Let A and B be non-empty sets. Here are the basic definitions, concepts, and theorems we need as background to study functions:

Definition 4.1. The cross-product $A \times B$ is the set of all ordered pairs from A and B:

\[A \times B = \{(a, b) : a \in A, b \in B\}. \]

In particular, the xy plane is $R^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x \in \mathbb{R}, y \in \mathbb{R}\}$. The integer lattice is the subset of R^2 given by $Z \times Z = \{(m, n) : m \in Z, n \in Z\}$.

Definition 4.2. A relation R from A to B is any subset of $A \times B$. If $(a, b) \in R$, then we write $a R b$, which means “a is related to b.”

For example, in R^2 let $R = \{(x, y) : x^2 + y^2 = 1\}$ (i.e., the unit circle). Then $(0, 1) \in R$ and $(0, -1) \in R$; hence, 0 is related to 1 and 0 is related to -1.

Definition 4.3. Let D be a non-empty subset of A. A function f on $A \times B$ is a relation R from D to B such that

(i) For every $d \in D$, there exists an element $b \in B$ such that $d R b$, and

(ii) If $d R b$ and $d R c$, then $b = c$.

The set D is called the domain of the function. In the context of a function, set B is called the co-domain. In this case, we write $f : D \to B$ and write $f(d) = b$ whenever $d R b$. The above conditions then become

(i) For every $d \in D$, there exists an element $b \in B$ such that $f(d) = b$, and

(ii) If $f(d) = b$ and $f(d) = c$, then $b = c$.

Condition (i) means that the function must be defined for all elements in the domain. Condition (ii) means that it must be well-defined; that is, an element d in the domain can be assigned to only one element in the co-domain.

For example, on R^2 consider the function $f(x) = \sqrt{x - 4}$. Because the function is only defined for $x \geq 4$, the domain is $D = [4, \infty)$. So the proper way to define the function is to write $f : [4, \infty) \to \mathbb{R}$ given by $f(x) = \sqrt{x - 4}$. Here, \mathbb{R} is the co-domain, but not necessarily the range.

The unit circle can be written as $y = \pm \sqrt{1 - x^2}$ where $D = [-1, 1]$. But this relation is not a function because every $x \in (-1, 1)$ is assigned to two values in the co-domain. (For example, when $x = 1/2$, then $y = \pm \sqrt{3/2}$.)
Definition 4.4. Let \(f : D \rightarrow B \) be a function on \(A \times B \). The range of \(f \) is the set of elements in \(B \) for which there exists an element \(d \in D \) such that \(f(d) = b \):

\[
\text{Range } f = \{ b \in B : f(d) = b \text{ for some } d \in D \}.
\]

If \(f(d) = b \), then \(d \) is called a pre-image of \(b \) under \(f \).

Definition 4.5. Let \(f : D \rightarrow B \) be a function on \(A \times B \). Then \(f \) is onto (or surjective) if \(\text{Range } f = B \). That is, for every \(b \in B \) there is at least one pre-image \(d \in D \) such that \(f(d) = b \).

For example, consider the functions

\[
f: \mathbb{R} \rightarrow \mathbb{R} \text{ given by } f(x) = e^x \quad \text{and} \quad g : (0, \infty) \rightarrow \mathbb{R} \text{ given by } g(x) = \ln x.
\]

Then \(\text{Range } f = (0, \infty) \) because \(e^x > 0 \) for all \(x \). Hence, \(f \) is not onto all of \(\mathbb{R} \). But \(\text{Range } g = (-\infty, \infty) = \mathbb{R} \); hence, \(g \) is onto.

Likewise, for the functions \(f(x) = x^2 \) and \(g(x) = x^3 \) on \(\mathbb{R}^2 \), then \(g \) is onto having range \((-\infty, \infty)\), but \(f \) is not onto having range \([0, \infty) \neq \mathbb{R}\).

Definition 4.6. Let \(f : D \rightarrow B \) be a function on \(A \times B \). Then \(f \) is one-to-one (1–1), also called injective, provided the following condition holds:

For all \(d_1, d_2 \in D \), if \(d_1 \neq d_2 \), then \(f(d_1) \neq f(d_2) \).

By the contrapositive, it is equivalent to say that \(f \) is one-to-one provided:

For all \(d_1, d_2 \in D \), if \(f(d_1) = f(d_2) \), then \(d_1 = d_2 \).

To prove that a function is 1–1, we often use the second form of Definition 4.6. For example, consider \(f: \mathbb{R} \rightarrow \mathbb{R} \) given by \(f(x) = 2x - 8 \). We prove that \(f \) is 1–1 as follows:

Assume \(f(x_1) = f(x_2) \). Then \(2x_1 - 8 = 2x_2 - 8 \), which implies \(2x_1 = 2x_2 \) and then \(x_1 = x_2 \). Hence, \(f \) is 1–1.

To show that a function is not 1–1, it suffices to find one counterexample where \(d_1 \neq d_2 \) but \(f(d_1) = f(d_2) \). For example, \(f(x) = x^2 \) is not 1–1 because \(5 \neq -5 \) but \(f(5) = 25 = f(-5) \). (Here, \(x^2 \) is two-to-one: Two \(x \)-values are mapped to the same \(y \).)

Lemma 4.1. Let \(D \subseteq \mathbb{R} \) and let \(f: D \rightarrow \mathbb{R} \) be a function. If \(f \) is strictly increasing or strictly decreasing, then \(f \) is one-to-one.

Proof. Assume \(f \) is strictly increasing, and suppose \(x_1, x_2 \in D \) with \(x_1 \neq x_2 \). Without loss of generality, we may assume \(x_1 < x_2 \). Because \(f \) is strictly increasing, we must have \(f(x_1) < f(x_2) \). That is, \(x_1 \neq x_2 \) implies \(f(x_1) \neq f(x_2) \); thus \(f \) is one-to-one. The argument is similar if \(f \) is strictly decreasing.
Definition 4.7. Let \(f: D \to B \) be a function on \(A \times B \). Then \(f \) is bijective provided \(f \) is both one-to-one and onto. In this case, \(f \) is also called a bijection or a one-to-one correspondence between \(D \) and \(B \).

Note: If \(f \) is only one-to-one, then we may consider the function as \(f: D \to \text{Range } f \). Then \(f \) becomes a one-to-one correspondence between the domain and \(\text{Range } f \).

For example, consider \(f: \mathbb{R} \to \mathbb{R} \) given by \(f(x) = e^x \). Then \(f \) is strictly increasing, so \(f \) is 1–1. But \(f \) is not onto because the range is \((0, \infty)\). But then we can re-write \(f \) as \(f: \mathbb{R} \to (0, \infty) \) defined by \(f(x) = e^x \). Now \(f \) is both 1–1 and onto, so we have a 1–1 correspondence between the entire real line \(\mathbb{R} \) and the half line \((0, \infty)\).

Every real number \(x \) in \((-\infty, \infty)\) is mapped to one and only one number \(y \) in \((0, \infty)\). And different \(x \) must be mapped to different \(y \). But how is the “bigger” set \((-\infty, \infty)\) collapsed into the “smaller” set \((0, \infty)\) without some different \(x \) going to the same \(y \)?

First, 0 is mapped to 1. Then all of \((-\infty, 0)\) is mapped onto the interval \((0, 1)\) on the \(y \)-axis. And all of \((0, \infty)\) is mapped onto \((1, \infty)\) on the \(y \)-axis.

The one-to-one correspondence between \((-\infty, \infty)\) and \((0, \infty)\) means that these sets are really equivalent in terms of cardinality. But for finite sets \(A, B \), it is impossible to collapse a larger set into a smaller set in a 1–1, onto fashion.

Definition 4.8. Let \(f: D \to \text{Range } f \) be a bijection. Then \(f \) has an inverse, denoted \(f^{-1} \), defined as follows: \(f^{-1}: \text{Range } f \to D \) is computed by \(f^{-1}(b) = d \) where \(f(d) = b \).

Claim 1: \(f^{-1}: \text{Range } f \to D \) is well-defined.

Proof. Suppose \(f^{-1}(b) = d_1 \) and \(f^{-1}(b) = d_2 \). We must show that \(d_1 = d_2 \) (i.e., that \(f^{-1} \) can map an element to only one value.) By the definition of \(f^{-1} \), if \(f^{-1}(b) = d_1 \) and \(f^{-1}(b) = d_2 \), then \(f(d_1) = b \) and \(f(d_2) = b \). But because \(f \) is 1–1, we have \(d_1 = d_2 \).

Claim 2: \(f^{-1}: \text{Range } f \to D \) is one-to-one.
Proof. Suppose \(f^{-1}(b_1) = d = f^{-1}(b_2) \). By definition of \(f^{-1} \), \(f(d) = b_1 \) and \(f(d) = b_2 \). But because \(f \) is a (well-defined) function, it must be the case that \(b_1 = b_2 \). Hence, \(f^{-1} \) is one-to-one.

Claim 3: \(f^{-1} : \text{Range } f \to D \) is onto.

Proof. Let \(d \in D \). Then let \(b = f(d) \in \text{Range } f \). By definition of \(f^{-1} \), \(f^{-1}(b) = d \). Hence every \(d \in D \) is in \(\text{Range } f^{-1} \); thus, \(f^{-1} \) is onto.

(Note now that \(\text{Domain } f^{-1} = \text{Range } f \) and \(\text{Range } f^{-1} = D = \text{Domain } f \).)

Claim 4: For all \(d \in D \), \(f^{-1}(f(d)) = d \).

Proof. Let \(d \in D \) and let \(b = f(d) \). Then \(f^{-1}(f(d)) = f^{-1}(b) = d \) (by definition of \(f^{-1} \)).

Claim 5: For all \(b \in \text{Range } f \), \(f(f^{-1}(b)) = b \).

Proof. Let \(b \in \text{Range } f \). Then there exists \(d \in D \) such that \(f(d) = b \). By definition of \(f^{-1} \), we have \(f^{-1}(b) = d \). Then \(f(f^{-1}(b)) = f(d) = b \).

Example 4.1. Let \(A = N_5 = \{1, 2, 3, 4, 5\} \) and \(B = \{a, b, c, d, e\} \). Define \(f : N_5 \to B \) by

\[
\begin{align*}
 f(1) &= c & f(2) &= e & f(3) &= a & f(4) &= b & f(5) &= d
\end{align*}
\]

Then \(f \) is both 1–1 and onto. So \(f^{-1} : B \to N_5 \) is also a bijection and is defined by

\[
\begin{align*}
 f^{-1}(a) &= 3 & f^{-1}(b) &= 4 & f^{-1}(c) &= 1 & f^{-1}(d) &= 5 & f^{-1}(e) &= 2
\end{align*}
\]

Example 4.2. Define \(f : \mathbb{N} \to \mathbb{N} \) by \(f(n) = 2n \). Then \(f \) is 1–1 (if \(f(n_1) = f(n_2) \) then \(n_1 \) must equal \(n_2 \)). However \(f \) is not onto (no odd numbers are in the range). If we let \(E^+ \) denote the positive even numbers, then we can redefine the function as \(f : \mathbb{N} \to E^+ \) given by \(f(n) = 2n \). Now \(f \) is both 1–1 and onto. And \(f^{-1} : E^+ \to \mathbb{N} \) is defined by \(f^{-1}(k) = k / 2 \). So the natural numbers \(\{1, 2, 3, 4, \ldots\} \) are in one-to-one correspondence with the positive even numbers \(\{2, 4, 6, 8, \ldots\} \).

\[
\begin{array}{cccccccc}
 N & 1 & 2 & 3 & 4 & \ldots & n & \ldots \\
 \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \ldots & \downarrow & \uparrow & \ldots \\
 E^+ & 2 & 4 & 6 & 8 & \ldots & 2n & \ldots
\end{array}
\]

Even though \(E^+ \) is a proper subset of \(\mathbb{N} \) and \(\{2, 4, 6, 8, \ldots\} \) seems to be a “smaller” set than \(\{1, 2, 3, 4, 5, 6, 7, 8, \ldots\} \) having half the size, in fact, \(E^+ \) and \(\mathbb{N} \) are the same size and have the same number of elements. That is, they have the same cardinality.
Example 4.3. Define $f: (-\pi/2, \pi/2) \to \mathbb{R}$ by $f(x) = \tan x$. Then f is strictly increasing; hence, f is 1–1. The range of f is $(-\infty, \infty) = \mathbb{R}$; hence, f is onto. Thus, f^{-1} exists and $f^{-1}: \mathbb{R} \to (-\pi/2, \pi/2)$ is the “arctangent” function: $f^{-1}(x) = \tan^{-1}(x) = \arctan(x)$. For instance, $\tan(\pi/4) = 1$; hence, $\arctan(1) = \pi/4$.

Here we see that an interval of finite length $(-\pi/2, \pi/2)$ is in one-to-one correspondence with an interval of infinite length $(-\infty, \infty)$. So these intervals really have the same “size” in terms of cardinality or number of elements.

Example 4.4. We assert that any open interval (a, b) is in one-to-one correspondence with any other open interval (c, d).

To show this result, we will define a linear function $f: (a, b) \to (c, d)$. The slope will be $m = \frac{d - c}{b - a}$. Then using point/slope, we have $y - c = \left(\frac{d - c}{b - a}\right)(x - a)$; thus we obtain

$$f: (a, b) \to (c, d) \text{ defined by } f(x) = \left(\frac{d - c}{b - a}\right)(x - a) + c$$

Note: We can use the same function to show that the closed interval $[a, b]$ is in one-to-one correspondence with any closed interval $[c, d]$.

Example 4.5. We have noted before that $f: \mathbb{R} \to (0, \infty)$ defined by $f(x) = e^x$ is a bijection. Then $f^{-1}: (0, \infty) \to \mathbb{R}$ given by $f^{-1}(x) = \ln x$ is also a bijection. Note the property of the compositions:

For all $x \in \mathbb{R}$, $f^{-1}(f(x)) = \ln e^x = x$

For all $x > 0$, $f(f^{-1}(x)) = e^{\ln x} = x$

Again we note that $(-\infty, \infty)$ is in one-to-one correspondence with $(0, \infty)$ by means of either $f: \mathbb{R} \to (0, \infty)$ given by $f(x) = e^x$ or $g:(0, \infty) \to \mathbb{R}$ given by $g(x) = \ln x$.

Henceforth we will assume that the domain of any function is the entire set A and simply write $f: A \to B$. If f is a bijection, then the inverse is denoted by $f^{-1}: B \to A$.
Definition 4.9. Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \) be functions. We define the composition \(g \circ f : A \rightarrow C \) by \((g \circ f)(a) = g(f(a))\).

Theorem 4.1. Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \) be functions and let \(g \circ f : A \rightarrow C \) be the composition. If \(f \) and \(g \) are both one-to-one and onto, then \(g \circ f \) is also one-to-one and onto.

Proof. One-to-one: Assume \((g \circ f)(a) = (g \circ f)(b)\); that is, \(g(f(a)) = g(f(b))\). Because \(g \) is one-to-one, we have \(f(a) = f(b)\). Then because \(f \) is one-to-one, we have \(a = b\). Hence, \(g \circ f\) is one-to-one.

Onto: Let \(c \in C \). Because \(g \) is onto, there exists \(b \in B \) such that \(g(b) = c \). Then because \(f \) is onto, there exists \(a \in A \) such that \(f(a) = b \). Then \((g \circ f)(a) = g(f(a)) = g(b) = c\). Hence, \(g \circ f\) is onto.

Now we know that \(g \circ f \) is a bijection whenever \(f \) and \(g \) are both bijections. So \(g \circ f \) has an inverse \((g \circ f)^{-1} : C \rightarrow A\). The following result explains how to compute the inverse of a bijective composition:

Theorem 4.2. Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \) be bijective functions and let \(g \circ f : A \rightarrow C \) be the bijective composition. Then \((g \circ f)^{-1} : C \rightarrow A\) is given by \((g \circ f)^{-1} = f^{-1} \circ g^{-1}\).

Proof. Let \(c \in C \). By the definition of \(g^{-1} \), we have \(g^{-1}(c) = b \) where \(g(b) = c \). Then by the definition of \(f^{-1} \), we have \(f^{-1}(b) = a \) where \(f(a) = b \). Then,

\[
(g \circ f)(a) = g(f(a)) = g(b) = c.
\]

So \((g \circ f)^{-1}(c) = a\) by the definition of \((g \circ f)^{-1}\). But we also have

\[
(f^{-1} \circ g^{-1})(c) = f^{-1}(g^{-1}(c)) = f^{-1}(b) = a.
\]

Thus, \((g \circ f)^{-1}(c) = (f^{-1} \circ g^{-1})(c)\) for all \(c \in C \), which means \((g \circ f)^{-1} = f^{-1} \circ g^{-1}\).

Definition 4.10. Let \(A, B \) be two non-empty sets. We say that \(A \) and \(B \) are equivalent, denoted \(A \sim B \), if there exists a bijection \(f : A \rightarrow B \).

By Examples 1 – 5, we have the following equivalences:

\[
\{1, 2, 3, 4, 5\} \sim \{a, b, c, d, e\} \quad N \sim E^+ \quad (-\pi / 2, \pi / 2) \sim (-\infty, \infty)
\]

\[
(a, b) \sim (c, d) \text{ for any two open intervals} \quad (0, \infty) \sim (-\infty, \infty)
\]

Many more equivalences can be expressed by applying the following theorem:
Theorem 4.3. Set equivalence is an equivalence relation.

Proof. We must show that \(\sim \) is reflexive, symmetric, and transitive. First, given any non-empty set \(A \), define \(f: A \to A \) by \(f(a) = a \) (the identity function). Then \(f \) is clearly one-to-one and onto; hence, \(f \) is a bijection. So \(A \sim A \) (reflexive).

Next, suppose \(A \sim B \). Then there exists a bijection \(f: A \to B \). But then \(f^{-1}: B \to A \) is also a bijection. Hence, \(B \sim A \) (symmetric).

Finally, suppose \(A \sim B \) and \(B \sim C \). Then there exist bijections \(f: A \to B \) and \(g: B \to C \). But then \(g \circ f: A \to C \) is also a bijection by Theorem 4.1. Hence, \(A \sim C \) (transitive). Thus, \(\sim \) is an equivalence relation.

Theorem 4.4. The interval \((0, 1)\) is equivalent to the entire real line \(\mathbb{R} \).

Proof. We know that any two bounded, open intervals are equivalent and we have a specific open interval \((-\pi/2, \pi/2)\) that is equivalent to the real line \(\mathbb{R} \) by means of the bijection \(f(x) = \tan x \); thus, \((0, 1) \sim (-\pi/2, \pi/2) \sim (-\infty, \infty)\). By transitivity, \((0, 1) \sim (-\infty, \infty)\).

Exercises

1. Explain whether or not each function is one-to-one and whether or not each function is onto. If one is a bijection, find its inverse.

 (a) \(f: \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = |x| \)
 (b) \(f:[0, \infty) \to [0, 1) \) defined by \(f(x) = \frac{x}{x+1} \)

 (c) \(f: \mathbb{R} \to [-1, 1] \) defined by \(f(x) = \sin x \)
 (d) \(f:(0, \infty) \to [0, \infty) \) defined by \(f(x) = \frac{1}{x} \)
 (e) \(f: [3, \infty) \to (-\infty, -2] \) defined by \(f(x) = -4\sqrt{x-3} - 2 \).

2. Define a bijection \(f \) from the closed interval \([2, 6]\) to the closed interval \([10, 20]\). Find its inverse and verify that \(f^{-1}(f(x)) = x \) for \(x \in [2, 6] \), and \(f(f^{-1}(x)) = x \) for \(x \in [10, 20] \).

3. Define a 1-1, onto function \(f:(0, 1) \to \mathbb{R} \).

4. Use set equivalences to prove that \((0, \infty)\) is equivalent to any open interval \((a, b)\).