Consider two satellites in orbit above Earth’s equator at an altitude of a miles. The satellites are θ degrees apart, where $0 < \theta < 180^\circ$ and θ is measured from the center of the Earth between direct lines to the two satellites. Assume the radius of Earth is r miles.

If a is not large enough, then the satellites cannot communicate to each other due to physical interference from Earth.

But if a is large enough, then the satellites can communicate along a direct line.

Let h be the distance from the center of Earth to the midpoint of the direct line segment between the satellites.

(i) Solve for h in terms of r, a, and θ.

(ii) Using the result in (i), solve for the values of a that make $h \geq r + 10$. Then give the specific altitude needed for $h \geq r + 10$ using $r = 3963.2$ miles and $\theta = 30^\circ$.

(iii) Using the result in (i), solve for the values of θ that make $h \geq r + 10$. Note: The function $\cos^{-1}(x)$ is a decreasing function of x. That is, if $-1 \leq a < b \leq 1$, then $\cos^{-1}(a) > \cos^{-1}(b)$.

(iv) Give the specific angle needed for $h \geq r + 10$ using $r = 3963.2$ mi. and $a = 200$ mi.