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In this, the first part of a two part work, a general model of spatial organization is introduced. 
Following a brief synopsis of some of Spinoza's and Leibniz's views regarding natural structure, an 
extension of the Spinozian model is presented in which the attribute spatial extension is portrayed as a 
relational system that implicitly underlies the differentiation of sensible space into "modifications" 
("natural systems") and the latter's subdifferentiation into "modes." On the basis of this model, all 
instances of modal differentiation are understood to take place in a manner explained by this relational 
structure, the existence (but not the specific characteristics) of which is initially assumed. The nature of 
the structure is then deduced according to a "most-probable-state" kind of logic; next, it is 
demonstrated via simulation that the resulting aspatial model of internal relations has a corresponding 
spatial interpretation (and therefore, in theory, that sensible space structures can be supported by the 
particular rational ordering posed). The matter of how to apply the model to the study of real world 
systems is taken up last; discussion focuses on related aspects of the treatment of equilibrium and 
nonequilibrium systems and the recognition and measurement of modal structures. 

INDEX TERMS: Spinoza, Leibniz, Rationalism, spatial extension, relational system, spatial systems, 
most-probable-state, hierarchical class, entropy minimization, entropy 
maximization. 

INTRODUCTION 

Although the systems approach has become firmly entrenched in our current way 
of thinking, it can hardly be denied that we are a long way from having a truly 
general theory of spatial systems at our command. Not only do we have no 
comprehensive model or set of models that can be used to interpret spatial order, 
but also lacking is a general philosophical position within which practical 
investigations might be related to their more universal context. The work that 
follows attempts to address these issues at a very fundamental level. In it is 
outlined a philosophical approach to spatial systems organization which, when 
extended to the level of operational modelling, provides both descriptive power 
and conceptual flexibility. The discussion is developed in two parts. Part I begins 
with an extension of some Rationalist philosophy concepts intended to provide a 
more useful basis for the study of spatial systems. Following this is the 
presentation of a model of internal relations consistent with a "most-probable­
state" kind of logic and earlier-stated goals. Lastly, the matter of how to apply the 
model to real world situations is taken up. In Part II, the overall approach is 
considered in terms of its potential for aiding the study of geographic systems; this 
second section features both general discussion and two specific instances of 
application. 
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SOME ASPECTS OF THE PHILOSOPHY OF SPINOZA AND LEIBNIZ 

While Hegel (1770-1831) is often credited with laying the philosophical 
cornerstone for modern systems thinking with his doctrine of internal relations, I 
believe it is more productive to first turn one's attention to the seventeenth century 
philosopher Benedict de Spinoza (1632-1677) for the most profound treatment of 
nature as a general system. This is rarely done now, though Spinoza's ideas have 
historically had considerable influence on a number of notable thinkers (for 
example, Leibniz, Bergson, and Teilhard de Chardin). I shall not take the time 
here to attempt a defense of Spinoza's ideas as regards those of other philosophers 
but instead will plunge directly into a brief synopsis of concepts relevant to the 
present discussion. 

Spinoza is often considered quite modern in his views; in theory, at least, his 
method of inquiry reduces to a dialog between investigator and nature that is 
virtually devoid of metaphysics. Nonetheless, he was a firm believer in the 
existence of God. Spinoza's God, however, was inseparable from existence itself. 
This then-heretical pantheism was consistent with his view that nature as a whole 
constituted a kind of all-encompassing continuum he referred to as "substance." It 
was impossible for man to obtain any direct knowledge of substance, which 
existed under some number of "attributes" through which, one might say, its 
intrinsic order was expressed. Importantly, man has no direct sensible knowledge 
of these attributes either; instead, each is implicit in innumerable "modifications" 
which we can directly perceive and to which we attach various kinds of meaning. 
This point must not be confused: while it is our habit to think of the things that 
"fill space" as having properties such as color and weight that directly characterize 
their natural essence, Spinoza did not see things in quite this fashion. According to 
his way of thinking, a red rose is not an object with the attribute of redness; 
rather, it constitutes a finite mode extending "redly" under the attribute of spatial 
extension. This line of reasoning can be extended to the consideration of "spatial 
distribution" itself; the distribution of roses can thus be looked on as a 
modification of the attribute spatial extension in the same way an individual rose 
is. Note, moreover, that measures describing the "spatial distribution" of roses do 
not necessarily give us more information about the attribute spatial extension than 
do, say, measurements taken on their anatomical structures. On first contact this 
curious turn of affairs seems rather unhelpful in clarifying the meaning of "spatial 
extension." It is not, however, because it focuses our attention in new and useful 
directions. Most importantly, it forces a critical re-evaluation of the tacit 
assumption that things "fill space." The Spinozian understanding of nature is 
instead one in which all the directly manifest properties of extension represent 
patterns of interaction underlain by common rules of organization referable to a 
more fundamental ordering process. For the student of spatial systems, this 
philosophical position holds great appeal. An appropriate model of that process 
might suggest methods that could be applied in the study of virtually any system 
of interest. 

Spinoza's model of natural order is schematically diagrammed in Figure 1, 
where S represents substance, A; represents attributes, and Mii represent 
modifications. Note the branching structure involved: substance is both unique 
and all-inclusive and subsumes all attributes, to which in turn are referred unique 
assemblages of virtually infinite numbers of modifications. 

Though extremely brief, the preceding description of Spinozian ideals forms an 
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adequate base for what follows, which is not intended as an analysis of that 
philosopher's work.1 Spinoza's ideas do, however, provide a useful point of 
departure for the discussion. Though appealing as a philosophical structure, the 
Spinozian view of nature contains a fundamental weakness that renders it difficult 
to apply to the study of real world situations. Spinoza apparently believed that it 
is impossible to isolate specifics from the continuum of reality; that is, each 
modification of an attribute is in essence both unbounded and unrelatable to other 
modifications. This interpretation of nature seemingly casts it as having order but 
no parts, or at the least no independently meaningful parts. This emphasis on 
"vertical" organizational principles makes it difficult to order our impressions of 
the "horizontal" links that form the major part of our day-to-day existence. The 
characteristics of interaction of finite entities such as human beings thus remain 
obscure in Spinoza's writings, or at best are disposed of in a manner not lending 
itself to practical analysis. 

In criticizing Spinoza's beliefs, the German philosopher/mathematician Leibniz 
( 1646-1716) dwelled on the issue of the supposed indivisibility of nature. 2 Leibniz 
felt that not only was the whole of reality manifest in any given portion of it (as 
Spinoza also believed), but that these portions should be conceived as individual 
entities in their own right. This became the foundation for the "monad" concept, 
which provided for a kind of elementary particle in each of which was reflected the 
characteristics of all other such particles. In this view was the flexibility necessary 
for an interpretation of horizontal relationships in nature. It also permitted-as 
did Spinoza's ideas-hierarchical representation of nature. Nonetheless, Leibniz 
was unable to develop from this base a satisfactory model of how it was that any 
given monad actually contributed to a group structure that could mediate such 
universal symmetry. It is to a consideration of this matter that we first turn in the 
present study. 

AN EXTENSION OF THE RATIONALIST APPROACH 

There seems little value in attempting to argue that the basic position of either 
philosopher is inherently more right or wrong than the other's. Rather, in what 
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follows I have attempted to combine what I see as being critical positive elements 
of each position in such a fashion as to make possible new directions of study. 
This has necessitated the invention of some new concepts; hopefully, the ends will 
be viewed to justify the means. 

Let us therefore begin with a few definitions (these will be retained from here 
on; more colloquial applications of the same terms will be especially noted). For 
present purposes, an "attribute" will be considered as that in virtue of which 
substance may be understood. This is in close accordance with Spinoza's definition 
of the term. Following Spinoza's views on the matter, I accept that while in theory 
any number of attributes might exist, human powers are limited to the recognition 
of but two: spatial extension and thought. Here, attention is focused on the 
development of ideas relevant to consideration of the first. It should be noted, 
however, that the discussion developed is not irrelevant to the study of the 
attribute thought;3 neither is it cast in such a fashion as to conflict with twentieth 
century ideas regarding the principle of non-independence of observer. 

A "modification" will be defined as a (the) sensible aspect of an attribute. This is 
also a very Spinozian manner of understanding, but contains beyond his view 
some implicit associations that will only become apparent after the remaining 
definitions are presented. At any rate, modifications are regarded here as entities 
occupying complete and delimitable domains-in the case of modifications 
referring to the attribute spatial extension, sensible (in the literal sense of the word) 
spatial domains. Examples of the myriad of modifications referable to spatial 
domains include: the distribution of organisms, cities, continental crust (sial), etc.; 
cells; and organisms. 

We next turn to "modes." These are to be understood as quasi-finite subunits or 
classes of subunits resulting from the internal differentiation of a given modification 
(i.e., its natural subsystemization). The implications of this definition are 
considerable here, because I will suggest shortly that modifications differentiate 
internally in a manner having regular properties. Examples of sets of modes would 
include faunal and floral regions, the classes of population centers in the central 
place hierarchy of urban geography, the individual continental masses, and the 
organelles and organal systems making up individual cells and organisms, 
respectively. 

The "hierarchical class" is introduced here to name that in virtue of which the 
modes associated with a given modification are understood/expressed as a whole 
in terms of one another. Its purpose is thus to facilitate description of the 
commonalities referable to the functional links interconnecting a given system of 
modes. In particular, it is designed to describe a set of relationships involving all 
modes in a particular modification. By analogy, for example, we cannot expect to 
have a complete concept of color unless we have some means of relating all of its 
component colors to one another in some internally consistent fashion (for 
example, by linking them to particular combinations of hue, density, and 
brightness). Using the same reasoning, neither can we expect to have a coherent 
understanding of world faunal or floral patterns in the presence of a model that 
ignores conditions of association between particular geographical units. An 
analogous argument can be made regarding central place hierarchy modelling. In 
the case of the distribution of the continental masses, the search continues for a 
causal model that can account for all the knpwn characteristics of plate movement 
and interaction. Cells and organisms are living entities whose very survival 
depends on the complete functional interdependency of their component 
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subsystems. In all these examples, the internal differentiation of the modification in 
question into modes may be described in terms of associations inherent among the 
latter; the hierarchical class concept provides a means of referral to such 
differentiation that highlights these associations. 

The last term introduced at this point is "representation." This is to name those 
characteristics of the internal relational order of attributes that are expressed in a 
hierarchical class; that is, that prescribe the way modifications internally 
differentiate as modes. We may thereby speak of the "representation" of an 
attribute in its various modifications. Following Spinoza, I accept that all 
modifications referable to the attribute spatial extension in some fashion reflect the 
nature of that attribute. From that starting point, it is natural to consider what 
the relation between attributes and modifications may be that allows this to be so. 
In accepting the Leibnizian position that any given modification of an attribute is 
somehow reflected in any other given modification, we are likewise led to question 
what it might be that all modifications have in common that could make this 
possible. In the system presented here, the holistic and "monadic" positions of 
Spinoza and Leibniz, respectively, are integrated through the use of the notion of 
representation. Simply, "attribute" is the name given to rules of representation that 
actualize the infrastructure of modifications. These rules are therefore viewed as 
being implicit in anything physically extended, forming the basis for all 
indentifiable hierarchical classes. This solution is consistent with Spinozian 
reasoning, which leads to the conclusion that there exists but one set of rules 
referable to the organization of the sensible space though which modifications may 
be characterized. It also yields the idea that in each modification is reflected the 
fundamental nature of all other modifications: things cannot be otherwise if, as we 
assume here, all modifications differentiate into their characteristic observed forms 
on the basis of the same relational structure. We are thereby provided with a 
tangible link to Leibniz's "monads." Nonetheless, the structure envisioned remains 
vertically organized, since one can just as easily understand that which is 
physically extended to relay information about the nature of its underlying rules of 
representation as the reverse. 

From the above it can be seen that hierarchical classes must be isomorphic with 
respect to their characterization of inter-modal commonalities. Again, this is a 
product of the relationship between the structure of the attribute spatial extension 
and its representation in modal differentiation. This way of viewing the 
organization of the natural world has profound implications for the way problems 
of spatial distribution and diversification must be treated. Space itself is no longer 
viewed as having directly evident (or perhaps better put, "naively evident") 
qualities; rather, it becomes in effect a system of relations of which there can 
probably be no single absolute rendering. To avoid confusion, it is necessary to 
recognize two kinds of "space", varieties which may be termed "relational" and 
"sensible". The former refers specifically to the attribute spatial extension and its 
conditions of internal relational order. The latter may be taken as the sum of 
sensible spatial domains occupied by modifications of the attribute spatial 
extension. Through this separation of terms, the general and observable "facts" of 
distribution of things-including the notion of "spatial pattern" itself-are 
referable only to sensible space; the fundamentals of their organization into spatial 
systems, however, must be interpreted as a function of the characteristics of 
relational space. 

This conceptual separation of space into sensible and relational components will 
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inevitably lead to some initial confusion that must be overcome before these "Neo­
Rationalist" concepts can be successfully applied to considerations of real world 
conditions. Especially troublesome may be the fact that it is possible for two 
modifications to exhibit the same sensible properties of extension (i.e., have the 
same spatial domain) but be comprised of modal systems of entirely different areal 
differentiation. An example related to some of my own work on zoogeographic 
regions may aid in appreciating this point.4 Suppose we are considering the two 
modifications "terrestrial mammal distribution" and "terrestrial animal 
distribution." The spatial domains of these two modifications are essentially 
identical for the reason that virtually all exploitable terrestrial habitats that exist 
are inhabited by both mammals and animals in general. We must not jump to the 
conclusion, however, that the system of modes (regions) into which each has 
differentiated to maintain an internal relational structure consistent with that of 
the underlying attribute spatial extension need be areally identical. The 
biogeographic histories of the two groups are not identical (mammals, of course, 
having evolved much later than animals taken as a whole), and must be viewed as 
responses to generally different sets of proximate causal influences when viewed 
within their sensible space context. Nonetheless, according to the understanding 
being developed here we can still believe that these two histories have devolved 
from a single relational ordering process implicit in the attribute spatial extension. 
In so doing, we attribute to nature the capability of producing structures that are 
unique with respect to their characteristics of occupation of sensible space, but 
isomorphic with respect to their fundamental organizational properties. 

A related candidate for confusion is the difficulty that it seems particular modes 
might be associated with more than one modification. For example, though we 
might determine "Australia" to be a region (mode) within a faunal regions system 
(hierarchical class) depicting mammalian distribution (a modification), one might 
argue that this areal unit also hosts non-mammalian faunal elements and thus 
should be considered to contribute, ipso facto, to understandings of the 
organization of other world faunal distribution patterns. Recall, however, that a 
modification and its modes can be described in no other way than through a 
hierarchical class, and that the latter is defined here in terms of, and as reflecting, 
the structure of relational space, not sensible space. It is therefore immaterial that 
Australia may be "in the same physical place" with respect to two modifications; 
what is significant is whether it is expressive, as a sensible spatial (and natural) 
unit, of the relational structure of each (of course, a given sensible space unit such 
as Australia could qualify as a mode in more than one hierarchical class; the point, 
however, is that it does not have to). 

Neither can we view modifications of small spatial domain as in some fashion 
being "enclosed by," or existing as a subset of, modifications of larger spatial 
domain. The spatial domain of the distribution of the class Mammalia, for 
example, is much larger than is the spatial domain of the distribution of any given 
mammal species, but we are obliged to recognize in each a modification of equal 
and independent status. There are no systematic affinities among modifications 
(nor between the modes of different modifications). 

Perhaps the most straightforward question that might be raised regarding these 
new ideas is why, given that it is posed a single organizational basis underlies all 
modification, there should be so much observable variety in our surroundings. 
This question is best answered by reading the rest of this work; for the present, it 
can simply be noted that we have no reason to expect that the rules of 
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representation underlying the attribute spatial extension should be directly 
expressed in the sensible characteristics of the spatial domain. (Consider the 
analogous idea that while a particular integer has no direct expression in sensible 
space, it can still be used as a logically consistent means of labelling a certain 
quantity of entirely different objects.) 

To recap our conceptual revision of the basic Spinozian model, the above 
comments have been diagrammatically represented in Figures 2 and 3. In both 
figures, attributes are assumed to bear the same general relation to substance 
described through Figure 1. Specifying (that is, both describing and exhausting its 
domain) M 1 in Figure 2 is the hierarchical class H 1 of finite modes m;. Lines 
interconnecting modes 1 through 3 symbolize the relational system uniting them 
into H 1 with respect to A. The boundary of M 1 is dotted where it is not a part of 
a finite mode within H 1 because M 1 does not exist as sensible space where it is 
not expressed through H 1 (actually, H; in general). Again, this extension of the 
Rationalist view seems to do no great violence to Spinoza's original way of casting 
things, but at the same time responds to the criticisms of his system made by 
Leibniz. An advantage of this conceptualization, moreover, is that it is particularly 
conducive to canonical hierarchical representation; i.e., a particular hierarchical 
class structure can be collapsed into a hierarchical class specified by a more 
inclusive set of internal relations. As indicated in Figure 3, the system of primary 
modes of Figure 2 might be combined in a fashion yielding a system of "second 
order" modes, a construction subject to the condition that the newly devised level 
of order be self-specifying at both its own level and the original one. This calls 
for a strategy of modal grouping that retains such relationships, a subject taken 
up shortly. 
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THE EMPIRICIST TRADITION VERSUS RELATIONAL ANALYSIS 

At this point, it seems advisable to stand back for a moment to reflect on where 
we have been thus far and where we are going next. Faithful to the Empiricist 
tradition, it has become the norm to believe that the objects we choose to study 
exhibit attributes (in the more common sense of the word) that can be measured 
and reflected upon to give us direct knowledge of "underlying" reality. Thus, we 
now tend to believe it meaningful to consider "occupying space" and exhibiting 
measurable qualities to define space directly on the basis of those qualities. 
Following Spinoza, I do not believe this approach can produce an efficient 
representation of spatial structure and process. Order, I submit, is not most 
fundamentally manifest at the sensible level as a geometry involving objects; 
rather, it is a characteristic of the internal organization of the unobservable 
(namely, attributes-and note that I do not disallow the possibility of using 
geometry as an aid in understanding these). An attribute may be thought of as a 
particular kind of relational structure whose reflection in observable natural form 
is best represented by the notion of the hierarchical class. Should we wish to apply 
a theoretical understanding of the rules of representation within attributes to the 
sphere of the practical, therefore, we must first determine in what manner 
modifications internally differentiate into hierarchical systems of functionally 
interdependent modes. 

A few examples of the general kind of thinking I am suggesting might be 
beneficial here. We can first return to the zoogeographic realm. Regional faunas 
develop as complex interplays between regimes of isolation (during which unique 
evolutionary lines develop) and regimes of physical connectedness (during which 
interchange of populations takes place). At any given time, the cumulative results 
of such processes are manifest in sensible space as an overlapping array of 
distributional ranges of populations. Individual populations within this array may 
be restricted to a particular region or found in several. On the basis of the 
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distribution of such commonalities (which may be represented in matrix form as 
an array of similarities coefficients), the characteristics of each region can be stated 
in a way that in effect specifies a set of relations. Given the right regionalization 
scheme, this set of relations can in theory be expected to reflect the rules of 
representation inherent in the attribute spatial extension-being ultimately the link 
to their expression within a spatial domain (in this example, the terrestrial surface 
of the earth)-and thus constitute a hierarchical class. Similarly, the development 
of an "organism" is predicated on, literally, organization: the manner in which 
organal systems develop in a functionally interrelated way. In so doing, they 
constitute an internal ordering of relations that operates as a three-dimensional 
entity-a body-under the attribute of spatial extension. A more complicated 
example is provided by the evolution of central place hierarchies, in which the 
hierarchical classes emerging appear to be composed of modes (classes of central 
places) arranged in sensible space as a complex, intermeshing pattern of points 
rather than a single set of contiguous areal units. Nonetheless, the problem of 
study must be fundamentally the same, starting with the identification of the 
system of representation underlying the spatial distribution of central places, and 
only then proceeding on to substantive analysis. 

If we wish to do more with this basic scheme of natural order, our attention 
must therefore be drawn to: (1) identifying the rules that order modifications 
internally in such a fashion as to constitute hierarchical classes; and (2) showing 
how the fact of such ordering can be interpreted within the real world of 
measurable qualities. Meeting these goals involves setting out logical criteria for 
the ordering of subclasses (modes) into hierarchical classes, and then translating 
this understanding into a framework within which metric (sensible space) 
interpretations are possible. I have not yet addressed the matter of the actual 
nature of modal differentiation; i.e., what specifically are the relational rules under 
which a hierarchical class organizes? Before we can attend to real world problems, 
it is necessary to start with an idea of what we believe should be the 
characteristics of relational space. The study of mammalian regionalization 
patterns, for example, therefore begins with a concern about the meaning of 
"varies over space" rather than any characteristics of the specific groups that are 
varying, including their distribution in sensible space. Ultimately, this concern 
should lead us to a particular delineation of regions upon which to base applied 
understandings of the modification "mammalian distribution." In related 
applications of such a system I would therefore be making use of an implicit 
relational structure to shed light on the manifest properties of the distribution of 
mammals, which is explicit within its spatial domain. 

We now turn to a consideration of the meaning of "appropriate" systems of 
representation; i.e., ones that can be argued to mirror the internal relational 
structure of the attribute spatial extension. 

THE DIFFERENTIATION OF SPACE INTO VERTICAL AND 
HORIZONTAL COMPONENTS 

Randomness is, by common definition, lack of measurable order. Were there no 
order to our world, we would be unable to attach much meaning to any of it, or 
to meaningfully contrast any part of it with any other part. The fact that we can 
perform such contrasts, and obtain agreement about our pronouncements from 
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other thinking beings, is proof enough that order exists. Another version of this 
remark involves pointing out that there are recognizable differences among things, 
and that these persist (in the mind, if nowhere else). These differences are relative; 
that is, some are greater than others. Beyond degree of difference among things, 
however, there is an even more important aspect of the character of natural 
variation. Some reflection suggests that differences organize themselves through 
independent structural axes that inherently generate a "horizontal/vertical" natural 
duality. Horizontal differences are differences that can be expressed in terms of 
distances, where "distance" is defined very liberally as a standard of comparison 
applied within a (any) metric. For example, most would agree that the "distance" 
between orange and red is less than that between orange and blue. Similarly, the 
relational "distance" (equals "similarity") between the faunas of northern North 
America and northern Eurasia is less than that between, say, New Guinea and 
Borneo, regardless of the actual miles involved in the geographic separation 
associated with these pairings. Horizontal differences are thus relational differences; 
i .e., their magnitudes can be ordered on· the basis of established ordinal or interval 
scales. 

"Vertical" differences, on the other hand, may be interpreted as hierarchical 
differences: the contrasts between a level of order and another it subsumes, or 
between itself and a level subsuming it. 5 Minerals and rocks form a relation of this 
type, as do organic molecules and organisms, and neighborhoods and cities. 
Vertical differences may thus be used to interpret patterns of inclusion; e.g., the 
vertical "distance" between cells and organisms is arguably greater than is that 
between cells and organs. The criteria for assessment here are non-relational in 
that they are based on impressions of degree of functional immediacy rather than 
on metric-based comparisons. 

We may further refine the concepts of horizontal and vertical differences by 
referring to their expression as sensible space. With respect to horizontal 
differences, it is apparent that these must refer to entities that: (1) occupy different 
spatial domains, and (2) are logically equivalent elements of some greater whole. 
These constraints are necessary to the construction of logical comparisons (it is, 
for example, impossible to state a very meaningful difference between "lung" and 
"organism") and the metric associations made possible thereby. Vertical 
differences, by contrast, refer to entities that: (1) (at the least) share portions of the 
same spatial domain, and (2) function in large part independently of one another 
(as in the hierarchy consisting of "atom'', "cell", "organism'', "community", etc.). 

This appraisal of the character of sensible space can be used to link what we 
observe as sensible space to the Neo-Rationalist views introduced earlier. 
Obviously, the two kinds of relational conditions just described are integrated, 
together yielding a single sensible space in which both areal and vertical 
differentiation and organization are involved. I should now like to consider a 
means of eliciting a relational space comprised of vertical and horizontal 
components; i .e ., one in which hierarchical differentiation out of increasingly 
inclusive levels of organization is complemented by intra-level differentiation. The 
philosophical position developed earlier provides a conceptual framework for such 
interrelation; it does not, however, suggest particulars of organization (e.g., how 
many hierarchical levels there can be, what number of modes may be associated 
with which levels, etc.). These particulars are deduced here through an argument 
involving simple combinatorial statistics. This tactic allows us to translate the 
Neo-Rationalist argument into a form more appropriate for considering the nature 
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of the rules of representation within the attribute spatial extension. Once we have 
proposed a particular model of these rules, it will be possible to consider how 
these might be expressed in/as sensible space, and ultimately to apply this 
knowledge to the study of real world distributions. 

A MODEL OF HIERARCHICAL INTERNAL RELATIONS 

The model of relational space about to be offered is predicated on Einstein's "lazy 
universe" principle: that universal change always follows the route of least 
resistance (thereby conserving energy). The physics of Einstein's principle, however, 
is inspired by an overly simplistic understanding of the relationship between 
vertical and horizontal differentiation properties. Reductionist physical models are 
not usually viewed as contradicting the basic hierarchical structure of nature (as 
represented, for example, by the Miller hierarchy6), yet such views are clearly 
incomplete for their lack of attention to the crucial problem of how it is that 
within-level structural uniquenesses can exist. Modern physics can make little 
sense of uniquenesses; physical models do not exist that are of much value to the 
fundamental interpretation of the organization of, for example, central place 
hierarchies, world faunal regionalization patterns, or organal systems (which is not 
to say that they cannot sometimes be used to provide (usually) analogical 
descriptions of these). 

Yet it would be singularly useless to take the position that the unique structures 
that emerge under the operation of simple physical laws cannot after all be related 
back to those laws. A solution to this dilemma is suggested by the canonical 
structure advanced earlier. It will be recalled that the Spinozian attribute spatial 
extension has been portrayed as a system of representation operating under a 
single set of relational rules. Figure 3 schematized the canonical nature of this 
model of spatial extension; the substructure of particular modifications can be 
viewed through hierarchical classes involving various numbers of modes. We 
should be aware, however, that a modification comprised of but one mode can 
provide us with no information regarding the relational structure of the underlying 
attribute: it itself exhibits no such structure. Technically, therefore, we cannot 
recognize a hierarchical class in a unimodal modification. {The same reasoning 
holds for the bimodal case; see later discussion.) This is not to say, however, that 
such a structure can have no measurable characteristics at all. Indeed, those 
characteristics existing "in" (and in another sense, "as") all unimodal entities might 
be understood to represent the commonalities upon which physics is based. As 
modification-level phenomena, these commonalities can also be associated with 
plurimodal entities; all this says, as we should expect, is that all levels of 
organization can be reduced to certain kinds of fundamental properties (which 
nonetheless cannot serve to describe their associated manner of function in 
entirety 7) . One of the most fundamental of these is the tendency for a system to 
increase its entropy level-that is, to move towards its most-probable-state. I see 
no more conservative starting position for a consideration of modal differentiation 
characteristics than to assume that the same general principle holds in the 
development of the plurimodal structures identified in hierarchical classes. Thus, 
we might speak of the relational structure underlying spatial extension as being 
one out of which "unlikely" states of matter are produced in the most likely way. 
This last concept is not by any means novel; for a discussion of the relevant 
physics, the reader is referred to the literature on irreversible thermodynamics. 8 
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I am thus taking as given here that the combined verticality /horizontality of 
nature has fallen out in a manner referable to a most-probable-state kind of 
process. Our task therefore becomes to suggest a hierarchical structure of relations 
whose component sets of modes (hierarchical classes) describe such a state. (Note 
that we are confining our attention to particular modifications, and not the sum of 
all modifications.) 

We can begin our consideration of this kind of hierarchical ordering by asking 
the simple question "Given n objects about which we know nothing, what is the 
most likely number of classes into which these n objects can be grouped?" This 
elementary problem in combinatorial mathematics may be symbolized as max(;) 
and is solved by finding the maximum value of S given by: 

We can enliven the discussion a bit by giving it a more relevant context. Given 
that n equals "number of subclasses" and r equals "number of classes into which n 
may be grouped'', what values of n and r may be associated with one another such 
that these will yield maximum values of S for a given n? The most famous example 
of this type of problem is in statistical mechanics, where n is the total number of 
units of energy available to an isolated system and r, the number of elementary 
particles absorbing those units. It is assumed that these particles can attain various 
levels of excitation within the system; the total energy of the system is thus 
absorbed through certain numbers of particles attaining certain excitation levels. 
For any given combination of n and r, most-probable-state solutions for the 
number of particles falling into each excitation level can be worked out (this 
distribution is approximated by Boltzmann's Law). It is almost possible to 
translate this example directly into terms appropriate to the discussion here, as 
"number of units of energy available" becomes "number of subclasses", "number of 
elementary particles in the system" becomes "number of classes", and "excitation 
level" becomes "number of subclasses in a given class". One important difference 
between the two situations exists, however: our relational structure can include no 
analog to the "ground state" condition (excitation level zero) in statistical 
mechanics, as it is clearly illogical to permit a class containing zero subclasses to 
exist within an inclusive hierarchical structure. Thus, the distribution of classes 
that can be grouped from some initial number of subclasses is of truncated nature. 

A short example is perhaps useful. Under the conditions stated, it turns out that 
seven subclasses can be grouped into four classes in more ways (equals more 
probably) than seven subclasses can be grouped into ahy other number of classes. 
This is detailed as: 

No. of 
No. of subclasses No. of 
classes in a class subclasses 

1 x 3 3 
1 x 2 2 
2 x 1 2 

totals: 4 classes 7 subclasses 
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This configuration of one class with three subclasses, one class with two subclasses, 
and two classes with one subclass, may be arrived at in 4!/1!1!2!, or 12, ways. 
Recalling Figure 3 in Part I, however, we need not stop at this first ordering of 
subclasses. Our four classes can be further grouped into some most probable 
number of still more inclusive classes. This turns out to be three, for which the 
details are: 

No. of 
classes 

No. of 
subclasses 
in a class 

No. of 
subclasses 

1 x 

2 x 

totals: 3 classes 

2 
1 

2 
2 

4 subclasses 

This configuration can be arrived at in 3!/1!2!, or 3, ways. 
It is apparent that a ladder of subclass-class relationships may thus be generated 

in which any initial number of subclasses is canonically grouped through x steps 
to one all-inclusive class. Below are listed all the class inclusion series for initial 
values of one through ten meeting the maximum likelihood conditions just set out. 
Note that some outcomes are equiprobable, necessitating the expanded listing: 

Initial 
number of --+ Increasing --+ Unity (1) 

subclasses inclusiveness 

1 
2 . . . . .  1 
3 . . . . .  2 . . . . .  1 
4 . . . . .  3 . . . . .  2 . . . . .  1 
5 . . . . .  4 . . . . .  3 . . . . .  2 . . . . .  l 
6 . . . . .  3 . . . . .  2 . . . . .  1 
6 . . . . .  4 . . . . .  3 . . . . .  2 . . . . .  1 
7 . . . . .  4 . . . . .  3 . . . . .  2 . . . . .  1 
8 . . . . .  5 . . . . .  4 . . . . .  3 . . . . .  2 . . . . .  1 
9 . . . . .  5 . . . . .  4 . . . . .  3 . . . . .  2 . . . . . 1 
9 . . . . .  6 . . . . . 3 . . . . .  2 . . . . .  1 
9 . . . . .  6 . . . . .  4 . . . . .  3 . . . . .  2 . . . . .  1 

10 . . . . .  6 . . . . .  3 . . . . .  2 . . . . .  l 
10 . . . . .  6 . . . . .  4 . . . . .  3 . . . . .  2 . . . . .  1 

None of this would be especially intriguing were it not for the fact that it is 
possible to isolate structural solutions for the above groupings that maintain most­
probable-state characteristics across all levels of the grouping structure. This can 
most easily be appreciated through the aid of dendrograms of the hierarchical 
relationships involved. A possible dendrogram representation of the seven 
subclass-four class configuration discussed above is: 
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FIGURE 4 

This shows how seven "first-order" (sub)classes group most probably into one 
second-order class containing three first-order (sub)classes, one containing two 
sub(classes), and two containing one (sub)class. But it also suggests that these 
seven first-order classes group into three third-order classes, two fourth-order 
classes, and one fifth-order class. Moreover, implicit in the diagram is the idea that 
the four second-order classes group into three third-order classes, two fourth-order 
classes, and one fifth-order class. Further, the three third-order classes group into 
two fourth-order classes and one fifth-order class and the two fourth-order classes 
group into one fifth-order class. Diagrammatically, the inclusion series may be 
represented on a "by-order" basis as: 

first order 

second order 

third order 

fourth order 

fifth order 

FIGURE 5 

Now it so turns out that each of the orderings represented in the particular "7-4-3-
2-1" series depicted above is the most probable such ordering (for example, the 
ordering (1) in the dendrogram above produces fourth-order classes containing 
three and one subclass, respectively, and this is what is required under maximum­
Iikelihood conditions). This is therefore what might be referred to as a "maximum­
Iikelihood tree". That such a relational structure exists is significant for our overall 
discussion, because: (1) it provides a reasonable interpretation of the system of 
canonical representation demanded by our earlier-developed concept of the 
hierarchical class, and (2) it satisfies our hope that a combined structure of 
horizontal and vertical relations can be stated in most-probable-state terms. 

There are a relatively small number of trees that satisfy this most-probable-state 
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FIGURE 6 

canonical hierarchic inclusion criterion. The solutions for initial (sub)class values 
of up through seven are given in Figure 6. 

A feature of this canonical inclusion series of considerable interest is the way 
that two initial subclasses (or a more extended series that has been collapsed to 
the stage of two subclasses) behave as collapsed a final time. It turns out that two 
such subclasses group equiprobably into one class of two subclasses or two classes 
of one subclass each. The tree structures involved, however, are of course identical. 
This is curious, because it seems to indicate that we must interpret what for all 
apparent purposes are identical structural outcomes as being logically different 
from one another. The solution to this dilemma seems to be to recognize in these 
alternative class structures another aspect of the hierarchical nature of unity itself. 
Given only two subclasses at the outset, there can be no way to compare one to 
anything else in a way which is different from an analogous comparison to the 
other.9 As a result, we are obliged to view a pair of subclasses as being both 
complementary images of one another and a single whole. Left and right, East and 
West, negative and positive electrical charges, the complementary helical strands of 
the DNA molecule, and male and female provide some real world examples of this 
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condition. There are important philosophical ramifications of this interpretation. 
Since any initial number of subclasses can ultimately be hierarchically grouped to 
unity, this means that any degree of initial complexity of elements can be reduced 
to an interpretation based in structural isomorphisms. This will be true, moreover, 
wherever a bifurcation in the tree of structure exists-that is to say, everywhere 
(the apparent special case of "bushes" presents no problems for this interpretation; 
see below). Spinoza's and Leibniz's basic view of the unity of nature is thus 
supported in another way, because it can be seen that it is impossible in such a 
universe to have a spatially-extended entity that is other than a reflection of 
another such entity, in association with which it constitutes a logical whole. 

(As an aside, I feel I should note that the comments immediately above would 
seem to have considerable relevance to the theory of knowledge. In particular, 
they suggest a way of understanding the progression of "thesis-antithesis-synthesis" 
that is invariably used to characterize scientific study (and other social and natural 
processes). I am now preparing a short work that will feature a discussion on 
some related thoughts.) 

To this point, our dendrogram representations of most-probable-state 
hierarchical relations have been constrained in a way that is probably overly 
restrictive. For example, in Figure 5 it can be seen that all first-order subclasses 
that group together at the second-order level of integration do so at the same 
distance up the tree. On the basis of ideas set out so far, I see no reason why this 
additional requirement need be met in a maximum-likelihood tree. Bushes such as 
that evident in the first-order level of the tree in Figure 5 may thus contain latent 
structure within a given hierarchical level; to maintain the whole system of 
relations, however, it is necessary to ignore such latent structure and understand 
each subclass involved as being logically equivalent. 

With this refinement, we are in a position to identify the complete set of 
maximum-likelihood trees that exist. These are portrayed in Figure 7. Eleven 
appears to be the highest number of initial subclasses that can be integrated into a 
maximum-likelihood tree. Arrows within the diagram indicate the "lineage" of 
derivations associated with increasing complexity. 

Figure 7 shows that it is possible to construct a reasonably complex and 
internally-logical hierarchical system of class-subclass relations out of a bare 
minimum of initial constraints. Note, moreover, that even the limitation of eleven 
initial elements in the system is not much of a constraint, since any degree of 
further elaboration of structure within each initial subclass is non-contradicting as 
long as: (1) such elaboration is recognized as being irrelevant to the logical status 
of that subclass, and (2) it is understood that such elaboration can contribute to 
no further hierarchical ordering within the system. 

The availability of this system gives additional substance to the philosophical 
discussion presented earlier, since we are now provided with a possible means 
through which to understand canonical hierarchical representation in sensible 
space. But we still lack a means of applying the overall model to the study of the 
distribution of things in sensible space, as we have not yet considered how the 
representation system we have posed might be constrained when expressed as a 
sensible space of orthogonal dimensions. This is a key issue. Our immediate goal, 
it should be remembered, is to describe the system of representation underlying the 
attribute spatial extension. It is thus critical to show that the system we are 
defending can be expressed as the sensible space to which we can apply 
measurement. 
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REDUCING SENSIBLE SPACE TO ITS UNDERLYING RELATIONAL 
BASIS 

In speaking of the "entropy" of a system, we are usually referring to some measure 
of its level of disorder. This has sometimes given rise to the impression that a 
progression toward increasing order, or negentropy, represents simply the opposite 
of a trend toward disorder. This is not the case. Minimizing entropy and 
maximizing negentropy are not equivalent concepts, as is suggested by the fact 
that there is no single or absolute kind of order. There are perhaps an infinite 
number of ways of "maximally" ordering things, but, in effect, only one kind of 
maximum disorder: randomness. While it is not difficult to subject a particular 
pattern to test against the hypothesis that it is "unordered" (e.g., was generated by 
a Poisson process), this activity in no way provides a general context within which 
particular instances of non-randomness might be related to one another. Even 
tests that distinguish clustered versus regularly-spaced patterns are at their heart 
measures of deviation from the random (equals most probable) state, and do not 
resolve the question of what order is (rather, they expose particular kinds of order 
on the basis of various assumptions about what order is not) . 

According to present views, when we attempt direct analyses of pattern, we are 
setting up hypotheses about the characteristics of sensible space only. Earlier I 
supported the Rationalist view that a single underlying relational space provides 
the basis of order for sensible space. Now we will be interested in the idea that, 
given an appropriate understanding of order at the relational space level, it might 
be possible to derive methods of analysis exposing order at the sensible space level, 
regardless of the perceived form the latter takes to express the former. In effect, 
therefore, I will be defending the proposition that the patterns manifest in sensible 
space-despite their infinite variety-are yet the product of a single, portrayable 
organization process. 

Adding together comments made to this point, I submit that it may be possible 
to interpret sensible finite structure as the physical manifestation of a canonical 
ordering of relational (class/subclass) states according to maximum-likelihood 
criteria such as those set out earlier. While we cannot study the attribute spatial 
extension directly as if it were somehow a sensible characteristic of its own 
modifications, we might study the way in which it manifests itself through the 
internal ordering of those modifications. In short, we can perhaps confirm a 
particular model of the internal structure of attributes by examining the way that 
finite structures (modes) are reflected in one another. 

This we have so far dwelled on using an abstract maximum-likelihood-based 
perspective. Again, however, it cannot be supposed that merely because we have 
provided a possible way of comprehending complexification (to borrow Teilhard 
de Chardin's term) that we have also provided a useful means of relating this 
knowledge to the measurable characteristics of sensible space. This must be 
accomplished through independent means, but in such a fashion as not to conflict 
with the maximum-likelihood interpretation. 

A negentropy-accumulating system is one which virtually by definition has 
developed in such a way as to increment the differences among its component 
parts. We saw earlier that the degree of difference between two things might be 
stated as a distance between them. For three items, the system of differences 
involved becomes in this manner a system of three interrelated distances; for 
example, among locations set within an n-dimensional space. For the latter kind of 
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system of distances to represent negentropy-maximized relations, it must have the 
property that the distance from each point to all other points be the same, or at 
least some approximation of this (since the combination of number of points and 
designated dimensionality of the space will constrain the perfection of self­
representation of the solution). The resulting cloud of uniformly packed points 
may be interpreted as depicting an entropy-minimized condition for the simple 
reason that it is variance-minimizing with respect to the sum of distances squared 
among the elements of the system. But it can also be interpreted to reflect a 
negentropy-maximized condition, as the relational representation involved may be 
of a system whose subelements are relatively as unique as they can be (i.e., whose 
relative dissimilarities with respect to their measurable characters are as great as 
they collectively can be). 

The significance of this manner of representation is that it is both explicitly 
relational and provides the possibility of an interpretation of highly negentropic 
structures, regardless of their specific characteristics of occupation of sensible space. 
Suppose, for example, that we have generated a set of zoogeographic regions such 
that each is as unique as it can be; that is, such that the standardized sum of 
differences among all have been maximized. Thus, the characteristics of a 
modification-fauna! distribution-have been partitioned into a number of finite 
modes; these inherently depict a system of representation if for no other reason 
than that the conditions of fauna! element inclusion in each region directly 
influenced decisions regarding the identification of the areal domain of each region 
(and vice versa). The perfection of this reflection of the identity of each region in 
each other region can be assessed in the degree to which an n-dimensional 
mapping of the relational structure of the system approaches even packing. With 
optimum classification results, therefore, we might obtain a system of relations 
which reflects both the diversity of real world conditions and the fact that each 
unit looms as an equal contributor to the representation of that diversity. 1 0  I have 
discussed some related problems in more detail elsewhere1 1  and am in the process 
of preparing further treatments. 

The conditions of relation within a system such as the fauna! regions one can be 
stated as a matrix of similarities. Two common means of gleaning information 
from a similarities matrix are hierarchical cluster analysis ("classification") and 
multidimensional scaling ("MDS"). Through the first, a dendrogram similar to the 
ones discussed earlier may be generated that expresses the hierarchy of 
relationship (similarity) among classified units. Through the second, an n­
dimensional map expressing similarities as a set of distances (anchored by 
locations) in an n-dimensional Euclidean space is produced. This particular 
plurality of form of system representation suggests an interesting question: can the 
maximum-likelihood trees we constructed simultaneously be expressed as logically­
consistent minimum entropy n-dimensional maps? That is, can the relationships 
underlying the canonical hierarchical class structure derived earlier also be 
expressed as a sensible space of orthogonal dimensions? This should be so, if 
sensible space can indeed be interpreted as the physical manifestation of the 
underlying relationships postulated. Being so, we would have at hand the 
beginnings of a method whereby any hierarchical class might equally well be 
expressed as a maximum-likelihood relational tree or an entropy-minimizing 
structure operating as extended space under a certain number of degrees of 
freedom. We could thereby conceptually transform any delimitable system 
(modification) into its equivalent basis of canonical internal representation. This 
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would provide a base through which practical studies of hierarchical class 
organization might be initiated. 

I have recently completed an analysis designed to shed some light on the 
feasibility of this approach. Before discussing this work, however, it is necessary to 
introduce some relevant comments about equilibrium and disequilibrium systems. 

THE SPATIAL REPRESENTATION OF EQUILIBRIUM AND 
DISEQUILIBRIUM SYSTEMS 

Were extended space unchanging, it would be possible to characterize all systems 
existing within it as being in a state of static equilibrium. This, of course, is not the 
case, and as a result we have invented terms to describe other kinds of relations 
between systems and their environment. Where a system is structurally unchanging 
and its various inputs and outputs are stable and balanced, we describe it as being 
in "steady state" equilibrium. Where a system's internal structure changes but its 
inputs and outputs remain balanced through that change, we recognize a 
"dynamic equilibrium." A third state, disequilibrium, is produced when a system's 
internal structure changes in relation to input/output imbalances. 

Unfortunately, it is extremely difficult to unambiguously apply these descriptors 
to real world conditions. The main reason for this is that the above categories are 
not, for practical reasons, mutually exclusive. A good example of the problem can 
be seen in the way the global energy balance is usually related to evolution. In 
terms of energy throughput and transformation, the earth's surface defines very 
nearly an equilibrium steady state system. In view of this constancy of input and 
output, surface physical and biological evolution processes are sometimes 
interpreted as exhibiting a kind of dynamic equilibrium, but it seems that this 
intepretation should be reserved for systems that are changing, but whose total 
negentropy is remaining constant (at least in the relational sense-see later 
discussion). This does not appear to characterize the present (or past) surface of 
the earth, which would therefore be better understood as a system in 
disequilibrium. 

These matters are relevant to the present discussion because it is not initially 
obvious whether the most-probable-state structural formulations developed here 
can describe modifications under all kinds of equilibrium conditions. Clearly, any 
natural system undergoes growth and change, and the concept of the modification 
would be unrealistically inflexible if it did not take this into account. 

We need not dwell on the static and steady state equilibrium states, as neither 
has much relevance to the present context. No system that changes can be 
associated with the first condition, and the second cannot really be understood 
here as distinct from dynamic equilibrium (as will become apparent shortly). We 
are therefore left with the problem of how to use the approach developed here to 
describe negentropy-maximizing systems under conditions of either disequilibrium 
or dynamic equilibrium. 

Characterization of the latter state through present ideas is fairly straight­
forward. We must first recall the Euclidean space representation of relations within 
a negentropy-maximized, n-mode modification. As described earlier, this is a 
"cloud" of maximally-spaced points. Under strict steady state dynamic equilibrium 
conditions, a system thus represented in mimimum entropy terms may still change 
(that is, its particular manifest characteristics of uniqueness may), but only if that 
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change does not result in a disturbance of intra-modification relations leading to 
an increase in entropy within the system (which would be evident in the Euclidean 
space representation as reduced "packing" within the cloud of points) . It is 
therefore possible to imagine an evolutionary process initially characterized by 
disequilibrium continuing under dynamic equilibrium steady state conditions. Real 
world illustrations can easily be imagined. Conditions of relation within a 
maximally-differentiated system of faunal regions will remain unchanged, for 
example, if within each region a different form goes extinct at the same time (or 
evolves anew, or if both happen, etc.). Post-maturation aging processes in 
individual organisms might also be interpreted along these lines. 

The key problem in trying to understand disequilibrium conditions on the basis 
of the most-probable-state organizational structure advanced here concerns how to 
deal with the fact that a system can remain thermodynamically stable even as it 
changes over time. In a growing animal, for example, we see a good case of a 
system undergoing irreversible change, but all the while maintaining (in reality, 
approaching) steady state relations with its environment. The earth's surface 
system as described earlier provides another example. Through the present model 
we can interpret these as modifications whose component modes are undergoing a 
constrained kind of relational adjustment. For historical reasons, newly-formed 
modifications are likely to exhibit degrees of inefficiency of inter-modal function; 
i.e., some modes will be contributing less unique input to overall system operation 
than others. Subject to the constraint that the changes involved will not interrupt 
the continuity of intra-modal information flow, further modal differentiation will 
take place as feedback-initiated processes reduce functional overlap. Simple 
thermodynamic integrity can thus be regarded as maintained as long as each mode 
continues to contribute information to the operation of the overall system in 
amounts sustaining the demands of pre-existing structure. {The proximate cause of 
organismal death, for example, is usually the collapse of some vital subsystem.) 
Irreversible system change occurs, meanwhile, as modal structures evolve relative 
to one another in such a way as to gradually minimize overall redundancy of 
internal function. 1 2  

I t  i s  thus argued that the present understanding can b e  used t o  deal 
conceptually with modifications characterized by either equilibrium or 
disequilibrium. With this knowledge, we can turn to discussion of a simulation 
designed to investigate whether the aspatial, most-probable-state-based hierarchy 
determined earlier might be expressed as a three-dimensional sensible space. 

A SIMULATION OF A MOST-PROBABLE-STATE 
THREE DIMENSIONAL SPACE 

As has been explained, it is useful to arguments presented here to determine 
whether the particular relational structure deduced earlier might also be 
interpreted as a space of Euclidean dimensions. One way of looking at this matter 
involves use of multidimensional scaling as a simulation device. The MDS package 
KYST-2A 1 3  was first used to create minimum entropy representations of relational 
systems comprised of varying numbers of elements. This was accomplished by 
reading matrices of "1 's" into the metric version of the program and instructing it 
to produce three dimensional configuration solutions of high precision. Output 
configurations were thus forced to consist of maximally packed arrays of point 
locations. The symmetric distance matrices derived from these configurations were 
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then used as the input for cluster analyses based on the information statistic 
approach. 14 It was hoped that the resulting classifications would consist of 
elements canonically organized into class structures mirroring those identified in 
Figure 7. Positive results would support the idea that the relational structure 
postulated here might in fact be capable of representation as a three-dimensional 
Euclidean space. 

Systems comprised of from three to eleven elements were examined. (Larger 
numbers of initial elements were not considered because results reported earlier 
indicated that no more than eleven initial units could be integrated into a 
maximum-likelihood tree, regardless of other considerations.) Only systems 
comprised of three, four, and five elements could successfully reconstruct a full 
maximum-likelihood tree from the intraconfiguration distances.  Nine element 
systems also produced maximum-likelihood structures at each individual 
hierarchical level, but these proved incompatible with one another (i.e., the 
solutions could not be integrated into a single inclusion series). 

It might be asked at this point what this exercise proves, given that most or all 
real world systems are not in the equilibrium state tacitly assumed in this 
simulation. In short, why not base the attempt to simulate a space of Euclidean 
dimension on the relations inherent in an intraconfiguration distance matrix 
describing any given nonequilibrium system? This criticism is difficult to overcome 
unless we accept a kind of separation between geometry and function in the 
present model much like that now taken for granted in physicalist understandings 
of universal structure. Through relativity theory and its employ of non-Euclidean 
geometry as a modelling device, for example, we are able to resolve certain 
physical difficulties (e.g., the predictable effect gravitational fields have in 
"bending" light) occasioned by our prior acceptance of a three dimensional 
Euclidean perspective. This does not mean, however, that space itself need be 
considered in some sense "curved." 1 5  Here, it becomes necessary to postulate 
something very similar regarding the ability of disequilibrial systems to sustain a 
Euclidean sensible space (roughly, the greater the level of disequilibrium, the 
greater the expressional "distortion" involved in "stretching" it into Euclidean 
form). Interestingly, the difficulty seems to disappear entirely if we understand the 
universe as a whole to be a closed, steady state dynamic equilibrium system 
characterized by negentropy, as well as entropy, conservation: through present 
views the representation of such a system is as in the simulation just performed. I 
shall develop this theme further at another time. 

In any case, I conclude from the simulation results just presented that a 
maximum-likelihood sensible space of three Euclidean dimensions can be based on 
a system of relations characterized by hierarchical classes involving at least five 
modes. These findings cannot be considered the last word in such investigations, of 
course. The relational structure I have treated here can doubtlessly be scrutinized 
in other ways, and arguments favoring the consideration of entirely different 
structures cannot be rejected a priori. Regardless, there now seems to be at least 
some reason to proceed on the assumption that a relational space of the type 
imagined is also a physical possibility. 

DISCUSSION 

In view of arguments set out thus far, it is possible to continue onward to the 
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matter of the study of real world systems. I do not wish to give the impression, 
however, that I feel I have in any sense "proven" (or even attempted to prove) the 
relationships I have advanced; rather, I intend to treat the preceding discussion as 
a model that can promote hypotheses and be subjected to test in various ways. 
(Note, of course, that such tests will involve particular understandings of the 
internal relational structure of the attribute spatial extension, and not the 
philosophical position that some such structure of this kind exists.) 

In Part II of this work, two initial examples of application of the Neo­
Rationalist approach espoused here will be discussed. Before these can be 
presented, however, it is necessary to consider some technical matters relevant to 
the framing of testable hypotheses within the current model. 

I have so far been persistent in claiming that space (or, more exactly, the 
attribute "spatial extension") consists of a structured relational framework. This 
notion remains comfortable, however, as an abstraction only. We do not directly 
perceive "relational frameworks"; rather, we are more likely to infer that such 
structures exist on the basis of reasoned appraisals of perceived similarities. In the 
identification of similarities among things there is secondarily the recognition that 
similar processes were responsible for creating those things. Here, we are 
concerned with the idea that a single process might be identified that can explain 
the characteristics of differentiation within any spatially-extended entity (i.e., 
modification). We have already seen how the differentiation process might produce 
unique substructures (i.e., modes) and still organize itself around a flow of 
information better viewed as a system-level phenomenon. System description may 
feature either persepective, but in practice we usually find it easier to concentrate 
on structure first. As a result, we often find ourselves trying to determine the mode 
of information processing within the system from some set of data representing the 
similarities among its substructures. Following present ideas, we may imagine such 
processing to have two general components relatable to similarities. There is first 
the matter of "absolute" similarity. It is straightforward that absolute degree of 
dissimilarity among modes provides a direct indication of information content of 
the system in sum. Simply, as total uniqueness "per mode" increases, so too, we 
may assume, does the total information content of a given modification. Whether 
relatively simple or relatively complex, however, a given system can be expected to 
modally differentiate in such a manner as to continue to minimize the relative 
similarities among its parts. It has already been posed here that this reduction of 
redundancy in internal structure-a disequilibrium process--can only take place 
subject to the system's maintenance of internal equilibrium conditions, this being 
most easily recognized as a continuing balance of flow of information among the 
modes within it. 1 6  

The matter of the interplay of "relative" and "absolute" similarities among 
modes becomes important when we attempt real world descriptions leading to the 
identification of hierarchical classes. In the simulated systems investigated earlier, 
the matrices of Euclidean distances forming the basis of the clustering operation 
could be considered direct mappings of within-system information flow under 
steady state, dynamic equilibrium conditions: given the absence of weighted 
elements, all that can be said about the system is summed up in the distance 
relations. A matrix of similarities describing a real world modal system, however, 
is not likely to provide such a direct representation of the information flow 
involved. Though the latter might be understood as being implicit in the former, 
we must remember that similarities are usually evaluations of differences between 
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measured structures, and not of the "actual" flows between same. Additional steps 
are therefore needed under these circumstances to determine whether a 
hierarchical class structure is at hand. 

A simple way of ascertaining whether a particular matrix representation of 
intrasystem affinities indeed describes a hierarchical class involves an iterative 
procedure known as "double-standardization." 1 7  When a matrix is double­
standardized, its row and column elements are alternatively re-calculated into Z 
scores as many times as it takes to make the latter converge to stable values. This 
operation implicitly "de-weights" the elements of the matrix; for example, the 
procedure is often used as a means of compensating for size in the study of 
matrices of commodity flows between places of different populations. In so doing 
it provides an entropy-maximized restatement of intra-system relations. 1 8  While 
any symmetric matrix can be double-standardized, we should expect the double­
standardization of a similarities matrix portraying a hierarchical class structure to 
yield very particular results. Specifically, the array of standardized values produced 
should be symmetric (i.e., i, j elements will equal j, i elements) . We have already 
supposed that hierarchical classes characterize modal structures through which 
move balanced flows of information. As double-standardizing inherently "de­
weights" the initial elements, we should therefore expect to find transformed values 
directly mirroring this kind of exchange. 1 9  

As double-standardization should i n  theory expose any hierarchical class 
structure, it becomes the first step in exploring the nature of the system 
(modification) at hand. The second step involves determining the system's internal 
redundancy characteristics-i.e., whether it is equilibria! or nonequilibrial. Degree 
of redundancy can be ascertained through simple correlation analysis of the 
similarities matrix. Where a system has reached steady state dynamic equilibrium, 
we interpret this through the present model to mean intra-system redundancies 
have been minimized; hence, modal relations will be maximally uncorrelated. 
Degree of disequilibrium will thus be evident in the extent to which the mean 
correlation value for a correlation matrix derived from a given similarities matrix 
deviates from the lowest possible such value. For a five modal system, the latter 
value is approximately r =  - 0.250 (averaged from the non-diagonal elements only) .  

It should be understood that in many or most instances, the exact limits of the 
spatial domain of each modal structure will not initially be obvious. More often 
than not it will be necessary to find some means-for example the information 
statistic clustering routine mentioned earlier-to determine "OSU's" (operational 
spatial units) in such a fashion as to expose the negentropy-maximizing structure 
inherent in a given modification. If this has been successfully accomplished, 
double-standardization will confirm this. If the results are not confirmed, it will 
mean one or more of the initial conditions for hierarchical class recognition have 
not been met, and appropriate adjustments will be necessary. The nature of, and 
reasons for, some such adjustments will be elucidated in the context of the 
analyses presented in Part II. 

In the preceding paragraphs I have described (proposed) necessary and sufficient 
conditions for hierarchical class recognition in sensible space. Once the basic 
structure has been identified, various kinds of analysis involving testable 
hypotheses are possible. Examples of the latter, and their bearing on the matter of 
model validation, are discussed in Part II. 
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