Sinusoidal Waves: Amplitude, Period & Frequency

Article 00: Readings. Pleasurable and invigorating *reading assignments* follow. Please partake of the intrinsic joy therein found.

Rdng $[pp 173 - 177]$ - - - - - - - - - - - - - - - - Exer $[p 180]$:: #01-26.

Article 01: Sinusoidal Wave Concepts. Consider the graph of $y = sin(t)$ or of $y = cos(t)$ as displayed in *FIG_01A & 01B*, below.

Such graphs as these are called *sinusoidal wave graphs*. The name, of course, refers to the shape of the *sine function graph.* However, we have already noted that the *sine & cosine graphs* have the same shape. The only difference is the PLACEMENT of the *vertical*, *y-axis!* Also, note that in the above *wave graphs* the "wave crests" are closer together in $Fig (A)$ than those crests in Fig (B) . Hence, the *cycle length* of the first is SHORTER than that of the second. The (least) *cycle length* is called the *(fundamental) PERIOD* of the function wave. Hence, the (A) -wave has a SMALLER PERIOD than the *(B)-wave.* The *period* is the (shortest) length on the t-axis which will SPAN ONE FULL CYCLE. The *period* or cycle length is also called the WAVE-LENGTH. Another feature of sinusoidal waves is the *HEIGHT of the CRESTS (from the horizonal axis).* This feature of the wave is called the *AMPLITUDE* of the function wave.

Article 02: Sinusoidal Wave Features. The graphs of $y = \sin(t)$ or of $y = \cos(t)$ are both *PERIODIC with period =* 2π and each has *AMPLITUDE* = 1.

(2.1) AMPLITUDE. In order to create *amplitude* = A, simply MULTIPLY by $A : y = A \cdot \sin(t)$ and $y = A \cdot \cos(t)$. Now, the *maximum value* of either function will be A; and, the *least value* of either will be $(-A)$. Hence, the *AMPLITUDE* will simply be the *numerical coefficient of the sinusoidal function*.

(2.2) PERIOD (or Wave-Length). Recall that the *periods* of $y = \sin(t)$ or of $y = \cos(t)$ are 2π . Hence, ONE COMPLETE CYCLE of each SPANS a *t-axis length of* 2π . Now, imagine the function $f(t) = \sin(bt)$, for some *real number* $b \in \mathbb{R}$. We ask what *number* p is the period of this function $f(t)$? We inspect: $f(t + p) = f(t)$ in order to answer this question. Since, $sin(t)$ has *period* = 2π , then: $b(t+p) = bt+2\pi \Rightarrow \sin(b(t+p)) = \sin(bt+2\pi) \Rightarrow f(t+p) = f(t)$. So, ... solving for p, we find that: $p = \frac{2\pi}{l}$. CHECKING: $f(t+p) = \sin b\left(t + \frac{2\pi}{l}\right) = \sin(bt+2\pi) = \sin(bt) = f(t)$. $\frac{2\pi}{b}$. CHECKING: $f(t+p) = \sin b\left(t + \frac{2\pi}{b}\right) = \sin(bt + 2\pi) = \sin(bt) = f(t)$

more / over

(2.3) FREQUENCY. The FREQUENCY of a *sinusoidal wave* is simply the *NUMBER of Wave-Lengths (or Period Cycles)* that will fit into a *UNIT length on the t-axis*. Hence, if TWO wave cycles will fit into a unit length, then the <u>frequency is $f = 2$ </u>. Alternatively, if only ONE-THIRD *of a wave length* will fit into a unit length, then the *frequency is* $f = \frac{1}{3}$. Given this DESCRIPTION of *frequency*, it is PLAIN TO SEE that the numerical relation between *period* = p AND *frequency* = f *is given by*

 $f = \frac{1}{p}$, or $p = \frac{1}{f}$, or $fp = 1$.

Article 03: Fundamental Observations & Procedural Illustrations.

- (3.1) $y = \sin(t)$ and $y = \cos(t)$ have amplitude $= 1$ and period $= 2\pi$.
- (3.2) $y = A \cdot \sin(bt)$ and $y = A \cdot \cos(bt)$ have <u>amplitude</u> = A and <u>period</u> = $\frac{2\pi}{l}$. \boldsymbol{b} *and period* = $\frac{2\pi}{l}$
- (3.3) $y = A \cdot \sin(bt + c)$ and $y = A \cdot \cos(bt + c)$ have <u>amplitude</u> = A and <u>period</u> = $\frac{2\pi}{b}$. \boldsymbol{b} *and period* $=$ $\frac{2\pi}{l}$ Note that: $sin(bt + c) = sin\left(b\left(t + \frac{c}{b}\right)\right)$. Now, let $\tau = \left(t + \frac{c}{b}\right)$ so that it follows τ $\sin\left(b\left(t+\frac{c}{b}\right)\right) = \sin(b\tau)$. Hence, since $\sin(b\tau)$ has *period* = $\frac{2\pi}{b}$, then so does $\sin(bt+c)$. τ). Hence, since $sin(b\tau)$ has *period* = $\frac{2\pi}{l}$, \boldsymbol{b} π

(3.4) In order to *SKETCH* the *graph of:* $y_t = \sin(bt + c)$, proceed as follows:

- (a) First, *sketch the graph of:* $y = sin(b\tau)$, since this will provide a wave with *period* = $\frac{2}{1}$ $(b\tau)$, since this will provide a wave with *period* = $\frac{a}{b}$ π and such that: $y_{\tau} = 0$ at $\tau = 0$.
- (b) Now write: $y_t = \sin(bt + c) = \sin\left(b\left(t + \frac{c}{b}\right)\right)$. Then, observe that $t = 0$ at $\tau = \frac{c}{b}$. So, at $\tau = \frac{c}{b}$, *INSERT the vertical y_t*-axis. The graph of $y_t = \sin(bt + c)$ is done!
- (3.5) In order to SKETCH the graph of: $y_t = A \cdot \sin(bt + c)$, SKETCH as directed in Item (3.4) AND provide the wave with an $AMPLITUDE = A$.
- (3.6) In order to *SKETCH* the *graph of:* $y_t = A \cdot cos(bt + c)$, *SKETCH using PARALLEL procedures to those used for the SINE function.*

Article 04: Concept Examiners. Develop *complete & detailed* solutions for the following morsels of intellectual pleasure!

- 01. Determine the *AMPLITUDE and PERIOD and FREQUENCY* of each sinusoidal function below: (a) $5\sin(2\pi t)$ (b) $\frac{5}{8}\cdot\cos(6t)$ (c) $\frac{\pi}{4}\cdot\sin(\frac{1}{2}t+\pi)$ (d) $\cos(8\pi t-\frac{1}{2}\pi)$ (e) $\frac{1}{\pi}\cos(\frac{t}{\pi})$ π π $\cos(\pi$ 1
- 02. *SKETCH* each of the sinusoidal functions appearing in *Exercise 01*, *above.*

