Summary of Confidence Interval Formulas

<table>
<thead>
<tr>
<th>Level of Conf.</th>
<th>0.90</th>
<th>0.95</th>
<th>0.98</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>z-score = (\frac{z_{\alpha/2}}{2})</td>
<td>1.645</td>
<td>1.96</td>
<td>2.326</td>
<td>2.576</td>
</tr>
</tbody>
</table>

For \(c \leq X \leq d \), then \(\sigma \leq U = (d - c) / 2 \). For proportions, \(\sigma = \sqrt{p(1 - p)} \leq 0.5 \).

Sample Size

\[
n \geq \left(\frac{z_{\alpha/2} U}{e} \right)^2, \quad \text{or} \quad n \geq \frac{N \times \left(\frac{z_{\alpha/2} U}{e} \right)^2}{(N - 1) + \left(\frac{z_{\alpha/2} U}{e} \right)^2}
\]

Large Population Confidence Interval for Mean (ZInterval on Calculator)

\[
\mu \approx \bar{x} \pm \frac{z_{\alpha/2} \sigma}{\sqrt{n}}
\]

For a Small Population of Size \(N \)

\[
\mu \approx \bar{x} \pm \frac{z_{\alpha/2} \sigma}{\sqrt{n}} \cdot \frac{\sqrt{N - n}}{\sqrt{N - 1}}
\]

Use \(S \) or \(U \) for \(\sigma \) as appropriate.

Proportion Confidence Interval

\[
p = p \pm \frac{z_{\alpha/2} \sqrt{p(1 - p)}}{\sqrt{n}} \quad (1 - \text{PropZInt on Calc.})
\]

\[
p = p \pm \frac{z_{\alpha/2} \times 0.5}{\sqrt{n}} \quad \text{(most used in practice)}
\]

For small populations of size \(N \), multiply the margin of error by \(\sqrt{\frac{N - n}{N - 1}} \).

Confidence Interval for Mean of Normally Distributed Measurements

\[
\mu \approx \bar{x} \pm \frac{t_{\alpha/2} S}{\sqrt{n}}, \quad (\text{TInterval on Calculator})
\]

where \(t_{\alpha/2} \) is the appropriate \(t \)-score from the \(t(n - 1) \) distribution.

Applies for all sample sizes (not just large samples) and we do not need to know \(\sigma \). But we must be working with normally distributed measurements.
Two-Sample Confidence Intervals

Difference of Means

\[\mu_1 - \mu_2 \approx (\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}} \]

(2-SampZInt on Calc.)

Arbitrary Measurements: Need large samples.
Normal Measurements: Any sample size works.

With large samples, we may replace \(\sigma_1 \) and \(\sigma_2 \) with estimates or upper bounds.

Small Populations:
\[\mu_1 - \mu_2 \approx (\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma^2_1}{n_1} \left(\frac{N_1 - n_1}{N_1 - 1} \right) + \frac{\sigma^2_2}{n_2} \left(\frac{N_2 - n_2}{N_2 - 1} \right)} \]

Difference of Proportions

\[p_1 - p_2 \approx (\bar{p}_1 - \bar{p}_2) \pm z_{\alpha/2} \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}} \]
or use
\[p_1 - p_2 \approx (\bar{p}_1 - \bar{p}_2) \pm z_{\alpha/2} \sqrt{\frac{0.25}{n_1} + \frac{0.25}{n_2}} \]
(2-PropZInt on Calc.)

Small Populations:

\[p_1 - p_2 \approx (\bar{p}_1 - \bar{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\bar{p}_1(1 - \bar{p}_1)}{n_1} \left(\frac{N_1 - n_1}{N_1 - 1} \right) + \frac{\bar{p}_2(1 - \bar{p}_2)}{n_2} \left(\frac{N_2 - n_2}{N_2 - 1} \right)} \]

or
\[p_1 - p_2 \approx (\bar{p}_1 - \bar{p}_2) \pm z_{\alpha/2} \sqrt{\frac{0.25}{n_1} \left(\frac{N_1 - n_1}{N_1 - 1} \right) + \frac{0.25}{n_2} \left(\frac{N_2 - n_2}{N_2 - 1} \right)} \]

Difference of Means of Normally Distributed Measurements

\[\mu_1 - \mu_2 \approx (\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \sqrt{\frac{S^2_1}{n_1} + \frac{S^2_2}{n_2}} \]

or
\[\mu_1 - \mu_2 \approx (\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \]

(2-SampTInt on Calc.)

Here,
\[S_p = \sqrt{\frac{(n_1 - 1)S^2_1 + (n_2 - 1)S^2_2}{n_1 + n_2 - 2}}. \]