Annuities are a popular and effective method of saving for retirement. In a sense, they are the opposite of a mortgage. First, an initial deposit of \(P \) is made. At the end of the month and at the end of each month thereafter, a monthly deposit of \(M \) is made. Each month, you increase the principle upon which you are drawing interest, unlike a mortgage on which each month you decrease the principle upon which you are paying interest.

Assuming a final deposit is made at the end of the last month, then the future value \(FV \) in \(t \) years is given by the formula:

\[
FV = P \left(1 + \frac{r}{12}\right)^{12t} + \frac{12M}{r} \left[\left(1 + \frac{r}{12}\right)^{12t} - 1 \right]
\]

Note: The future value is the annuity’s worth after \(t \) years. The *present value* is the amount that should be deposited now to give the same future value without having to make monthly payments.

Example 1. Suppose you start an annuity by depositing $30,000 and adding $500 a month for the next 30 years. The annuity pays 6.6% interest.

(a) What is the future value in 30 years and how much is actually paid in?
(b) What is the present value of this annuity?
(c) If you wanted $1,000,000 after 30 years but still only added $500 a month, then what should the initial deposit have been?
(d) If you wanted $1,000,000 after these 30 years and still deposited only $30,000, then how much should the monthly payment have been?

Solution.

(a) The future value in 30 years is given by

\[
FV = 30000 \times \left(1 + \frac{0.066}{12}\right)^{12 \times 30} + \frac{12 \times 500}{0.066} \left[\left(1 + \frac{0.066}{12}\right)^{12 \times 30} - 1 \right]
\]

\[
= 30000 \times (1.0055)^{360} + \frac{6000}{0.066} [(1.0055)^{360} - 1]
\]

\[
= 216,106.70 + 563,959.70
\]

\[= \$780,066.40.\]

The amount paid in is 30,000 + 30 \times 12 \times 500 = $210,000. So you earn over $570,000 in interest over the course of 30 years.

(b) The present value is the required deposit to attain $780,066.40 in 30 years with no monthly payments. So solve for \(P \) in the equation \(P \times (1.0055)^{360} = 780,066.40 \rightarrow P = 780,066.40 \div (1.0055)^{360} = \$108,289.07.\)
(c) Solve for \(P \) in the equation \(P \times (1.0055)^{360} + 563,959.70 = 1,000,000 \)

\[
\rightarrow P \times (1.0055)^{360} = 436,040.30 \rightarrow P = 436,040.30 \div (1.0055)^{360} = \$60,531.25.
\]

(d) Solve for \(M \) in the equation \(216,106.70 + \frac{12 \times M}{0.066} [(1.0055)^{360} - 1] = 1,000,000 \)

\[
\rightarrow \frac{12 \times M}{0.066} [(1.0055)^{360} - 1] = 783893.30
\]

\[
\rightarrow M = 783893.30 \times 0.066 \div 12 \div [(1.0055)^{360} - 1] \rightarrow M = \$694.99.
\]

Simple Interest Annuities

For annuities that pay simple interest, the additional payments are added just at the end of the year. In this case, the future value \(FV \) in \(t \) years is given by the formula:

\[
FV = P(1 + r)^t + \frac{M}{r} [(1 + r)^t - 1]
\]

Example 2. You begin a Roth IRA with a deposit of $3000. At the end of every year thereafter, you add another $3000. The IRA guarantees a minimum 4.5% return each year. What is the minimum future value in 25 years? How much is paid in over 25 years? What is the present value?

Solution. The future value is given by

\[
FV = P(1 + r)^t + \frac{M}{r} [(1 + r)^t - 1] = 3000 \times (1.045)^{25} + \frac{3000}{0.045} [(1.045)^{25} - 1] = \$142,711.93.
\]

To attain this amount, you have only paid in $3000 + 25 \times 3000 = \$78,000.

Note: The interest gained on such a Roth IRA is tax-free! However the contributions made each year are not tax-deductible.

To find the present value, solve for \(P \) in the equation: \(P \times (1.045)^{25} = 142,711.93 \rightarrow P = 142,711.93 \div (1.045)^{25} = \$47,484.63 \). In other words, if you invest \$47,484.63 with simple yearly interest of 4.5%, then you will attain $142,711.93 in 25 years without any additional yearly payments.

Exercise. You start an annuity by depositing $5000 and adding $600 a month for the next 25 years. The annuity pays 6% interest.

(a) What is the future value in 25 years and how much is actually paid in?
(b) Solve for the present value of this annuity.
(c) Suppose you want $500,000 after 25 years but you will only add $600 a month. Solve for what the initial deposit should be.
(d) Suppose you want $500,000 after these 25 years and you only deposit $5000. Solve for what the monthly payment should be.
Solution

(a) The future value in 25 years is

\[
FV = 5000 \times \left(1 + \frac{0.06}{12}\right)^{12 \times 25} + \frac{12 \times 200}{0.06} \left(1 + \frac{0.06}{12}\right)^{12 \times 25} - 1
\]

\[
= 5000 \times (1.005)^{300} + 40,000 \times (1.005)^{300} - 1
\]

\[
= 22,324.85 + 138,598.79
\]

\[
= \$160,923.64.
\]

The amount paid in is \(5000 + 25 \times 12 \times 200 = \$65,000\).

(b) The present value is the initial amount \(P\) that could be deposited with no monthly payments in order to achieve the same future value.

\[
P \times (1.005)^{300} = 160,923.64 \quad \rightarrow \quad P = \frac{160,923.64}{(1.005)^{300}} = \$36,041.37.
\]

(c) Solve for \(P\) in the equation \(P \times (1.005)^{300} + 138,598.79 = 200,000\)

\[
\rightarrow \quad P \times (1.005)^{300} = 61,401.21
\]

\[
\rightarrow \quad P = \frac{61,401.21}{(1.005)^{300}} \quad \rightarrow \quad P = \$13,751.76.
\]

(d) Solve for \(M\) in the equation \(22,234.85 + \frac{12M}{.06}[(1.005)^{300} - 1] = 200,000\).

\[
\rightarrow \quad \frac{12M}{.06}[(1.005)^{300} - 1] = 177,675.15
\]

\[
\rightarrow \quad M = 177,675.15 \times 0.06 \div 12 \div [(1.005)^{300} - 1] \quad \rightarrow \quad M = \$256.39.
\]