these equations are given in the nondimensional form in the Section 2.5). The interface
is allowed to move above the mask on the interval �‘6 x0 < 0, y 0 ¼ 0. The formulation presented
here has its foundation in the classical work of Mullins [23] on grain boundary grooving by
surface diffusion and evaporation–recondensation; it differs from one in [17,18] in that vapor-
phase diffusion is now allowed to contribute to V 0

q0 .
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It is important to mention that the influence of interface (crystal surface) motion on diffusion in
vapor is almost completely ignored in our modeling; see note in the algorithm (Section 3). Thus
‘‘new’’ model still belongs to the class of local or geometric models of crystal growth [20]. Geo-
metric models are defined in [20] as such in which the normal velocity of the surface depends only
on the position of the surface, its local shape and on values that field variables (e.g., concentration
n0v) take on the surface if these values do not depend on concentration gradients created by surface
motion and modified by diffusion in vapor. We believe that ELO of semiconductor crystals from
vapor can be adequately described within the framework of a geometric model due to following
reasons:

• As noted above, models of ELO developed in [1,6], [13–16] all assume steady-state diffusion
field ahead of the interface. The predictions of the models (growth rates and growth enhance-
ment factors) were matched to experimental results also reported in these works, with matching
usually quite good over the wide range of growth times. Note that crystal growth conditions
and experimental setups vary significantly in the mentioned experiments.

• Experimental crystal growth rates are small (<2 lm/h), which is characteristic for low-
pressure (6 1 atm) MOCVD/MOVPE reactors [1,6], [13–16]. On the other hand, the height
of a convection-free, diffusion boundary layer is several hundred microns [15]. It is therefore
unlikely that such a slow surface motion produces large concentration gradients in the
vapor.

• Complex crystal structures, such as those observed in dendritic solidification (for some exam-
ples of theoretical and computational approaches, see [24–31]) and that are known to be a re-
sult of morphological instability induced by nonstationary gradients of temperature and
concentration at the interface were never reported for ELO.

Interface motion in new model is driven by a net normal flux of precursors at the interface
from/to the vapor and by surface diffusion of adatoms along the interface. The contribution
of first driving force to normal velocity is proportional to the jump in the chemical potential
across the interface, viz.
M
n0s
kBT

ðlv � lcÞ; ð2:5Þ
where M is interface mobility, n0s is surface concentration (the number of adatoms per unit area of
the interface), kB is Boltzman’s constant, T is temperature, lv is chemical potential of the inter-
facial layer on vapor side and lc ¼ XcK 0 is chemical potential of the interfacial layer on crystal
side (where X is atomic volume, c is crystal-vapor surface energy and K 0 is curvature). Note that
given form of lc assumes isotropic surface energy, e.g. c does not depend on crystal surface
orientation /. Here and below the isotropic c is chosen to reduce the number of parameters to the
model; influence of mildly anisotropic c was studied in [18].

To determine lv, we make use of the definition of the diffusivity in vapor [32]:
Dv ¼ v
olv

on0v

� �
T ;P

; ð2:6Þ
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where v is a positive proportionality constant. From (2.6), requiring that at y0 ¼ H : l ¼ l1 ¼
const: 6¼ lv and choosing v that corresponds to zero equilibrium (reference) value of the chemical
potential, it follows that
lv ¼
n0v
n1

l1: ð2:7Þ
The second contribution is from the surface diffusion of atoms along the interface; the current
of atoms Js is proportional to the surface gradient of lc. For the curve in the plane, the surface
gradient is the derivative with respect to arc length, hence
Js ¼ � n0s
kBT

DðcÞ
s

olc

os0
; ð2:8Þ
where DðcÞ
s is coefficient of diffusion on crystal surface. The contribution to the rate of increase in

the atoms per unit length (proportional to the normal velocity) is proportional to (�oJs=os0).
Combining the vapor and surface diffusion contributions results in
V 0
q0 ¼

X
kBT

Xc
o

os0
DðcÞ

s n0s
oK 0

os0

� ��
þ Mn0s

n0vjinterface
n1

l1

�
� XcK 0

�	
: ð2:9Þ
The first term in (2.9) is due to surface diffusion, and the third term is due to evaporation–
recondensation. Second term is due to the impinging flux from vapor on the interface. Surface
concentration is taken as
n0s ¼ g�1
s n0vjinterface; ð2:10Þ
where gs is the parameter with units length�1. n0s is thus a function of the position on the interface
and of the time, since the solution n0v of the diffusion problem in vapor phase at any point in vapor
domain (including the interface) is time dependent due to interface motion and deformation, as
well as due to dynamic boundary conditions (2.18) and (2.19) (Section 2.4). (2.9) is more general
than the expressions for the normal velocity used in [17,18]; there, mean surface concentration
n0s � m ¼ const. (or constant effective thickness of the interfacial layer d ¼ Xn0s [23]) was assumed.

Anisotropic evolution of the crystal surface is accounted for by postulating the dependence of
M and DðcÞ

s on crystal surface orientation given by the angle of the unit normal, /, to the surface:
M ¼ M0M̂ð/Þ; DðcÞ
s ¼ D0D̂ð/Þ; ð2:11Þ
where M0, D0 are mean values. M̂ð/Þ; D̂ð/Þ are given by
M̂ð/Þ ¼ 1þ �m cos½4ð/ þ bmÞ�;
D̂ð/Þ ¼ 1þ �d cos½4ð/ þ bdÞ�;

ð2:12Þ
where (i) constants �m; �d ð06 �m; �d 6 1Þ determine the degree of the anisotropy of M and DðcÞ
s ,

respectively, (ii) bm and bd are phase angles. In (2.12), four-fold anisotropy is assumed; formulas
of this type are often used to model anisotropic crystal growth.
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Next, physical boundary and initial conditions that augment the evolution problem for the
interface are described. These conditions are same as in [17,18].

First, the contact angle hðc; ccm; cmvÞ which the crystal surface forms with the mask at the
contact point is constant as a result of the thermodynamic equilibrium at the junction [33]. Here
ccm and cmv are respectively the crystal-mask and mask-vapor surface energies, and h is thus a
material parameter. The condition reads
h ¼ const: at x0 ¼ x0�ðt0Þ: ð2:13Þ
Symmetry conditions on the shape of the crystal are prescribed at x0 ¼ L,
oy 0

ox0

����
ðL;t0Þ

¼ 0 and
o3y0

oðx0Þ3

�����
ðL;t0Þ

¼ 0; ð2:14Þ
these conditions prevent any flux of atoms across x0 ¼ L.
Initially, the crystal surface is assumed to be a hyperbolic tangent curve that has the contact

angle h0 < 90� with the mask at the contact point:
y0ðs0; 0Þ ¼ y 00 1

�
� tanh s0

tan h0

y 00

� ��
; x0ðs0; 0Þ ¼ s0; 06 s0 6 L: ð2:15Þ
In (2.15), y00 is a small constant which gives the initial thickness of the crystal at x0 ¼ L.
The slope of the interface at the contact point for t0 > 0 is given by
oy 0

ox0

����
ðx0�ðt0Þ;t0Þ

¼ tan h: ð2:16Þ
The surface diffusion flux on the mask is matched with the flux onto the growing crystal by
requiring, at x0 ¼ x0� and t0, that
DðmÞ
s

on0m
ox0

¼ n0s
kBT

DðcÞ
s Xc

oK 0

os0
: ð2:17Þ
2.4. Boundary conditions for the Laplace’s Eq. (2.1)

Concentration at the top of the diffusion layer (at �‘6 x0 6 L, y 0 ¼ H ) is prescribed, n0v ¼ n1.
on0v=ox

0 ¼ 0 at left and right boundaries of vapor phase (at x0 ¼ �‘, 0 < y0 < H and at x0 ¼ L,
hc < y 0 < H ) due to symmetry of the problem.

The difference of impinging and evaporation–recondensation fluxes at the mask and at the
crystal–vapor interface provides the last two boundary conditions for (2.1):
�‘6 x0 6 x0�ðt0Þ; y0 ¼ 0 : Dv

on0v
oy 0

¼ rmJg �
n0m
sm

� J 0
i ; ð2:18Þ



Table 1

Physical parameters

Constant Description Value/units

Jg Atomic flux from vapor 1015 atoms/(cm2 s)

sm Mean residence time of atoms on mask 0.1 s

rm Sticking coefficient on mask 1.0

Dv Diffusivity in vapor 3· 10�6 cm2/s

DðmÞ
s Diffusivity on mask 5· 10�8 cm2/s

D0 Mean diffusivity on crystal surface 2· 10�8 cm2/s

X Atomic volume 2· 10�23 cm3/atom

c Surface energy 103 ergs/cm2

l1 Chem. pot. in the far field (at y0 ¼ H ) 3· 10�13 erg/atom

M0 Mean mobility 10 s�1

L Width of substrate region 5· 10�4–3 · 10�3 cm (5–300 lm)

‘ Width of mask region 5· 10�4–3 · 10�3 cm (5–300 lm)

H Thickness of diffusion boundary layer 10�2 cm (100 lm)

n1 Vapor concentration at y0 ¼ H 8· 1018 atoms/cm3

h Equilibrium contact angle 120�
h0 Initial contact angle 60�
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06 s0 6 S0ðt0Þ : Dv

on0v
oq0

¼ Jg 1

�
� cXK 0

kBT

�
: ð2:19Þ
In (2.18), 0 < rm 6 1 is sticking coefficient on the mask; this is new parameter absent from pre-
vious models [17,18] (sticking coefficient on the interface is assumed unity [15]). The term n0m=sm
accounts for the loss of adatoms due to desorption. The constant sm is the mean adatom residence
time on the mask. The form of Jg is usually given by the kinetic theory of gases, as follows:
Jg ¼
P0

ð2pmkBT Þ1=2
: ð2:20Þ
In (2.20), P0 is vapor pressure, m is molecular weight and kB is Boltzman’s constant. (2.18), (2.19)
are equivalent to the assumption of the first order reaction rate [15,23,32]. For the purpose of
direct comparison with the model without the diffusion in the vapor, we take here value for Jg as
in [18] (Ref. Table 1).
2.5. Nondimensional problem

The physical constants listed in Table 1 are representative for ELO of GaAs-like material
at temperatures near 650 �C.

Next, the model equations are nondimensionalised using same scales as in [17]; two additional
scales which arise due to diffusion in vapor are
n0v ¼ n1nv; n0s ¼
L2

DðmÞ
s

Jgns: ð2:21Þ



Table 2

Nondimensional parameters

Constant Expression Value (L ¼ 5,

‘ ¼ 20 lm)

Value (L ¼ 30,

‘ ¼ 120 lm)

Z ðX2JgcD0Þ=ðDðmÞ2
s kBT Þ 2.5· 10�8 2.5· 10�8

Y ðXl1JgML3Þ=ðDðmÞ2
s kBT Þ 2.35· 10�2 5.08

X ðX2JgcML2Þ=ðDðmÞ2
s kBT Þ 3· 10�6 1.1· 10�4

W ðXLcD0Þ=ðDðmÞ2
s smkBT Þ 6.3· 10�3 3.8· 10�2

K ðJgLÞ=ðDvn1Þ 2· 10�2 1.2· 10�1

U ðXJgcÞ=ðDvn1kBT Þ 6· 10�6 6· 10�3

x ðDvn1LÞ=ðsmJgDðmÞ
s ) 2.4· 103 1.44· 104

Cs ðgsL
2JgÞ=ðn1DðmÞ

s Þ 1 1
�H H=L 20 3.3

d ‘=L 4 4

y0 y00=L 5· 10�3 5· 10�3
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Table 2 contains estimates of the nondimensional parameters for two sets of the mask and
stripe widths. These sets will be referred to as ‘‘narrow geometries’’ and ‘‘wide geometries’’,
respectively. Notice that the nondimensional width of the mask, d, is same for both sets.

The nondimensional Laplace’s Eq. (2.1) reads
o2nv

ox2
þ o2nv

oy2
¼ 0; ð2:22Þ
with boundary conditions
at � d 6 x6 1; y ¼ H : nv ¼ 1; ð2:23Þ

on the mask � d 6 x6 x�ðtÞ; y ¼ 0 :
onv

oy
¼ Kðrm � nmÞ � Ji; ð2:24Þ

on the crystal surface ð06 s6 SðtÞÞ : onv

oq
¼ K � UK; ð2:25Þ

at x ¼ �d; 0 < y < H and at x ¼ 1; hc < y < H :
onv

ox
¼ 0; ð2:26Þ
where hc now denotes the nondimensional thickness of the crystal in the center of the stripe.
The nondimensional diffusion problem on the mask is
onm

ot
¼ o2nm

ox2
þ xJi;

onm

ox

����
ð�d;tÞ

¼ 0; nmðx�ðtÞ; tÞ ¼ 0; nmðx; 0Þ ¼ 0: ð2:27Þ
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The nondimensional parametric evolution equations for the crystal surface are
ox
ot

¼ Vq
oy
os

;

oy
ot

¼ �Vq
ox
os

:

ð2:28Þ
In (2.28), the nondimensional normal velocity is given by
Vq ¼ Z
o

os
D̂ð/Þ oK

os
ns

� �
þ Y M̂ð/Þnsnvjinterface � XM̂ð/ÞKns; ð2:29Þ
where
ns ¼ C�1
s nvjinterface: ð2:30Þ
Natural value Cs ¼ 1 is taken for the computation. In (2.29), M̂ð/Þ, D̂ð/Þ are given by (2.12)
and
K ¼ o2y
os2

ox
os

� o2x
os2

oy
os

ð2:31Þ
is the nondimensional curvature.
The nondimensional boundary conditions for Eq. (2.28) are (see Fig. 1; note that x�ðtÞ corre-

sponds to s ¼ 0 at all times):
oy
os

����
ðs¼SðtÞ;tÞ

¼ 0;
o3y
os3

����
ðs¼SðtÞ;tÞ

¼ 0; ð2:32Þ

oy=os
ox=os

����
ðs¼0;tÞ

¼ tan h; h ¼ const: ð2:33Þ
and
oK
os

����
ðs¼0;tÞ

¼ fm
W D̂ð/0Þ

: ð2:34Þ
In (2.34), /0 is the angle of the normal at s ¼ 0; fm is a surface diffusion flux from mask, which
emerges from the numerical solution to initial-boundary value problem (2.27) with moving
contact point x�ðtÞ. The solution procedure to obtain fm is described in the appendix of [18]; it is
also summarized in the next section. (2.34) is used to find the interface curvature at the contact
point.

The nondimensional initial condition for Eq. (2.28) is
yðs; 0Þ ¼ y0 1

�
� tanh s

tan h0

y0

� ��
; xðs; 0Þ ¼ s; 06 s6 1: ð2:35Þ
Here y0 is a constant specifying the initial crystal thickness.
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3. Numerical methods

Diffusion problem in vapor phase (2.22)–(2.26) is solved by a standard boundary element
method [34], which allows to avoid discretization and solution in the bulk vapor. Linear elements
were employed in this study.

Diffusion problem on the mask (2.27) is first mapped using transformation of variables
ðxðtÞ ! n, nm ! Nmðn; tÞÞ onto fixed interval �d 6 n6 0 [18] and discretized in n using finite
differences. The resulting set of coupled ordinary differential equations in time is integrated by the
standard ODE solver RADAU [35]. The solution yields the flux
fm ¼ �d
d1

� �
oNm

on

����
ðn¼0;tÞ

ð3:1Þ
of adatoms from the mask onto the crystal at the contact point. In (3.1), d1ðtÞ is distance from the
contact point to the center of the mask at x ¼ �d:
d1ðtÞ ¼ d � jx�ðtÞj: ð3:2Þ
This flux is then used in the boundary condition (2.34). Also, the obtained concentration nm

is used in the boundary condition (2.24) on the next time level.
Evolution problem (2.28)–(2.35) is solved by a finite-difference method (namely, the marker

particles method) described in [17]. The solution yields the surface profile (in the xy-plane),
dynamically evolving in time.

Overall, the computational algorithm is as follows.

1. At t ¼ 0, set nm ¼ 0 along the mask. The RHS of (2.24) (Ji) is now known. Notice that the
initial curvature at the RHS of (2.25) is also known, since the initial curve is given.

2. Solve problem (2.22)–(2.26) using BEM.
3. On the curve, set ns ¼ nv=Cs, where nv is the solution of (2.22)–(2.26) on the crystal surface.
4. Update nm on the mask from the diffusion problem on the mask, (2.27). Use this updated nm to

compute the RHS of (2.34), and then compute the curvature of the curve at the contact point
using the one-sided finite-difference approximation.

5. On the curve, advance all marker particles except the one that coincides with the contact point,
one time step forward. Update the position of the contact point using the contact angle condi-
tion (2.33). Now the curvature of this updated curve is different from the one at the previous
time level. Use it to recompute the RHS of (2.25) (this is the only influence of the crystal–vapor
interface on the diffusion in vapor). Also, use the updated concentration on the mask to recom-
pute the RHS of (2.24). Then go to step 2.

Grids of two types used for discretizations along the boundaries are independent, thus
allowing flexibility in choosing the number of grid nodes for possibly the most accurate solution
of each subproblem. 200 boundary elements are employed on the interface, 100 on the mask and
50 on vertical and side boundaries of the computational box. The finite difference mesh on
the mask contains 200 nodes, and the marker particles mesh on the interface has 500 nodes.
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Communications between grids are performed using the parametric cubic spline interpolation. All
computations were done on a single, 2.2 MHz Intel Xeon processor; typical run time to evolve
the interface to ‘final’ nondimensional time tf ¼ 3 is 5 h. The code was compiled with Intel
Fortran Compiler 7.0 for Linux.
4. Numerical results

In this section, the numerical results (obtained with the use of the ‘‘old’’ model of [18] and of the
‘‘new’’ model) are presented and compared. Since the parameter space is very large, only two
distinct cases of the anisotropic growth were selected for a study. These are the cases of nonzero
anisotropies of interface mobility and surface diffusion, as follows (Eq. (2.12)):

• Case 1:
1 N
�m ¼ �d ¼ 0:75; bm ¼ bd ¼ 0�:
• Case 2:
�m ¼ �d ¼ 0:75; bm ¼ bd ¼ 45�:
It was demonstrated in [18] that cases 1 and 2 with �m ¼ �d ¼ 0:95 provide two extreme regimes
of ELO. In the first case, the overgrowth onto the mask is insignificant; however, a crystal with a
close-to-pyramidal shape grows fast in the stripe. In the second case, growth in the stripe is slow;
however, a thin crystal overgrows fast onto the mask. In this study, a moderate value of 0.75 was
chosen for �m and �d for the reason of a reduced numerical stability of the algorithm with
incorporated vapor-phase diffusion.

Results are presented for two sets of widths L and ‘ (Ref. Table 2). Intermediate widths between
these two extremes were also employed in the course of study to ensure that transition in ELO
properties occurs smoothly as widths increase from the lower to the upper bound. The nondi-
mensional parameters of Table 2 were fixed at their cited values for the two sets of widths. In the
end of this section we discuss the results obtained with rm ¼ 0:01.
4.1. Crystal shapes

Fig. 2 shows the crystal shapes for growth in narrow geometries and for both models. Fig. 2(a)
shows Case 1 growth with the crystal shapes at t ¼ 8i, i ¼ 0; ::; 4; Fig. 2(b) shows Case 2 growth
with the crystal shapes at the same times as Fig. 2(a).

In the Case 1, growth in narrow geometries (Fig. 2(a)), the crystals are imperfect pyramids with
the curved sidewalls and shrinking top surfaces; by the final time tf ¼ 32 (when runs were ter-
minated), this surface disappeared. Each model results in the approximately equal growth rates
in lateral and vertical directions. 1
ote that scales along x; y coordinate axis at all figures in this paper are not equal.
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In the Case 2, growth in narrow geometries (Fig. 2(b)), the crystal shapes are macroscopically
rough. The spike at the left end of the crystal is caused by the maximal mobility M in the direction
135� to the x-axis. The curved region between the spike and the flat right end of the curve is the
successor of the bump which formed near the contact line at the initial stage of the growth [18].
Note that growth in the vertical direction is about 10 times slower than in the lateral one. The
increase in the number of marker particles on the interface results in the smoother shapes, but also
requires denser BEM grid in order to preserve the accuracy of the interpolation. Thus due to the
computational time constraint the number of marker particles was fixed at 500.

Fig. 3 shows the crystal shapes for growth in wide geometries and for both models. Fig. 3(a)
shows Case 1 growth with the crystal shapes at t ¼ 0; 1; 2; Fig. 3(b) shows Case 2 growth with the
crystal shapes at t ¼ 0; 1; 2; 3.

In the Case 1, growth in wide geometries (Fig. 3(a)), the crystals are almost perfect pyramids;
for each model, lateral and vertical growth rates do not differ much.

In the Case 2, growth in wide geometries (Fig. 3(b)), the crystal grows fast in the direction 135�
to the x-axis as in the case of Fig. 2(b). Note, however, that the important property of the Case 2
growth in narrow geometries (that is, fast lateral overgrowth) is lost: the overgrowth distance by
the final time is only approximately two times larger than the crystal height in the center of the
stripe (at x ¼ 1).

The rough comparison of Fig. 3 to Fig. 2 shows that the crystal growth in wide geometries is
significantly faster than in narrow geometries. Also, growth governed by the new model with
vapor phase diffusion is significantly faster than growth governed by the old model without this
diffusion. The difference in growth rates between the new and the old model increases noticeably
with time for growth in wide geometries. These effects are quantified in the next section.
4.2. Growth rates

Fig. 4 shows (for the crystal growth computed in Figs. 2, 3) the overgrowth distances on the
mask vs. time, while the crystal heights in the center of the stripe are shown in Fig. 5.
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The vapor-phase diffusion model predicts (at any given time) the largest crystal height for the
Case 1 and Case 2 growth in both narrow (Fig. 5(a)) and wide geometries (Fig. 5(b)). It also gives
the largest overgrowth distance.

Also, the ratio of the ‘‘new’’ vertical growth rate to the ‘‘old’’ one increases with time faster for
wide geometries (Fig. 5(b)) than for narrow geometries (Fig. 5(a)); same is true for the overgrowth
rate.

Let RðwÞ
l and RðnÞ

l denote average (over the full time of each modeled crystal growth event) lateral
growth rates predicted by the new model in wide and narrow geometries, respectively. Also, let
RðwÞ

v and RðnÞ
v denote average vertical growth rates predicted by the new model in wide and narrow

geometries, respectively. Then,
RðwÞ
l

RðnÞ
l

� 26;
RðwÞ

v

RðnÞ
v

� 22 ð4:1Þ
for Case 1 growth, and
RðwÞ
l

RðnÞ
l

� 16;
RðwÞ

v

RðnÞ
v

� 52 ð4:2Þ
for Case 2 growth. Thus, for Case 1 growth, the uniform increase of the widths L and ‘ results in
almost uniform increase of the growth rates, while for Case 2 growth, the uniform increase of the
widths results in much larger increase of the vertical growth rate than of the lateral growth rate.
To quantify relative contribution of the width ‘ to the growth rates, the runs were performed with
L ¼ 30 and ‘ ¼ 20 (that is, keeping stripe width fixed but decreasing the mask width by a factor of
six (in ‘‘wide geometries’’ case)). Denote the resulting average growth rates Rðw=6Þ

l and Rðw=6Þ
v . Then,
Rðw=6Þ
l

RðwÞ
l

� 1:1;
Rðw=6Þ

v

RðwÞ
v

� 2:26 ð4:3Þ
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for Case 1 growth, and
6

6

6

f m

(a)

Fig. 6

center
Rðw=6Þ
l

RðwÞ
l

� 0:8;
Rðw=6Þ

v

RðwÞ
v

� 0:92 ð4:4Þ
for Case 2 growth. Thus, decreasing mask width alone (or, in other words, increasing three-fold
the ratio of the unmasked substrate area to the total substrate area) does not result in the pro-
nounced effect on growth rates. Data suggests, however, that growth rates can be either slightly
enhanced or reduced depending on the particular shape of the crystal grown.

Fig. 6 shows the surface diffusion flux fm from the mask at the contact point vs. the length d1 of
the free portion of the mask. For growth in narrow geometries, the flux is practically constant; for
growth in wide geometries, flux is larger and increases with overgrowth. It must be noted here that
fm contributes to the lateral growth rate only indirectly, and that influence is quite weak [18].

(See also next section. Same conclusion has been reached in [15]. In that work, the description
of the diffusion on the mask lacks boundary condition at the mask center for the steady-state
diffusion equation there. However, the incorporation of adatoms from the mask into the crystal
growing in the window is given by the flux balance equation (6), that in our notation reads:
DðmÞ
s

dn0m
dx0

����
mask edge

¼ kðmÞ
s n0m

��
mask edge

;

where kðmÞ
s is the first order reaction rate constant. The latter equation also serves as boundary

condition at the mask edge. The following is stated in [15] (p. 588): ‘‘The rate constant, being
largely unknown, was varied over several orders of magnitude and found to have a negligible
influence on the net flux to the window. . . . These results suggest that direct diffusion from the gas
phase accounts for nearly all of the excess reactant supply to the exposed window area in selective
epitaxy’’. Note that in [15] ELO was not considered and the solution of the free boundary problem
for the crystal was not attempted.)
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Indeed, in our model fm is used only to evaluate the curvature of the interface at the contact
point; this value is needed for the computation of the normal velocity at adjacent marker points
on the interface, but the contact point. The location of the contact point is determined by
coordinate’s extrapolation using the contact angle condition.
4.3. Case of sticking coefficient rm ¼ 0:01

The steady-state diffusion problem on the mask (Eq. (2.27))
d2nm

dx2
� anm ¼ �arm;

dnm

dx

����
ð�d;tÞ

¼ 0; nmðx�ðtÞÞ ¼ 0; a � xK

¼ const:; �d 6 x6 x�ðtÞ ð4:5Þ
has solution
nm ¼ rm 1

�
� e2d

ffiffi
a

p
ex
ffiffi
a

p
þ e�x

ffiffi
a

p

eðdþd1Þ
ffiffi
a

p
þ eðd�d1Þ

ffiffi
a

p

�
; ð4:6Þ
where d1 is given by (3.2). Thus surface concentration is naturally uniformly proportional to
sticking coefficient. Fig. 7 shows the exemplary concentration profiles that result from the solution
of the full time-dependent problem (2.27) with r ¼ 0:01.

From (4.6), the flux at the contact point,
fm ¼ rm

ffiffiffi
a

p
tanhðd1

ffiffiffi
a

p
Þ; ð4:7Þ
is also proportional to rm. In [18] it was shown (for the particular case rm ¼ 1) that the steady-
state solutions (4.6) and (4.7) are very good approximations.
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Fig. 7. Transformed concentration on the mask (rm ¼ 0:01).
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Fig. 8 compares the crystal shapes for the Case 2 growth with rm ¼ 1:0 and rm ¼ 0:01. Fig.
8(a) and (b) shows cases of narrow and wide geometries, respectively. The overgrowth rate is
insignificantly affected by decrease of the flux from mask through the decrease of sticking
coefficient (especially in narrow geometries). It is therefore apparent that surface diffusion
channel on the mask provides minor contribution to the total lateral overgrowth rate. Never-
theless, larger values of sticking coefficient result in an increase of both growth rates (same
conclusion is drawn in [15]).
5. Conclusions

In this paper, the model for ELO by the combined action of the diffusion in vapor and surface
processes (diffusion and evaporation–recondensation) is developed. It is demonstrated compu-
tationally, for two distinct and very different modes of anisotropic ELO (and by direct compar-
isons to the results of the previous model without vapor-phase diffusion, but with the constant
precursor flux from vapor and surface processes [18]) that vapor-phase diffusion enhances the
lateral overgrowth on the mask and vertical growth. The extent of such enhancement depends
strongly on widths of the open stripes and masked portions of the substrate, the enhancement
being more pronounced for wide geometries. The influence of the diffusion in vapor on the crystal
shapes is small.

A number of recent experimental works on SAG concluded that vapor-phase transport
from the regions above the dielectric mask to the exposed regions provides the largest
contribution to the vertical growth enhancement rate at the boundaries of the exposed regions
(Ref. [3] for excellent review and GaN SAG experiment). To the knowledge of the author, for
ELO the relative contributions of vapor and surface diffusion were not directly tested
experimentally. This work therefore provides a model which allows (under relatively few sim-
plifications) for direct computation of semiconductor ELO and for identification and evalua-
tion of some of the most important physical mechanisms involved in this crystal growth
process.
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