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ABSTRACT

A “hot start” technique is applied to the fifth-generation Pennsylvania State University–National Center

for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) to dynamically assimilate cloud prop-

erties and humidity profiles retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS)

instrument on board the NASA Earth Observing System polar-orbiting satellites. The assimilation ap-

proach has been studied through extensive numerical experimentation for high-latitude rain events to

demonstrate the feasibility and the benefit of the approach on the model cloud and precipitation simulation/

forecast.

The ingestion of MODIS-retrieved cloud and clear-air humidity information impacts MM5 cloud fields on

both a microphysical and macrophysical level. From short-term (6–12 h) forecast experiments conducted for

a preliminary test case and 16 extensive summer and winter experiments, the following primary conclusions

have been reached. 1) It is feasible to introduce MODIS-retrieved cloud-top properties and humidity

profiles into the MM5 model in a hot start mode without disrupting model stability and evolutionary

continuity. 2) The introduction of high-resolution MODIS information produced more accurate humidity

fields and resulted in increased mesoscale structure in the cloud and precipitation fields. 3) The opportu-

nistic ingestion of MODIS data at its observation time into the model leads to improved 6–12-h model

precipitation forecasts with respect to not only the frequency of occurrences, but also the magnitude of

precipitation amounts. 4) Verification with three-dimensional analyses indicates some improvement in

model forecasts of temperature, wind, pressure perturbation, and sea level pressure as well. 5) Verification

with surface station observations indicates that model forecasts of 2-m temperature, 2-m relative humidity,

10-m winds, and sea level pressure are also improved, most notably for the summer cases. The largest

improvement in forecast skill is for 2-m relative humidity (12%).

1. Introduction

A continuing problem with respect to regional

weather and climate model simulations relates to the

fact that simulated cloud fields are often inaccurate.

Small perturbations in the amount (fraction, liquid or

ice water path, or optical depth) or radiative properties

of clouds may induce deviations in the evolution of the

simulated atmosphere. The subsequent effects on ra-

diation and energy flow can then in turn strongly affect

the model climate (Randall et al. 1984; Slingo 1990). As

noted by Lipton (1993), Lipton and Modica (1999),

Ruggiero et al. (2000), and many others, surface energy

exchanges, which depend on overlying clouds, have a

strong impact on the mesoscale processes that most

strongly affect the short-term prediction of clouds and

precipitation.

With the exception of the recent study of Bayler et al.

(2000) and those data assimilation systems that are set

up in a cycling mode, few mesoscale modeling systems

are constructed to provide for a proper initialization of

cloud hydrometeor fields (e.g., cloud water, ice and

snow mixing ratios, and rainwater). Thus, the model

must spin up these variables, and their associated cloud

systems and latent heating, from other initial fields dur-

ing the first few (0–6) hours of simulation. This type of
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model start-up is referred as a “warm start” in this pa-

per. Adjustments to the other fields that result from

this spinup process of a “warm started” model may

result in an erroneous simulation or lead to a degraded

forecast in the first few hours. As an example of the

fifth-generation Pennsylvania State University–

National Center for Atmospheric Research (PSU–

NCAR) Mesoscale Model (MM5; Grell et al. 1994;

Chen and Dudhia 2001) and the case that are described

in the next section, Fig. 1 shows model total precipi-

table water, column-integrated cloud water and ice, col-

umn-integrated rainwater and snow, and accumulated

rainfall within two boxes (shown in Fig. 4b) from three

model runs: one is started from 1800 UTC 13 August

2001 (ContC-6), one starts 6 h later (CtrlC0), and the

third one starts from the same time as CtrlC0 but with

MODIS information assimilated (hotMODC0), which

will be discussed later. ContC-6 continuously runs

through the initial time of CtrlC0. (Refer to Fig. 4b

satellite observed cloud coverage, box 1 and box 2 lo-

cated in clear and cloudy areas, respectively.) It is in-

dicated that even though the CtrlC0 produces the cloud

and precipitation mass and adjusts closer to the con-

tinuous run ContC-6, the differences between the two

model runs are still significantly large. Although the

model forecast error of the ContC-6 run is contributing

to the above stated differences, the error from the ini-

tializing of the warm start of the CtrlC0 run is not neg-

ligible. This is one reason that motivates the “hot start”

study. Moreover, due to the complex nonlinearity of

atmospheric models, initial errors affect model evolu-

tions (Lorenz 1963). Therefore, the best possible fore-

casts, all other things being equal, should result from

minimizing the length of this spinup period. If the

model initial state were to contain clouds (via associ-

ated hydrometeor mixing ratio fields) that are distrib-

uted realistically in three-dimensional space, the model

initial state would be much closer to that of the real

atmosphere and allow for minimal spinup time, which

in theory should lead to improved simulations within

the first few hours as well as for later periods.

As an example, we consider the MM5 model, which

is widely used for research and real-time forecast ap-

plications (e.g., Mass et al. 2003; Powers et al. 2003).

The MM5 model contains convective parameterizations

(e.g., Grell 1993) to represent subgrid-scale redistribu-

tion of heat, moisture, and momentum as well as bulk

microphysical schemes to explicitly reproduce strati-

form cloud processes (e.g., Reisner et al. 1998). How-

ever, the standard version of MM5 is constrained by a

need to spin up cloud systems, an important limitation

for short-range real-time forecast applications. To ad-

dress this concern, Fan and Tilley (2003) applied an

explicit moisture scheme (Reisner et al. 1998) to do a

static cloud initialization for the MM5 model. Their

study further demonstrated how the cloud initialization

(or lack thereof) can affect the model initial states of

cloud hydrometeors and that the amount of spinup time

could be somewhat reduced. The precipitation fore-

casts of the first 3 h were improved by utilizing the

cloud initialization; however, the magnitude of im-

provement was limited by the coarse resolution of the

initial condition fields (2.5° � 2.5° latitude and longi-

tude) relative to the model grid resolution (45- and/or

15-km grids).

The accuracy of such a static cloud initialization re-

lies heavily on the accuracy of the initial moisture field,

since an accurate prediction/depiction of the ambient

moisture distribution is a necessary, though not always

sufficient, condition for obtaining accurate clouds. Re-

motely sensed data from satellites can be utilized in

areas where conventional observations are sparse, such

as the polar regions and midlatitude oceans. It is now

recognized that incorporating satellite data into the nu-

merical weather forecast models can yield improved

depiction of mesoscale cloud radiative properties and

precipitating systems (e.g., Yucel et al. 2003; Key et al.

2003; Fan and Tilley 2002). Satellite data have been

assimilated in these studies to supplement surface ob-

servations and to improve the model initial conditions

or to constrain numerical model evolution.

Fan and Tilley (2002) assimilated the (Advanced

Very High Resolution Radiation) AVHRR-retrieved

cloud-top brightness temperatures for infrared channel

4 (11 �m) into an MM5 analysis to adjust the model

moisture fields. [A detailed description of the tech-

nique that is adapted and improved for the Moderate

Resolution Imaging Spectroradiometer (MODIS) data

assimilation is given in section 3.] Their results, ob-

tained for a high-latitude heavy rain case, showed that

satellite observations often provide adequate informa-

tion to benefit cloud forecasts. Continuous, near-

continuous, or intermittent (e.g., Fan and Tilley 2002)

assimilation of satellite data improved the simulation

for a longer time range (�24 h). Yucel et al. (2002,

2003) assimilated the Geostationary Operational Envi-

ronmental Satellite (GOES) cloud-cover fraction into

mesoscale models. However, all of these studies utilized

a one-layer cloud assumption in the determination of

vertical cloud distribution. According to Wang et al.

(2000) who have studied the vertical cloud structures

using rawinsonde data, surface observations, and satel-

lite data, the frequency of multilayer clouds occur at

about 40% over the globe. Specifically, the frequency

of two-layer clouds may reach about 10% at high lati-
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FIG. 1. (left) Total model precipitable water and column-integrated precipitation mass (cloud rain and snow), and (right) rainfall and

column-integrated cloud water and ice, within (top two panels) Box1 and (bottom two panels) Box2 shown in Fig. 4 from three model

runs of ContC-6 (continuous run starts 6 h earlier than the other two), CtrlC0 (model starts from 6 h later than ContC-6), and

HotMODC0 (based on the model state of ContC-6 at 360 min, MODIS data are ingested). Model domain setup and case description

can be found in section 2 of text.
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tudes. Therefore, the one-layer cloud assumption is not

always optimal.

For polar regions, additional data sources from sat-

ellite observations are available such as the MODIS

instruments on board the National Aeronautics and

Space Administration (NASA) Earth Observing Sys-

tem (EOS) satellites Terra and Aqua (e.g., Key et al.

2003). MODIS level-2 data are now available at 5 � 5

1-km pixel resolution (i.e., 5-km resolution) on 20 ver-

tical pressure levels (Menzel et al. 2002). The MODIS

data validation is conducted by comparing results to in

situ radiosonde measurements, the National Oceanic

and Atmospheric Administration (NOAA) High-

Resolution Infrared Radiation Sounder (HIRS) opera-

tional retrievals, GOES sounder operational retrievals,

the National Centers for Environmental Prediction

(NCEP) analyses, and retrievals from the Atmospheric

Infrared Sounder (AIRS)/Advanced Microwave

Sounding Unit-A (AMSU-A)/Humidity Sounder for

Brazil (HSB) instrument package on the Aqua plat-

form; data quality control consists of manual and auto-

matic inspections, with regional and global mean tem-

peratures at 300, 500, and 700 hPa monitored weekly,

along with 700-hPa dewpoint temperatures (Menzel

et al. 1997; Menzel et al. 2002; King et al. 2003).

As such, the time is now ripe to investigate the fol-

lowing: 1) the degree to which accurate moisture fields

for MM5 simulations can be obtained through the uti-

lization/assimilation of humidity profiles retrieved from

the MODIS instrument package; 2) the degree to which

MODIS-retrieved cloud parameters (e.g., cloud-top

temperature, cloud-top pressure) can improve the

method for determining vertical cloud distribution used

by Fan and Tilley (2002); 3) the feasibility of dynami-

cally ingesting and assimilating the MODIS data during

MM5 model integrations through a hot start technique;

and 4) the impacts of such a hot start MODIS data

assimilation process on high-latitude mesoscale

weather prediction. Research along these lines is re-

ported in this paper.

It was noted above that some data assimilation sys-

tems are set up in a cyclic mode, where hydrometeor

fields from the previous forecast cycle (background)

are carried over to the initialization/data assimilation

phase for the next forecast cycle. Such a technique can

be useful in providing fields for operational systems but

with the caveat that new observational data that carries

more realistic information (e.g., about cloud hydro-

meteors) must still be ingested at some point to avoid

propagation of model biases from cycle to cycle. As

such, the research reported on in this paper still has

applications to a cycling system, in that it illustrates

potential benefits of assimilating MODIS data within a

cycling system as a means of controlling model biases.

The paper focuses on three specific case study peri-

ods: 1) a period during mid-August 2001 characterized

by substantial clouds and precipitation over western

Alaska and the southern slopes of the Brooks Range

(location marked in Fig. 2) stemming from a series of

short wave disturbances within a rapid westerly midtro-

pospheric flow; this period was also studied in Fan and

Tilley (2002, 2003); 2) the 3-day period of 19–22 July

2002; and 3) the 3-day period of 10–13 February 2003.

The first period was studied as a means of formalizing

the methodology (sections 2 and 3); results for this pe-

riod are described in section 4. The second and third

periods apply the methodology to MODIS data as de-

scribed in section 5, via a series of 16 numerical experi-

ments. Results from these test simulation experiments

are presented in section 5. Section 6 concludes the

study.

2. Preliminary test case and model configuration

a. Preliminary test case

Figure 2 shows the synoptic situation for the 13–16

August 2001 case, as depicted in NCEP–NCAR re-

analysis mean 850-hPa geopotential height and cloud

cover fields. It is evident that the period was character-

ized by considerable cloudiness within a propagating

westerly flow pattern in the midtroposphere (Fig. 2a).

This flow pattern is sustained via the presence of a deep

vortex in the western Arctic Ocean and a ridge south of

the Alaska Peninsula. Another cyclone is present in the

northeast Pacific Ocean. Through the westerly flow

pattern, a series of short wave disturbances (as mani-

fested in the series of 1440-m geopotential contours

during the period plotted in Fig. 2a) propagated west to

east, causing substantial clouds and precipitation over

western Alaska and the southern slopes of the Brooks

Range. Figure 2b shows the 4-day averaged total cloud

fraction in percent; clearly, the cloud coverage pattern

reinforces the necessity of performing cloud field ini-

tialization and/or assimilation for an accurate represen-

tation of the atmospheric state.

The precipitation during this period reflects the fast-

moving short wave disturbances. Figure 3 shows the

analyzed precipitation, by using the Cressman (1959)

interpolation method, from station-observed 1-h pre-

cipitation over the Alaska region from 2300 UTC 13

August 2001 to 0200 UTC 14 August 2001.

The coverage of MODIS data (from the Terra satel-

lite) at 2210 UTC 13 August and 0000 UTC 14 August

2001 is illustrated in Fig. 4, which depicts the MODIS-

retrieved cloud-top temperature fields for these times.
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Strictly, the MODIS data coverage implied in each

panel of Fig. 4 contains four MODIS “granules” (each

granule covers 5 min of observation time along the path

of the satellite and contains 406 � 270 5-km cells) ob-

served within 20 min of the specified time. The spatial

coverage of the MODIS granules adequately covers our

area of interest.

b. Model configuration

To take full advantage of the MODIS data, the MM5

model domain is specified as a 151 � 205 domain with

a 15-km grid spacing, centered at 62.13°N latitude and

154.81°W longitude. Forty-one terrain-following sigma

levels are used in the vertical. The standard MM5

model accommodates four-dimensional data assimila-

tion (FDDA) via Newtonian nudging (analysis nudging

or observation nudging; Stauffer and Seaman 1990). All

the simulations in this study use the Grell (1993) cumu-

lus parameterization and the Reisner et al. (1998) ex-

plicit microphysics scheme without graupel. As de-

scribed by Grell et al. (1994), the Grell cumulus param-

eterization scheme computes the moisture cycle

including downdraft calculations in terms of precipita-

tion efficiency and normalized condensation and pre-

cipitation. The Reisner explicit scheme computes ten-

dencies of water vapor, cloud water, cloud ice, snow,

and rainwater using cloud microphysics for the auto-

conversion, accretion, evaporation, deposition/sublima-

tion, melting, and freezing processes. The Oregon State

University (OSU) land surface model (LSM; Chen and

Dudhia 2001), Hong and Pan’s (1996) planetary bound-

ary layer (PBL) scheme, and Dudhia’s (1989) two-

stream radiative transfer formulation are also used. Ini-

tial atmospheric conditions are obtained from the

NCEP–NCAR reanalysis, and are enhanced by surface

and upper-air observations through objective analysis

using the standard suite of MM5 preprocessing pro-

gram LITTLE_R (Dudhia et al. 2005). As preliminary

results from ongoing work (Tilley et al. 2005), in addi-

tion to those presented at a recent high-latitude mod-

eling workshop (see Tilley and Bromwich (2005) for a

summary of appropriate workshop papers], do not give

a strong advantage to any particular analysis/assimila-

tion methodology with conventional surface and upper-

air data, we feel that for the purpose of this study, the

utilization of the reanalysis and LITTLE_R methodol-

ogy described above is adequate.

The initialization time for the preliminary test case is

set to 1800 UTC 13 August 2001, and is defined as hour

zero (h 0) in the experiments. The simulations run for a

24-h forecast period, with a time step of 40 s.

Since polar-orbiting satellite observation times gen-

erally do not conform to hourly periods and can be

quite irregular, the model should have the ability to

ingest the MODIS data at the time it is observed. For

instance, during the first 6-h period of the preliminary

test case, there are four MODIS data observation times

(1900, 2040, and 2210 UTC 13 August 2001 and 0000

UTC 14 August 2001). A hot start technique has been

developed for the MM5 model in order to ingest

MODIS data when it is available and has other advan-

tages as well over our previous work. In our previous

work, an approximate time range (e.g., �30 min) was

used to fit the satellite observation time to the model

forecast/analysis times; the model was stopped at pre-

determined forecast times and integration was restarted

FIG. 2. NCEP–NCAR reanalysis of (a) mean 850-hPa geopotential height (m) and (b) mean total cloud cover (%), averaged over

13–16 Aug 2001. The superimposed dashed contours with date and hour labels (dd_hh) in (a) represent positions of the 1440-m

geopotential contour at the indicated time. The location of the Brooks Range is marked in both panels.
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as a warm start after the satellite data was assimilated.

As such, the spinup process affects the continuity of the

model integration. With the hot start technique, all of

the model variables at the satellite observation time,

except the ones that have been changed from assimila-

tion of the satellite data (described more fully below)

will retain the values they had before the assimilation

process. In this study, only the water vapor mixing ratio

(Q) in the MM5 model will be adjusted during the hot

start process, according to the cloud distribution and

determination of relative humidity adjustment.

3. Derivation of humidity profiles using MODIS

products

The success of the cloud initialization for this study

depends on the accuracy of the initial water vapor con-

tent. Many studies about cloud prediction and detec-

tion, and the relationship of cloud and humidity, espe-

cially relative humidity, have been accomplished (e.g.,

Wang et al. 2000; Garand and Nadon 1998; Xu and

Randall 1996; Peixoto and Oort 1992, 1996; Lazarus et

al. 1999; Haag et al. 2003; Strom et al. 2003; Yi et al.

2004). However, the cloud has been the predictand (i.e.,

a dependent variable) in all those previous studies.

Given the satellite data, it is now practical to utilize the

satellite-observed cloud information in numerical mod-

eling.

MODIS level-2 data provides retrieved atmospheric

moisture (i.e., dewpoint temperature) and temperature

profiles in cloud-free areas; these cloud-free profiles

are utilized in this study. After they are interpolated to

the MM5 15-km horizontal grid and the 41 vertical

sigma levels, these retrieved MODIS humidity profiles

are incorporated directly where it is clear.

For cloudy areas, MODIS provides information on

cloud-top temperature and cloud-top pressure. Fan and

Tilley (2002, 2003) have used a set of empirically de-

rived relative humidity thresholds to infer the relative

FIG. 3. Analyzed precipitation [interpolated by using Cressman (1959) method] from station observations of 1-h rainfall (mm) for the

period 2300 UTC 13 Aug–0200 UTC 14 Aug 2001; letters B, S, and Y in lower right panel indicate the locations of southwest slope of

Brooks Range, Seward Peninsula, and the lower Yukon valley, respectively.
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humidity inside and outside clouds, once the cloud top

and base is determined. The methods for determining

the cloud top and base from MODIS observations and

MM5 model analyses/forecasts and for adjusting model

humidity field are explained below in this section.

The relative humidity thresholds include two critical

values for cloudy and clear conditions at a given sigma

level, designated as RHcld and RHclr, respectively. If it

is cloudy, the relative humidity should be greater than

RHcld, and if it is clear, the relative humidity should be

less than RHclr. These thresholds are first taken from a

climatic analysis of upper-air observations. For ex-

ample, Fig. 5 shows vertical profiles (1000–100 hPa) of

mean relative humidity for 10 cloud types during the

Tropical Ocean Global Atmosphere Coupled Ocean–

Atmosphere Response Experiment (TOGA COARE;

Wang and Curry 1998). Then these thresholds are

tuned according to model produced cloud-top distribu-

tion and relative humidity, which are validated with

satellite cloud images and analysis data. Table 1 gives

the final thresholds that are used in this study.

The results from Fan and Tilley (2002) have shown

that the MM5 can produce more realistic cloud cover

when the adjusted humidity fields are used. However,

as a single cloud layer was assumed, in Fan and Tilley

(2002), input into the vertical cloud distribution was not

always optimal. Similar results were found by Yucel et

al. (2002, 2003) regarding the assumption of a single-

layer cloud. Clearly, the MM5-generated vertical pro-

files of temperature, pressure, and winds contain valu-

able information too. Because of their three-dimen-

sional balance and consistency with respect to the mois-

ture fields, the model humidity, in tandem with the sat-

ellite retrievals, is also used to improve the determina-

tion of the vertical cloud distribution. The shortcomings

caused by the lack of vertical structure details in satel-

lite retrievals at cloudy grid points and the inevitable

retrieval errors may be offset by the model information.

Therefore, in this paper, both the MM5-analyzed hu-

FIG. 5. Vertical profiles (1000–100 mb) of mean RH (%) for 10

cloud types during TOGA COARE. Values at 1050 mb represent

surface values (from Wang and Curry 1998).

FIG. 4. MODIS-retrieved cloud-top temperature (°C) at (a) 2210 UTC 13 Aug and (b) 0000 UTC 14 Aug 2001, interpolated to the

MM5 15-km grid used in this study; gray colors indicate missing data. Line X1–X2 denotes the cross section to be shown in Figs. 10 and

14. Two stations marked in (b) are Barrow and Nome, AK. Boxes 1 and 2 indicate the subdomain within which the total values are

summed.
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midity profile and the relative humidity thresholds are

used in order that a vertical humidity structure similar

to the MM5 analysis is obtained while the adjusted hu-

midity fields also tend to produce more realistic cloud

fields. We describe the procedures to determine cloud

top and base and to adjust the model humidity in the

following subsections.

a. Cloud top and base

Figure 6 shows a flowchart for determination of

cloud top and base using MODIS-retrieved cloud-top

temperature, cloud-top pressure, and MM5 analysis/

forecast fields.

As for all remotely sensed fields, MODIS-retrieved

products contain errors. Menzel et al. (2002) reported

that the maximum error for MODIS cloud-top pressure

(denoted here by CTPerr) is about 100 hPa while the

maximum error for temperature profiles (denoted here

by CTTerr) is about 2 K. Using the MM5 temperature

profile, the model cloud top is considered present at the

sigma level where the model temperature equals to the

MODIS cloud-top temperature (CTT), denote the

cloud-top level determined by CTT as Kt. Multiple Kt is

possible in cases of temperature inversions. Similarly,

the cloud-top sigma-level index determined by MODIS

cloud-top pressure (CTP) is denoted as Kp. Because of

the errors in CTT and CTP, a consistency check is per-

formed between the Kt and Kp in order to obtain an

optimal cloud-top level (denoted as Ktp) determined

from MODIS CTT and CTP. If no Kt or Kp is found, it

means no cloud; Ktp is set to a sentinel value of �1. If

no Kt but Kp is found, then Ktp � Kp. If no Kp but Kt are

found, then we use the highest Kt as Ktp. If Kt equals to

Kp, they are consistent and Ktp � Kt � Kp. In all other

cases when both Kp and Kt are found but not consistent,

we choose the closest Kt to Kp and then check on the

difference between Kt and Kp. If there is only one level

difference, we choose the one that has less error. If

[|P(Kp) � CTP|/CTPerr] � [|T(Kt) � CTT|/CTTerr] , Ktp

� Kt, otherwise, Ktp � Kp. If the difference between Kt

and Kp is two levels, then we average them and Ktp �

(Kt � Kp)/2. If the difference is more than two levels,

we choose the level Ki between Kt and Kp for Ktp,

which minimizes the absolute difference [|P(Kp) �

P(Ki)|/CTPerr] � [|T(Kt) � T(Ki)|/CTTerr].

As mentioned above, MM5 humidity profiles are also

used so that the MODIS observations and MM5 fields

are combined in determining the cloud top, and in rep-

resenting multilayer clouds as well (see the humidity

adjustment procedures below). First, the MM5 relative

humidity profiles and RHcld are used to find the MM5

analysis/forecast-suggested cloud-top level. When

searching downward from model top, the model-

suggested cloud top, denoted as Kmct, is the first level

encountered where RH(Kmct) � RHcld. If no level is

found that the relative humidity is greater than the lev-

el’s RHcld, it is clear and Kmct � �1. If either Ktp � �1

or Kmct � �1 is the case, the final cloud top Ktop is set

to Ktp. In cases that both satellite and MM5 analysis/

forecast indicates cloud existence (Ktp � 0 and Kmct �

0), if either pressure or temperature difference between

levels Ktp and Kmct are less than MODIS errors CTPerr

or CTTerr, respectively, the model cloud level Kmct is

used (i.e., Ktop � Kmct). Otherwise, the midpressure

level between P(Ktp) and P(Kmct), P � [P(Ktp) �

P(Kmct)]/2 , is assigned to be the final cloud top.

Determination of cloud base follows Fan and Tilley

(2002) with reference to the cloud detection algorithm

of Garand and Nadon (1998). Considering the lifting

condensation height, cloud base is considered at a level

where the temperature is colder than surface tempera-

ture (Ts) by 3–6 K (Garand and Nadon 1998). However,

there often exist temperature inversions at high lati-

tudes. For example, from a statistical study at the time

0000 UTC 14 August 2001 for the whole model domain

within the troposphere, temperature inversions occur at

about 20% out of total 30 955 grid points, wherein 4.7%

grid points have more than one inversion. In such in-

stances, there may be levels where the temperature is

TABLE 1. The RH (%) thresholds at different sigma levels for

both cloud and clear conditions (adopted from Fan and Tilley

2002).

Level No.

(	) RHcld RHclr

Level No.

(	) RHcld RHclr

1 (0.0090) 85.0 55.0 22 (0.6065) 94.4 77.0

2 (0.0290) 85.5 56.1 23 (0.6385) 94.7 77.9

3 (0.0500) 86.0 57.2 24 (0.6705) 95.0 78.8

4 (0.0725) 86.5 58.3 25 (0.7025) 95.3 79.7

5 (0.0960) 87.0 59.4 26 (0.7335) 95.6 80.6

6 (0.1205) 87.5 60.5 27 (0.7635) 95.9 81.5

7 (0.1460) 88.0 61.6 28 (0.7920) 96.2 82.4

8 (0.1725) 88.5 62.7 29 (0.8190) 96.5 83.3

9 (0.2000) 89.0 63.8 30 (0.8435) 96.8 84.2

10 (0.2285) 89.5 64.9 31 (0.8665) 97.0 85.0

11 (0.2580) 90.0 66.0 32 (0.8875) 97.2 85.8

12 (0.2880) 90.5 67.1 33 (0.9070) 97.4 86.6

13 (0.3190) 91.0 68.2 34 (0.9245) 97.6 87.4

14 (0.3505) 91.4 69.2 35 (0.9405) 97.8 88.2

15 (0.3825) 91.8 70.2 36 (0.9550) 98.0 89.0

16 (0.4145) 92.2 71.2 37 (0.9680) 97.5 89.1

17 (0.4465) 92.6 72.2 38 (0.9790) 97.0 89.2

18 (0.4785) 93.0 73.2 39 (0.9875) 96.5 89.3

19 (0.5105) 93.4 74.2 40 (0.9935) 96.0 89.4

20 (0.5425) 93.8 75.2 41 (0.9975) 95.0 89.0

21 (0.5745) 94.1 76.1
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FIG. 6. Flowchart for determination of cloud top and base.
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warmer than the surface temperature. Thus, the maxi-

mum temperature of a vertical column (Tm) is also

used. By comparing to sounding observations and being

tested in the model, the cloud-base temperature (Tbase)

is designed in this study as the larger of (Ts � 2) and

(T
m

� 2.5) for ocean grid points, the larger of (Tg � 2.5)

and (Tm � 3) for land grid points. By searching from the

surface upward to compare Tbase and model tempera-

ture, the cloud-base level is located at the sigma level

where the model temperature equals Tbase. Again, mul-

tiple Kb is possible in cases of inversions. If only one Kb

is found, then the final cloud-base level is Kbase � Kb. If

more than one Kb is found, the second Kb from bottom

is identified as Kbase. The rationale for this is that when

a single inversion (more likely radiation inversions) is

present at lower levels, the profile is statically stable

below the inversion. The situation differs when there is

more than one solution, the layer above the first inver-

sion may be unstable where cloud formation may occur.

If the detected cloud-top level is lower than cloud-

base level, it is declared clear (no cloud). This happens

when MODIS observes only thin low clouds.

b. Humidity

Once the cloud top and cloud base are determined,

the humidity for cloudy grid points is obtained by uti-

lizing the relative humidity thresholds and referencing

the MM5-analyzed or -forecasted humidity profile. The

difference between the two thresholds for cloudy and

clear conditions at each level, RHdp � RHcld � RHclr, is

used as a measuring scale of dry or wet extent. Figure 7

shows a flowchart for model humidity adjustment.

To use the original MM5-analyzed/forecasted verti-

cal cloud distribution as a prototype of multilayer

clouds, model humidity profile inside the cloud is ad-

justed columnwide according to humidity at cloud top.

If the relative humidity at the cloud-top level is equal to

or greater than this level’s RHcld (i.e., if r � [RH (Ktop)

� RHcld (Ktop)]/RHdp(Ktop) � 0), no adjustment is

needed. Otherwise, an adjustment is made as

RH
k� � RH
k� � rRHdp
k�, k � Ktop . . . , Kbase. 
1�

For clear grid points where there is no cloud, and at

levels above the cloud top for cloudy grid points, the

FIG. 7. Flowchart for humidity adjustment.
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maximum wet extent measure with regard to the clear

condition relative humidity threshold is calculated by

rm � Max�RH
k� � RHclr
k�

RHdp
k�
�,

�k � 1 . . . , Ktop aboveCloudTop

k � 1 . . . , Ksfc clearGrids
. 
2�

If rm � 0, even the wettest level is already dry and

clear, so no adjustment is needed. If rm � 0, an adjust-

ment is made as

RH
k� � RH
k� � rmRHdp
k��2,

k � 1 . . . , Ktop or Kbase. 
3�

The ratios r and rm in Eqs. (1)–(3) make it possible to

adjust model humidity columnwise, and the adjustment

is likely a translation of the MM5-analyzed/forecasted

humidity profile; thus, if available, the model multilayer

cloud pattern can be retained. In Eq. (3), a factor of 2

is used to avoid overdrying in the adjustment, since the

ratio rm represents the wettest case.

The MM5-analyzed humidity below the cloud-base

level is left unchanged. Since the cloud base is deter-

mined with the model surface temperature and the col-

umn maximum temperature has already been used, no

more adjustment is necessary for the model humidity

fields below cloud base. However, for consistency, all

the MODIS-retrieved relative humidity is used where it

is available.

Actually, the water vapor mixing ratio (Q) is the hu-

midity variable used within both the MM5 initialization

procedure and the forecast model. As such, once the

new adjusted relative humidity field is obtained, the

values of relative humidity are converted to mixing ra-

tios for use in the MM5; assuming constant temperature

when performing the conversions implies:

Q � qsRH�100, 
4�

where

qs � 0.622
es

P � 0.378es

and

es � 6.112e �17.67
T�273.15��
T�29.65�
. 
5�

4. Numerical experiments and results

The experiments conducted for the August 2001 test

period are listed in Table 2. Experiment Ctrl is the

standard MM5 starting from hour 0 without FDDA,

while experiment Ctrlfdda is the standard MM5 run

with analysis nudging during hours 0–6. Experiments

iCtrl and iMODIS are conducted to examine the im-

pacts of MODIS data when this data are assimilated at

the initial time, 0000 UTC 14 August 2001, only. The

initial time chosen for this event is due to the good

satellite data coverage at this time. Experiments

hotMODIS and hotMODISfdda use the hot start tech-

nique to dynamically ingest MODIS data when it is

available during the full assimilation period (i.e., hours

0–6), and should be considered as parallel experiments

to experiments Ctrl and Ctrlfdda, respectively.

a. Model relative humidity adjustment and results

As described above, the MODIS data are assimilated

to modify the model humidity field, specifically, the

water vapor mixing ratio in the MM5. In this section,

we examine the changes of the model water vapor and

relative humidity when the MODIS data are assimi-

lated via the hot start technique from experiment

hotMODIS. In experiment hotMODIS, MODIS data

from three satellite passes (i.e., 1900, 2040, and 2210

UTC 13 August 2001) prior to 0000 UTC 14 August

2001 (a fourth satellite pass) have been assimilated into

MM5. After the data of this fourth satellite pass are

assimilated, the simulation continues as a “free fore-

TABLE 2. Characteristics of experiments described in this paper.

Expts
Description

Initial time

(UTC and date) Total time

Analysis

nudging MODIS dataNo. Name

1 iCtrl 0000 14 Aug 2001 18 h No No

2 iMODIS 0000 14 Aug 2001 18 h No Yes, initial time at 0000 UTC 14 Aug

3 Ctrl 1800 13 Aug 2001 24 h No No

4 hotMODIS 1800 13 Aug 2001 24 h No Yes, 4 times at 1900, 2040, 2210 UTC 13 Aug and

0000 UTC 14 Aug

5 Ctrlfdda 1800 13 Aug 2001 24 h 0–6 h No

6 hotMODISfdda 1800 13 Aug 2001 24 h 0–6 h Yes, 4 times at 1900, 2040, 2210 UTC 13 Aug and

0000 UTC 14 Aug
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cast.” This time (0000 UTC 14 August 2001) is chosen

to illustrate the change in the MM5 model humidity

fields resulting from the ingestion of MODIS data

within the dynamic assimilation cycles.

For testing how the model water vapor is changed

during the hot start assimilation, a parallel model ex-

periment is conducted and compared to experiment

hotMODIS. At model forecast hour 6 (i.e., 0000 UTC

14 August 2001), the hotMODIS output, which does

not contain impacts from the MODIS data at the same

time, is used as a baseline for the test. Then we continue

the model run and output at every time step. The par-

allel model run is the same as hotMODIS except the

MODIS data at 0000 UTC 14 August 2001 is not as-

similated. Figure 8 shows the model results of column-

integrated water vapor from the MODIS data assimi-

lation and humidity adjustment. Figure 8a shows the

MODIS-retrieved total water vapor that is only avail-

able at clear grids. Figure 8b shows the model precipi-

table water (column-integrated water vapor) from ex-

periment hotMODIS at model forecast hour 6.02,

which is two time steps (80 s) after the MODIS data

are assimilated. The spatial distribution of total water

vapor is consistent with the MODIS-retrieved water

vapor in Fig. 8a. Figure 8c shows the precipitable

water difference of hour 6.02 from hour 6 (when the

MODIS data are not assimilated yet) in experiment

hotMODIS. Figure 8d shows similar results as Fig. 8c

but from the parallel run without MODIS data assimi-

lated. From Fig. 8c, the model water vapor is changed

FIG. 8. (a) MODIS-retrieved total water vapor (mm) at 0000 UTC 14 Aug 2001 (model forecast hour 6); (b) model precipitable water

(column-integrated water vapor, mm) from experiment hotMODIS at model forecast hour 6.02, which is two time steps (80 s) after the

MODIS data are assimilated; (c) precipitable water difference of hour 6.02 from hour 6 (MODIS data are not assimilated yet at hour

6) in experiment hotMODIS; (d) precipitable water difference of hour 6.02 from hour 6 from a hotMODIS run without the MODIS

data at 0000 UTC 14 Aug 2001 assimilated.
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as the MODIS data are assimilated. It is obvious that

the water vapor is increased in cloudy areas and de-

creased in clear areas, in comparing the MODIS clouds

shown in Fig. 4b. Figure 8d indicates that the changes

shown in Fig. 8c is caused from the MODIS data as-

similation since the changes from model evolution is

very small (Fig. 8d).

Figure 9 shows similar experiments and results as in

Fig. 8 but is for cloud water path, which is equivalent to

column-integrated cloud water and ice. It is shown that

model has smaller magnitude in column-integrated

cloud mass (Fig. 9b) compared to MODIS retrievals

(Fig. 9a). Figure 9c indicates that the impacts of

MODIS data assimilation on model clouds start right

after the model water vapor mixing ratio is modified.

Again, the influences from MODIS data are larger than

the model evolution itself by considering Fig. 9d.

The impacts on the model relative humidity are also

studied within experiment hotMODIS. Figure 10

shows, the adjustment of relative humidity on a cross

section (X1–X2 in Fig. 4b) at the exact time when the

fourth pass of MODIS data are ingested. Specifically,

Fig. 10a shows the relative humidity before and, in Fig.

10b, after the ingestion of MODIS data at 0000 UTC 14

August 2001.

The relative humidity in Fig. 10a contains the cumu-

lative impact from ingesting the previous three passes

of MODIS data, while the relative humidity in Fig. 10b

FIG. 9. Same as in Fig. 8 but for cloud water path: (a) MODIS-retrieved cloud water path (mm) at 0000 UTC 14 Aug 2001 (model

forecast hour 6); (b) model column-integrated cloud water and ice (mm) from experiment hotMODIS at model forecast hour 6.02,

which is two time steps (80 s) after the MODIS data are assimilated; (c) difference of column-integrated cloud water and ice of hour

6.02 from hour 6 (MODIS data are not assimilated yet at hour 6) in experiment hotMODIS; (d) difference of column-integrated cloud

water and ice of hour 6.02 from hour 6 from a hotMODIS run without the MODIS data at 00 UTC 14 Aug 2001 assimilated.
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shows the additional impact from the fourth pass of

MODIS data. From Fig. 10b, it is apparent that there

are large areas of reduced relative humidity above the

cloud top and over clear areas. In addition, increased

relative humidity appears within the cloud layer. The

maximum relative humidity adjustment has a magni-

tude of approximately �50%. Large horizontal gradi-

ents of relative humidity are found in columns between

clear skies (or very low cloud) and cloudy skies in ref-

erence to Fig. 4b. These changes demonstrate that the

satellite-observed cloud distribution is reflected within

the adjusted relative humidity field. Since the model

analyzed/forecasted humidity profiles were taken into

account in the hot start technique, the adjusted relative

humidity did not show any disturbance at the data edge

area, as illustrated in Fig. 10b at about a 1900-km dis-

tance to the western boundary.

To further investigate the relative humidity changes,

Fig. 11 gives the relative humidity profiles before and

after the MODIS data are ingested for two stations,

Nome and Barrow, Alaska (locations shown in Fig. 4b).

From Fig. 4b, it is clear in Barrow and cloudy in Nome

at the time 0000 UTC 14 August 2001. The observed

relative humidity profiles are also shown in Fig. 11. For

the Barrow station, the original model relative humid-

ity is closer to the observation. The MODIS retrievals

are available for this station, so the adjusted relative

humidity reflects the MODIS-retrieved results. Both

MM5 forecast and MODIS retrieval show a dry bias in

upper levels and a wet bias in lower levels. One reason

why the MM5 did not catch the observed profiles is that

the model used less vertical levels than the observa-

tions. Similarly, the MODIS retrievals have even fewer

levels than the MM5 model. For the Nome station, the

same biases are shown for MM5. However, after the

MODIS data are ingested, the model cloud top is

raised.

b. Impacts of MODIS data assimilation on model

clouds

To investigate the impacts of MODIS data assimila-

tion on model clouds, we examine experiment iMODIS,

for which MODIS data are ingested only at the initial

time (i.e., hour 0, 0000 UTC 14 August 2001) in the

simulation. To examine this impact, we have computed

the relative root-mean-square differences (rmsds) of the

temperature and hydrometeor (i.e., water vapor, cloud

water, cloud ice, cloud rain, and cloud snow) mixing

ratios between the parallel experiments iMODIS and

iCtrl for the whole domain at each sigma level. Do-

main-averaged relative rmsd results for these fields are

FIG. 11. Relative humidity profiles at two stations, (left) Barrow

and (right) Nome, AK (locations are shown in Fig. 4b). Dotted

lines are rawinsonde observed profiles; dashed and solid lines are

profiles before and after the adjustment, respectively, in the

model at the closest grid point to each station.

FIG. 10. Relative humidity (%) along cross section (X1–X2 in Fig. 4b) at 0000 UTC 14 Aug 2001 for experiment hotMODIS: (a)

before the MODIS data are ingested; (b) after the MODIS data are ingested; in (b) the difference from (a) is shaded.
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illustrated in Fig. 12. From a microphysical viewpoint,

immediate impacts on water vapor are indicated at the

initial time when the MODIS data are ingested. This is

the expected result in terms of the hot start motivation.

As the model evolves, balances between temperature

and cloud hydrometeor fields are thermodynamically

maintained by microphysical processes. The impacts of

MODIS data ingestion on cloud ice, rainwater, and

snow are shown shortly after the initial time. Long-term

impacts on temperature, water vapor, cloud water, and

cloud ice are also reflected from the large relative rmsd

areas extending along the time axis. These results indi-

cate that the assimilation of MODIS-retrieved humidity

impacts model cloud hydrometeor fields and conse-

quently the model cloud distribution. These modifica-

tions are further discussed next from a macroscopic

viewpoint.

As Fig. 4 shows, the satellite clearly sees the cloud

system, though it cannot entirely see all structural ele-

ments in a multilayered cloud deck. Similarly, the

model does not always present a correct horizontally

distributed cloud field compared to that seen from

space, especially with respect to mesoscale structure.

For example, consider Fig. 13, which shows the cloud-

top temperature field derived from experiments Ctrl

and hotMODIS, at forecast hours 5, 6, and 7. The

MODIS data are available at forecast hours 1, 2.67, 4.17,

and 6 for experiment hotMODIS. By comparing Figs.

13b,d,f with Figs. 13a,c,e, respectively, it is clear that

after the ingestion of MODIS data, considerable meso-

scale structure is added to the modeled cloud fields. As

another example, consider Fig. 4a, which shows the sat-

ellite-observed cloud-top temperature. The figure indi-

cates wisps of high cloudiness where cloud-top tem-

peratures are in the range �40° to �45°C. The Ctrl run

cloud-top temperature field (Fig. 13a) shows sheets of

high clouds (�40° to �45°C) southwest of the Brooks

Range and south of Bering Strait. The hotMODIS run

result (Fig. 13b) shows clouds in smaller horizontal

clusters, which is more similar to the cloud field de-

picted by satellite (cf. Fig. 4a). In general (see also Figs.

13c–f), the Ctrl run produced more horizontal cloud

cover (in percentage) than observed by satellite, and

was not able to resolve high clouds from low clouds in

as much detail as possible from the observations. How-

ever, after the MODIS data are assimilated, the cloud-

top temperature field shows less coverage and some

higher horizontal gradients (more distinct high and low

cloud areas) in cloud coverage than in the Ctrl run. The

impacts of MODIS data on the spatial distribution of

cloud cover are shown at 1 (Figs. 13a,b) and 2 h (Figs.

13c,d) after the ingestion of MODIS data observed at

2210 UTC 13 August 2001 (Fig. 4a), and are also shown

at 1 h (Figs. 13e,f) after the ingestion of MODIS data at

0000 UTC 14 August 2001 (Fig. 4b).

To illustrate the impacts of this adjustment on clouds,

Fig. 14a presents the distribution of model hydro-

meteor mixing ratios (cloud water, cloud ice, snow, and

rain mixing ratios) for experiment hotMODIS at 0200

UTC 14 August 2001 along the same cross section as

Fig. 10. Figure 14a shows that the cloud systems have a

spatial scale of about 100–200 km, especially the cloud

ice field, which generally corresponds to the cloud top

as seen from the satellite. The difference fields of the

various mixing ratios of hotMODIS minus Ctrl (see Fig.

14b) indicate that, after 2 h of model integration from

FIG. 12. Time–height sections of domain-averaged relative rmsds between experiments iMODIS and iCtrl for (left to right) the

variables T (K), Q (g kg�1), CW (cloud water mixing ratio) (g kg�1); CI (cloud ice mixing ratio) (g kg�1); RAIN (rain mixing ratio)

(g kg�1); and SNOW (snow mixing ratio) (g kg�1).
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the last ingestion of MODIS data, the model cloud

fields are changed significantly. Most cloudy areas

present in the Ctrl run are still present in experiment

hotMODIS, but with reduced cloud hydrometeor mix-

ing ratios. However, there are areas where the simu-

lated cloud mixing ratios are increased in experiment

hotMODIS as well. As a result, the mesoscale structure

of the cloud field is increased in experiment hotMODIS

FIG. 13. MM5-derived cloud-top temperature fields (°C) at (a), (b) 2300 UTC 13 Aug, (c), (d) 0000 UTC 14 Aug, and (e), (f) 0100

UTC 14 Aug 2001 for (a), (c), (e) experiment Ctrl and (b), (d), (f) experiment hotMODIS, respectively.
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compared with the Ctrl experiment. Such an increase in

mesoscale structure is similar to that seen above for the

horizontal spatial cloud distribution, and suggests that

such increase in structure from the application of sat-

ellite information occurs over substantial portions of

the domain.

c. Precipitation forecast

After the assimilation of satellite data, the model

cloud distribution is updated through the adjustment of

humidity. The impacts of this adjustment on precipita-

tion and other meteorological fields are discussed in

this and the following subsection.

Figure 15 shows the spatial distribution of hourly ac-

cumulated precipitation amounts from experiments

Ctrl and hotMODIS, for each of the forecast hours 5–8.

The hotMODIS forecasts have more mesoscale struc-

ture than seen in the Ctrl forecasts. The large areas of

precipitation produced in the Ctrl simulation are in-

stead depicted as smaller units within the hotMODIS

simulation. Comparison with Fig. 3 shows that most of

the smaller precipitation centers seen in the hotMODIS

forecasts as well as the spatial gaps between the centers

in that simulation correspond to rainfall centers that

were observed. In other words, the hotMODIS experi-

ment caught more structural details than the Ctrl ex-

periment. We consider such impacts on the precipita-

tion field a positive feature, which is found as early as

2300 UTC 13 August, within the first hour after the

assimilation of MODIS information at 2210 UTC. The

figures also show that the precipitation amounts on the

Seward Peninsula (indicated by S in Fig. 3d) are more

robust in the hotMODIS experiment compared with

the Ctrl experiment, though they are not as large as

observed. At the second free forecast hour (0200 UTC

14 August), the observed rainfall has three major

maxima, one southwest of the Brooks Range (B in Fig.

3d), one on the Seward Peninsula (S in Fig. 3d), and one

in the lower Yukon Valley (Y in Fig. 3d). From Figs.

15g,h, only a small portion of the rain maxima areas S

and B are reproduced within the Ctrl experiment, but

the hotMODIS experiment produced greater amounts

for center S. The rain maximum B was displaced east-

ward of its observed position in the Ctrl experiment,

while in the hotMODIS experiment this area of rain

was closer to the observed position, even though still

displaced somewhat eastward. Moreover, the large

rainfall maximum Y was not produced in either experi-

ment. In both cases, comparison of simulated and ob-

served precipitation trends suggests that the simulated

precipitation system translates eastward too rapidly.

This problem seems independent from considerations

of the humidity field, and is tied more to the mesoscale

dynamics operating in both simulations. Adjustment or

improvement of other model fields may be a key ingre-

dient toward reducing this propagation error.

Experiment hotMODISfdda, in which other model

fields are adjusted with the standard MM5 Newtonian

nudging approach, was conducted to examine this hy-

pothesis. Figure 16 shows the same fields as in Fig. 15

for experiment hotMODISfdda. The rain maximum Y,

which is incorrectly reproduced in the hotMODIS

simulation (cf. Fig. 15) is quite apparent in Fig. 16. In

addition, the placement and magnitude of the rain

maxima S and B are also improved when nudging is

applied together with the assimilation of MODIS data.

The difference contours in Fig. 16 show the impacts of

MODIS data on the precipitation forecast relative to

experiment Ctrlfdda (figure not shown). The MODIS

FIG. 14. (a) MM5 mixing ratios (g kg�1) of cloud ice (violet), cloud snow (blue), cloud rain (red), and cloud water (shaded) for

experiment hotMODIS along cross section X1–X2, valid at 0200 UTC 14 Aug 2001; (b) difference fields of the mixing ratios in (a),

experiment hotMODIS � experiment Ctrl.
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FIG. 15. MM5 1-h accumulated precipitation forecasts (mm; shaded) from experiments (a), (c), (e), (g) Ctrl and

(b), (d), (f), (h) hotMODIS at the forecast hours 5–8 (2300 UTC 13 Aug–0200 UTC 14 Aug 2001). Contours in (b),

(d), (f), and (h) show the precipitation difference (mm), hotMODIS � Ctrl.
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data adds mesoscale information and improves both the

positions and spacing of the various rainfall maxima.

Another way of verifying a precipitation forecast is

through use of the equitable threat score (ETS) and

bias statistics, both of which are based on a contingency

table approach (Wilks 1995; Colle et al. 1999). The con-

tingency table is shown in Table 3. It is a 2 � 2 matrix,

where each element of the matrix holds the number of

occurrences in which the model and the observations

did or did not reach a certain threshold amount of ac-

cumulated precipitation. Based on the contingency

table, a bias score is defined as

Bias �
F

O
�

A � B

A � C
, 
6�

where F is the number of forecasts at the observation

stations with precipitation equal or exceeding a given

threshold, and O is the number of occurrences in which

the observations meet or exceed the threshold. Thus,

the bias score indicates how well the model predicts the

frequency of occurrence of a given threshold, although

it provides no information on the accuracy of forecasts.

The bias of a perfect forecast equals 1. The ETS mea-

sures the skill in predicting a given threshold at a given

location and is defined by

ETS �
H � E

F � O � H � E
�

A � E

A � B � C � E
. 
7�

Here H is the number of forecast “hits,” a hit being

defined as an occurrence of both the simulated and

observed precipitation meeting or exceeding a given

precipitation threshold at a point. In (7), F and O are

defined as above for Eq. (6), and E is defined as

TABLE 3. Contingency table for ETS and bias skill score met-

rics. The letters A, B, C, and D represent the number of occur-

rences for which the model forecast precipitation or the observed

precipitations did (Yes) or did not (No) reach/exceed a given

threshold value.

For a given threshold

Observation

Yes No

Model Yes A B

No C D

FIG. 16. Same as in Fig. 15, but for experiment hotMODISfdda for forecast hours 5–8 (2300 UTC 13 Aug–0200

UTC 14 Aug 2001). Contours show the precipitation difference (mm), hotMODISfdda � Ctrlfdda.
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E �
FO

N
�


A � B�
A � C�

N
, 
8�

where N is the total number of observations utilized in

the verification process (Mesinger 1996).

Both the bias and ETS scores defined in (6) and (7)

only measure model accuracy based on the frequency

of occurrence at or above a threshold, and thus do not

measures the magnitude of the precipitation forecast

error. To examine the error magnitudes, the domain-

averaged absolute root-mean-square errors (rmses) be-

tween the forecast (Xi) and observed (Xo
i ) precipitation

are calculated by

RMSE ��1

N �
i�1

N


X
i
� Xi

o�2. 
9�

For the Ctrl, hotMODIS, Ctrlfdda, and hotMODIS-

fdda experiments, the ETS and bias scores are calcu-

lated using the definitions (6)–(8), for 6-h accumulated

rainfall at the thresholds 0.2, 1.0, 2.5, 5.0, and 8.0 mm.

Because gridded rainfall observations may introduce

noise as a result of the gridding process (e.g., see Fig. 3),

the ETS and bias scores are computed using only sta-

tion observations of precipitation. Accordingly, the

model forecast of the closest grid point to a station is

used in this study as the model forecast for the station.

The results are shown in Fig. 17.

During the first 6-h assimilation period, MODIS data

almost had no impact, except a slight increase of ETS

for the 1.0-mm threshold. The use of nudging, with or

without MODIS data, also adds little or no value to the

ETS and bias. The reason is that, during this period, the

model state is undergoing large changes from the in-

gestion of MODIS data and/or the nudging constraints

(at least for the given nudging coefficients), and there-

fore, the comparison is not well posed during this pe-

riod because of the adjustment process.

During the 6–12-h forecast period, which corre-

sponds to the first 6-h free forecast period, the use of

MODIS data alone in the assimilation process leads to

slightly greater skill in forecasting the larger threshold

amounts (2.5, 5.0, and 8.0 mm). When MODIS infor-

mation is used together with the Newtonian nudging,

greater skill results at all precipitation thresholds, and

the bias score approaches the perfect forecast value of

1.0.

In the second 6-h free forecast period (i.e., the 12–

18-h forecast period), there appears to be a continua-

tion of the improvement in precipitation forecast skill

associated with the assimilation of MODIS-retrieved

humidity in the simulation, particularly for the larger

thresholds. However, precipitation skill is not, in gen-

eral, as high as for the previous 6-h period. The poten-

tial impact of MODIS-retrieved humidity information

appears, at least on a domain-averaged basis, to de-

crease with increasing forecast length (see 24 h in Fig.

17), which is not necessarily surprising since other in-

fluences (upstream systems propagating into the model

domain) play progressively larger roles in the precipi-

tation forecast with time.

For the free forecast periods of 6–24 h in Fig. 17, a

Student’s t test has been performed to investigate the

statistical significance of the MODIS data assimilation.

The ETS and bias scores from both hotMODIS and

hotMODISfdda are tested against those scores from

Ctrl and CtrlFdda, including all the rainfall thresholds.

The test result shows a significant improvement of the

ETS score at the 95% (� � 0.05) confidence level, and

the absolute value of (bias � 1.0) is significantly re-

duced, which means the bias scores approaching to the

perfect forecast value of 1.0, at the 85% confidence

level.

As noted above, in order to determine if there are

systematic errors in the magnitude of the precipitation

forecast, other statistics such as the rmse are needed.

Figure 18 illustrates rmses for the various experiments

calculated against the station observations, using (9).

Clearly, the experiments utilizing MODIS data, with or

without nudging, are associated with lower rmses dur-

ing the free forecast period, most notably at the 12- and

18-h forecast times. The Student’s t test on the rmse for

the total 18-h free forecast period indicates that

MODIS data assimilation improved the forecast of pre-

cipitation magnitude, at the 80% confidence level.

Taken together with the previous results, it could be

argued that the assimilation of MODIS humidity im-

proves not only the frequency, but also the magnitude

of the model precipitation forecast.

d. Other atmospheric state variables

Previous studies (e.g., Harms et al. 1992; Kalnay

2003) have often shown that while inclusion of particu-

lar observations or data assimilation techniques im-

proves the forecast skill for a particular variable of in-

terest, the forecast skill for other variables is either

unchanged or degraded. As such, it is important to de-

termine if the use of MODIS data and the hot start

techniques have favorable or negative impacts on the

forecast of other atmospheric variables. Therefore, in

this subsection we examine this issue in the context of

atmospheric state variables at the surface level. The

greater sample size of surface observations (about 500)

instead of upper-air observations (less than 25 in the

domain) assures for statistically confident results. The

variables considered are 2-m temperature (T2), 2-m
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FIG. 17. (left) ETS and (right) bias score of MM5 forecasts of 6-h accumulated precipitation

against station observations for the thresholds (top to bottom) 0.2, 1.0, 2.5, 5.0, and 8.0 mm.
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relative humidity (RH2), 10-m zonal and meridional

winds (U10, V10), and sea level pressure (SLP). The

rmse is calculated between the model forecast and the

surface observations using (9). Another statistic calcu-

lated is the mean bias (MB) of the forecasts (Xi) com-

pared to the observations (Xo
i ), defined by (N denotes

the number of observations):

MB �
1

N �
i�1

N


Xi � Xi
o�. 
10�

Figure 19 shows domain-averaged rmse and MB sta-

tistics. During the first 6-h (i.e., the “preforecast”) pe-

riod, the assimilation of MODIS data are associated

with an increase of rmse in the RH2 field, which is an

acceptable result, since the model state variables are

undergoing adjustment processes while assimilation of

data occurs during this period. Although the assimila-

tion has led to an increased rmse in the preforecast

period, the rmse in the 6–18-h free forecast period (Fig.

19) is generally reduced in the experiments with

MODIS data assimilated, consistent with the results in

previous sections. Specifically, the rmse in RH2 during

the first two 6-h free forecast periods (forecast hours 12

and 18) is reduced, as are the positive mean biases of

RH2 during these two periods. The t-test results indi-

cate that the experiments with MODIS data assimilated

significantly, at the confidence level of 99%, improved

the rmse metric in this period. After 12 h of free fore-

cast (see the 24-h period in Fig. 19), the rmse and MB

scores increased in RH2 for experiments with MODIS

data assimilated. Again, this is most likely due to the

fact that the impact of the MODIS information in-

gested in the preforecast period has faded out while

other influences (e.g., the boundary conditions) are

more significant.

The surface temperature field does not show signifi-

cant changes in rmse; however, the MB has been sig-

nificantly reduced at the 95% confidence level. This

reduced cold bias relates to the improved wind fields

from assimilating the MODIS data, indicated by rmse

and MB metrics. During the entire free forecast period,

the rmse of the zonal and meridional winds are less in

the experiments utilizing MODIS data. Moreover, the

MODIS data assimilation also appears to be associated

with reduced positive mean biases. The t tests on U and

V also indicate that the improvements in rmse are sig-

nificant at the 95% and 99% confidence levels, and that

the improvements in MB are significant at the 85% and

97% confidence levels, respectively. The reduced posi-

tive mean biases indicates that the two simulations uti-

lizing MODIS data partially correct the tendency for

the propagation of the precipitation systems to be too

rapid (eastward and northward) in experiments Ctrl

and hotMODIS. The use of Newtonian nudging (e.g.,

experiment hotMODISfdda) provides even further im-

provement in this regard. However, the nudging experi-

ments CtrlFdda and hotMODISfdda caused a degree of

degradation in the 24-h wind forecast. The reason may

be that only the gridded analysis nudging is used in this

study so the model relaxes to the analyzed field during

integration. Errors of the gridded analysis might have

been carried into the model results. One way to over-

come this problem is to apply observation nudging in

tandem with the analysis nudging so that the model

evolution is also constrained by station observations.

By contrast, the assimilation of MODIS humidity has

little impact on surface temperature and sea level pres-

sure fields; the surface temperature result, however,

suggests that there is little adverse impact to the simu-

lated surface sensible and latent heat flux exchanges via

the introduction of MODIS data, an important consid-

eration. It would not be desirable for a humidity ad-

justment to change the surface flux balance, which

would occur if serious impacts to the temperature were

noted.

Another phenomenon shown in Fig. 19’s tempera-

ture and relative humidity fields is the likely diurnal

trend that is associated with the local synoptic environ-

ment. As discussed by Mass et al. (2002), the diurnal

trend exists in the MM5 forecast skills even when

higher horizontal resolution is applied.

Now, consider Fig. 1. In the cloudy area, CtrlC0 has

large errors in precipitable water and precipitation

mass and needs at least 1 h to adjust, while hotMODC0

catches valuable information from satellite data and

MM5 forecast. In addition, in the clear area, while the

continuous run ContC-6 maintains more precipitation

mass, the hotMODC0 run gets information from the

FIG. 18. Domain-averaged RMSE, for experiments Ctrl, hotMODIS,

Ctrlfdda, and hotMODISfdda of 6-h accumulated precipitation

forecasts verified against station observations. Key provided in

figure.
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FIG. 19. Domain-averaged (left) RMSE and (right) MB for experiments Ctrl, hotMODIS,

Ctrlfdda, and hotMODISfdda of forecasted (top to bottom) surface 2-m temperature (T2),

10-m winds (U10, V10), 2-m relative humidity (RH2), and SLP. Key provided in figure.

3472 M O N T H L Y W E A T H E R R E V I E W — S P E C I A L S E C T I O N VOLUME 133



satellite and goes with CtrlC0. Experiment CtrlC0 pro-

duces false cloud water and ice, which is not produced

in hotMODC0.

5. Extensive tests and results

The results of assimilating MODIS-retrieved cloud

and humidity profiles in the preliminary test case are

promising. However, in order to obtain a general con-

clusion about the proposed method and the MODIS

data assimilation, further extensive testing is necessary.

An additional 16 simulation tests focusing on two 3-day

periods, one in winter and one in summer, have been

conducted. The results of these tests are presented in

this section.

a. Description of test cases

Winter and summer are the two major seasons at

high latitudes, so the extensive test cases are selected

from both seasons. The 3-day period of 19–22 July 2002

is chosen for summer, while the 10–13 February 2003

period is chosen for winter. Similar to the preliminary

test case, each case will consist of a 24-h forecast simu-

lation. However, the preforecast period in these cases

consists of the first 12 h, to allow for more satellite data

to be ingested. As a result, during the preforecast pe-

riod, the model should be influenced by more realistic

cloud and humidity distributions and theoretically be

constrained closer to the real atmosphere. Further, the

utility of the simulation for diagnostic purposes during

the data-ingest period can be investigated. Due to the

high degree of nonlinearity of atmospheric models,

small perturbations of initial conditions can produce

large differences on forecasts (e.g., Crook 1996; Martin

and Xue 2004). In addition, a model that is initialized at

different times could also result in different forecast

solutions (Bua 2003). To diversify the numerical experi-

ments, eight separate 24-h simulations from each 3-day

period, each initializing 6 h apart, are conducted. For

the winter cases, the initial times are 0600, 1200, and

1800 UTC 10 February 2003; 0000, 0600, 1200, and 1800

UTC 11 February 2003; and 0000 UTC 12 February

2003. For the summer cases, the initial times are 0600,

1200, and 1800 UTC 19 July 2002; 0000, 0600, 1200, and

1800 UTC 20 July 2002; and 0000 UTC 21 July 2002.

Four experiments (Ctrl, hotMODIS, Ctrlfdda, and

hotMODISfdda as defined in Table 2) have been per-

formed for each initial time.

b. Results

For obtaining a general conclusion about the method

and data, we focus here on the impacts of the MODIS

data assimilation, using the hot start technique, on the

forecast of model state variables and precipitation.

For these 16 cases, the model results are verified

against both the MM5 analyses and station observa-

tions. Verification against the analyses, particularly for

the state variables, is useful in determining the impacts

of the MODIS data assimilation on the larger meteo-

rological scales, while verification against the observa-

tions provides information on the impacts relative to

smaller-scale precipitation processes. For the verifica-

tion against the MM5 analysis, the rmse and MB scores

have also been computed for the three-dimensional

temperature (T), wind (U, V, W), water vapor mixing

ratio (Q), and pressure perturbation (PP) fields, as well

as for the two-dimensional SLP field.

For ease of comparison, and to clearly show the dif-

ferences between experiments, a skill score (SS) based

on the rmse is defined following Wilks (1995) as

SS � �RMSE � RMSEctrl

0 � RMSEctrl
�100%

� �1 �
RMSE

RMSEctrl
�100%, 
11�

where RMSEctrl is the rmse between the control experi-

ment and the analysis for verification against the MM5

analysis; RMSE is the corresponding rmse between the

particular experiment in question (excluding the Con-

trol) and the analysis. According to this definition, the

skill score SS is interpreted as a percentage improve-

ment of the particular experiment in question over the

control forecasts for the variable of interest.

The SS metrics that are computed compare the fol-

lowing: 1) the hotMODIS experiment to the Ctrl ex-

periment, and 2) the hotMODISfdda experiment to the

Ctrlfdda experiment. These metrics can be used to

study the impacts of MODIS assimilation using the hot

start approach. Since there are 16 simulation study pe-

riods (8 for the July 2002 case, 8 for the February 2003

case), 32 SS metrics, providing information on the ben-

efit of the use of the MODIS hot start technique, result

for each variable. In Table 4 we present the average

values of the SS metric across these cases, stratified into

the values for the winter and summer cases, respec-

tively. Due to the nature of the assimilation approach in

which the model humidity field is adjusted according to

satellite retrievals, there are large negative skill scores

for the water vapor mixing ratio Q for both winter and

summer cases. These negative skill scores indicate the

percentage that Q has been changed during the humid-

ity adjustment stage and the effect of this change on

later times. This is expected to happen when verifying
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against the MM5 analysis that is providing the Ctrl ex-

periment initial and boundary conditions. Meanwhile,

according to the definition (11), the SS scores are cal-

culated with reference to the rmse of a control experi-

ment. Thus, the large negative SS values for Q of a

hotMODIS experiment actually imply the difference

between the MM5 analysis and the MODIS retrieved

values (i.e., how much of the MM5-analyzed Q has

been adjusted by assimilating the MODIS data). Also

as we can see from Table 4, the magnitudes of those

large negative SS values shown for the preforecast pe-

riods’ Q decrease gradually with time during free fore-

cast periods, consistent with the fact that no additional

humidity adjustment is occurring via the hot start pro-

cess.

The skill scores show that, on a gross average scale

(3D column and domain averages), the free forecasts of

T, U, W, and SLP are slightly improved for the winter

cases with the use of MODIS data in a hot start mode.

By contrast, the forecasts of V and PP are degraded.

However, for the summer cases, the forecast of all vari-

ables except the water vapor mixing ratio Q are im-

proved through the assimilation of MODIS data. Be-

cause the mixing ratio Q is the variable we adjust in the

hot start process, as mentioned above, verification

against the MM5 analysis only indicates at what extent

(percentage) that Q is modified. Its forecast skill can

only be verified against station observations.

Table 5 lists the skill scores for the surface variables

T2, U10, V10, RH2, and SLP verified using surface

station observations. To summarize, significant degra-

dation is evident with the use of a MODIS hot start

approach in the winter case, while significant improve-

ment is apparent (as evidenced by large positive SS

values) in most surface variables across the forecast

period for the summer case. The degradation for the

winter case raises questions for future study related to

satellite data assimilation. First, the winter atmospheric

environment at high latitudes is very different from

summertime. For example, due to the extremely cold

temperatures, less water clouds but more ice clouds are

present at lower levels. Therefore, for this study, the

relative humidity thresholds derived from a summer

case may not be suitable for this case or other winter

cases. Other possible factors related to the poor per-

formance include snow cover and sea ice that may af-

fect the MODIS data quality, and poor simulation of

complex boundary layer structures, which in turn affect

the surface simulation, and correspondingly, the verifi-

cation results.

For the precipitation verification, ETS and bias are

calculated for each case. Average ETS and bias scores

are shown in Fig. 20 for the summer cases and in Fig. 21

for the winter cases. For summer precipitation, Fig. 20

shows that the assimilation of MODIS data has signifi-

cantly improved the skills in simulating the precipita-

tion frequencies during the assimilation (0–12 h) pe-

riod; the 99% confidence level is satisfied in a t test.

TABLE 4. Domain and case-averaged SS metric (%) indicating the relative improvement (positive values) or degradation (negative

values) of forecasts from experiments hotMODIS and hotMODISfdda over forecasts from experiments Ctrl and Ctrlfdda, respectively,

verified against the MM5 analyses.

Winter Summer

6 h 12 h 18 h 24 h 6 h 12 h 18 h 24 h

T 0.80 1.28 0.64 0.64 T 0.40 1.80 3.62 4.10

U �0.25 �0.20 0.17 0.33 U 0.07 0.21 0.71 0.76

V 0.01 �0.01 �0.04 �0.31 V �0.01 �0.06 0.64 0.48

W �0.57 �0.19 0.68 0.23 W 0.32 0.93 2.54 1.03

Q �32.28 �31.86 �15.99 �7.66 Q �32.99 �27.42 �14.69 �9.65

PP 0.03 0.01 �0.15 �0.45 PP 0.28 0.72 0.84 1.45

SLP �0.02 0.34 0.76 0.83 SLP 0.28 1.58 2.46 3.50

TABLE 5. Same as in Table 4, but verified against station observations of surface variables.

Winter Summer

6 h 12 h 18 h 24 h 6 h 12 h 18 h 24 h

T2 �0.18 �1.47 �1.29 �0.60 T2 1.34 3.96 3.39 3.43

U10 �0.54 �0.94 �0.66 0.07 U10 �0.47 �0.20 0.44 1.70

V10 �0.24 �0.55 �0.05 0.91 V10 �0.26 0.62 1.60 0.90

RH2 1.57 1.08 �0.66 �0.07 RH2 11.10 16.83 12.66 8.51

SLP �0.21 �0.01 0.55 �1.12 SLP �0.38 0.43 3.03 4.33
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During the first 6-h free forecast (forecast hour 18)

periods, the precipitation forecast skill (ETS) is im-

proved at the 90% confidence level for all the four

precipitation thresholds within the experiments that the

MODIS data are assimilated. No significant improve-

ment is shown for the 12-h free forecast (forecast error

24) ETS scores. The relative benefit of the MODIS data

at the 24-h forecast time is less, as the external bound-

ary conditions from the start of the forecast (and their

inherent errors) now influence a significant part of the

FIG. 20. (left) ETS and (right) bias scores averaged over the domain for the 16 summer case

experiment hotMODIS and hotMODISfdda realizations, pertaining to 6-h forecasts of accu-

mulated precipitation verified against station observations for the thresholds (top to bottom)

0.2, 1.0, 2.5, and 5.0 mm.
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domain. However, the bias scores’ t test shows signifi-

cant improvement at the 99% confidence level for both

6-h free forecast periods.

For the winter cases (Fig. 21), application of MODIS

data provides a significant improvement on simulation

skills indicated by the ETS score, which is at the

99% confidence level in the t test. For the first 6-h free

forecast period, ETS scores have benefited from the

MODIS data assimilation; confidence level of 97% is

shown in the t test. However, the second 6-h free fore-

cast did not benefit from the MODIS data assimilation.

6. Summary and conclusions

This paper describes research in which a “hot start”

technique was developed for the MM5 model to dy-

FIG. 21. Same as in Fig. 20, but for the 16 winter case experiment hotMODIS and

hotMODISfdda realizations.
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namically assimilate MODIS-retrieved cloud properties

and humidity profiles. This hot start assimilation ap-

proach has been studied for high-latitude rain events.

In addition to a detailed study and analysis for a pre-

liminary test case, the results of extensive experiments

have been presented in order to support more general

conclusions as to the benefit of this technique. The fea-

sibility of both the assimilation approach and the ben-

efit to the simulated/forecast fields has been demon-

strated.

Ingestion of real-time MODIS-retrieved cloud and

clear-air humidity information results in commensurate

adjustments to the MM5 humidity field. The MODIS

data ingestion impacts the MM5 cloud fields from both

a microphysical and a macrophysical standpoint. Micro-

physically, the humidity adjustments impact the cloud

hydrometeor fields. Macrophysically, the adjustments

are manifested in the horizontal cloud coverage distri-

bution and the cloud-top temperature.

The impact of the MODIS hot start scheme on short-

term (6–12 h) forecasts of precipitation and other at-

mospheric variables has been the key focus of this pa-

per. The primary conclusions of the present research

are as follows:

• It is feasible to introduce MODIS-retrieved cloud-

top properties and humidity profile information into

the MM5 model through a hot start humidity adjust-

ment procedure that does not disrupt either model

stability or evolutionary continuity.

• The introduction of high-resolution MODIS informa-

tion produced more accurate relative humidity fore-

casts through modification to the model water mixing

ratio field, which further resulted in increased meso-

scale structure in the cloud hydrometeor and precipi-

tation fields.

• The opportunistic ingestion of MODIS data at its

observation time into the model provides temporally

accurate information, leading to significantly im-

proved 6-h model precipitation forecasts on not only

the frequency of occurrences, but also the magnitude

of precipitation amounts for all the summer and win-

ter cases. Some improvement has also been shown on

12-h precipitation forecasts.

• Verification against three-dimensional analyses indi-

cates that the model forecasts of temperature, wind,

pressure perturbation, and sea level pressure are all

improved for the summer cases, as indicated by an

average 2% increase in forecast skill over all atmo-

spheric state variables over all summer cases. A slight

improvement for the winter cases is shown by a 0.5%

increase in forecast skill averaged over all atmo-

spheric-state variables over all winter cases.

• Verification against surface station observations in-

dicates that the model forecasts of 2-m temperature,

2-m relative humidity, 10-m winds, and sea level pres-

sure are all improved for the summer cases, as indi-

cated by a 4% improvement in forecast skill averaged

over all surface variables and all summer cases. The

largest improvement in forecast skill is for 2-m rela-

tive humidity (12%). There is significant degradation

in forecast skill for the winter cases.

The above points suggest that the ingestion and as-

similation of MODIS data provides added value to not

only on precipitation forecasts from the MM5 modeling

system, but also for forecasts of other atmospheric vari-

ables. However, the improvement for the winter cases

was substantially less than for the summer cases. One

possible reason for this disparity is that the relative

humidity thresholds used for determining the humidity

adjustment were empirically derived to apply primarily

to warm season conditions (Fan and Tilley 2002). Thus,

the seasonal variation of clouds and humidity at high

latitude should be taken into account for future appli-

cations of the method, especially for the winter season.

In agreement with previous studies, the comparison

between experiments utilizing the standard MM5 New-

tonian nudging technique with the experiments that did

not suggested (e.g., Fan and Tilley 2001) that NWP

forecasts in high latitudes can benefit from the nudging

technique. Further, a comparison of two experiments—

hotMODIS and hotMODISfdda—that combined the

two data assimilation methodologies indicates that

forecast skill is further improved by the joint applica-

tion of the two methodologies. This result implies that

other products derived through satellite retrieval tech-

niques could be assimilated via the hot start approach

introduced here, Newtonian nudging, or even a varia-

tionally based scheme such as 3DVAR, and lead to a

continued improvement in model forecast skill for high-

latitude applications. For example, cloud drift and wa-

ter vapor drift wind fields (Key et al. 2003) could be

ingested to help maintain the proper advective forcing

for the cloud fields, and subsequently lead to improved

forecasts. Other possibilities are the precipitable water

and wind retrievals from the NASA/NOAA Television

Infrared Observation Satellite (TIROS) Operational

Vertical Sounder (TOVS) polar pathfinder, which pro-

vides high-resolution complementary data to the sparse

rawinsonde observation network in the polar regions

(Francis 2002; Groves and Francis 2002). Combined uti-

lization of all these data sources would be valuable for

future studies of weather and climate in the polar

regions, especially for an Arctic regional reanalysis pro-

gram. Such a reanalysis program would provide dy-
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namically consistent fields that are sparse or problem-

atic in direct observations (e.g., precipitation, evapo-

transpiration, radiation, and clouds) at higher spatial

and temporal resolution, and with greater reliability,

than from current reanalyses (Serreze et al. 2003; Hines

et al. 2000).

While the ability of the MODIS hot start approach

has been demonstrated throughout this paper to have a

positive influence on the moisture and cloud fields, cor-

recting areas that are either too dry or too moist in the

model simulation, there are still ways in which the

scheme can be improved and optimized. One of these

ways is related to the fact that when water mass is

changed at the grid point (via adjustment of the water

vapor mixing ratio according to relative humidity pro-

files determined), there is the potential for horizontal

diffusion within the model [formulated using a fourth-

order scheme, see Grell et al. (1994)] to interact with

the adjustment process and affect the desired formation

or dissipation of cloud.

An example of such an occurrence is illustrated in

Fig. 22, which focuses on a grid point near the lower

Yukon Valley (cf. Fig. 3d), in the mid- to upper tropo-

sphere (sigma level 20). This grid point is indicated

cloudy at 0000 UTC 14 August 2001 by the MODIS

observation; and the water vapor mixing ratio has been

adjusted from sigma level 18 to 37 in experiment

hotMODIS. Shown in the figure are, for the Ctrl and

hotMODIS experiments, respectively, the contribution

to the water vapor mixing ratio tendencies from hori-

zontal diffusion as well as the evolution of the water

mixing ratio and relative humidity for 1 h after the

MODIS data insertion time (at 360 min into the fore-

cast simulation). In addition to a minor initial gravity

wave–type oscillation (which appears in virtually all

fields due to the addition of water mass) in experiment

hotMODIS, Fig. 22a indicates that a significant nega-

tive tendency in the water vapor mixing ratio due to

diffusion within the first few minutes after insertion.

The diffusive tendency, though on a relatively longer

time scale compared with the gravity wave oscillation,

still becomes less pronounced with time and is minimal

approximately 22 min after the adjustment occurs.

Though neither the gravity wave nor diffusion effects

are very desirable, they do not negate the overall ben-

efit of the adjustment, as illustrated by the actual values

and evolution of vapor mixing ratio during the same

period in Fig. 22b. The adjustment process in the hot-

MODIS experiment results in a nearly 30% increase of

the water vapor mixing ratio, which is followed by a

10% loss during the period that the diffusion effect is

significant. The 10% loss still allows for the modified

water vapor mixing ratio (and by extension the relative

humidity) to be much higher than is the case in the Ctrl

simulation, and the relative humidity values (Fig. 22c)

never drop below the critical value of RHclr; as such the

cloud that would form in this case remains intact,

though some redistribution of water mass to adjacent

points has likely occurred via diffusion.

The example in Fig. 22 is a relatively extreme one in

that it considers a grid point where a water vapor mix-

ing ratio adjustment is made with MODIS data in iso-

lation from its neighbors. In many instances, adjust-

ments occur for a cluster of neighboring points, thus the

diffusion effect would expected to be less than depicted

in Fig. 22. Nonetheless, this effect does lead to a slightly

suboptimal utilization of the moisture information, and

in future work we intend to develop an appropriate

method to mitigate this effect without introducing other

artificialities into the model evolution.

FIG. 22. (a) Tendencies for the water vapor mixing ratio Q (kg

kg�1 s�1) due to diffusion in the Ctrl and hotMODIS experiments,

for grid point (I, J ) � (77, 85) at sigma level 20; (b), (c) evolutions

in Q (kg kg�1) and relative humidity (RH, %), respectively, dur-

ing the same period, at the same point and vertical level, for

experiments Ctrl and hotMODIS. The RH thresholds RHcld and

RHclr for level 20 are shown in (c) with dash–dotted and dashed

lines, respectively. The insertion of MODIS data occurs at 360

min into the forecast simulation in experiment hotMODIS; and

the plots indicate the time period of 360–428 min.

3478 M O N T H L Y W E A T H E R R E V I E W — S P E C I A L S E C T I O N VOLUME 133



Acknowledgments. The study is supported by the

University Partnering for Operational Support (UPOS)

Program of the Department of Defense, administered

by Johns Hopkins University. Thanks to the two anony-

mous reviewers for the constructive suggestions and

comments. Thanks to Xiande Meng and Jeremy

Krieger for data assistance; and to the UAF GINA

facility and Kevin Engle for MODIS assistance. The

data used in this study were acquired as part of the

NASA’s Earth Science Enterprise. The algorithms

were developed by the MODIS Science Teams and the

data were processed by the MODIS Adaptive Process-

ing System (MODAPS) and Goddard Distributed Ac-

tive Archive Center (DAAC), and are archived and

distributed by the Goddard DAAC.

REFERENCES

Bayler, G. M., R. M. Aune, and W. H. Ramond, 2000: NWP cloud

initialization using GOES sounder data and improved mod-

eling of nonprecipitating clouds. Mon. Wea. Rev., 128, 3911–

3920.

Bua, B., 2003: Short-range ensemble forecasts and initial condi-

tions: The 6–7 January 2002 Northeast snowstorm. Bull.

Amer. Meteor. Soc., 84, 562–566.

Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface

hydrology model with the Penn State/NCAR MM5 modeling

system. Part I: Model description and implementation. Mon.

Wea. Rev., 129, 569–585.

Colle, B. A., K. J. Westrick, and C. F. Mass, 1999: Evaluation of

MM5 and Eta-10 precipitation forecasts over the Pacific

Northwest during the cool season. Wea. Forecasting, 14, 137–

154.

Cressman, G. P., 1959: An operational objective analysis system.

Mon. Wea. Rev., 87, 367–374.

Crook, N. A., 1996: Sensitivity of moist convection forced by

boundary layer processes to low-level thermodynamic fields.

Mon. Wea. Rev., 124, 1767–1785.

Dudhia, J., 1989: Numerical study of convection observed during

the winter monsoon experiment using a mesoscale two-

dimensional model. J. Atmos. Sci., 46, 3077–3107.

——, D.O. Gill, K. Manning, W. Wang, and C. Bruyere, 2005:

PSU–NCAR MM5 Tutorial Class Notes and User’s Guide:

MM5 Modeling System Version 3. 266 pp � appendixes.

[Available online at http://www.mmm.ucar.edu/mm5/

documents/MM5_tut_Web_notes/tutorialTOC.htm.]

Fan, X., and J. S. Tilley, 2001: Application of the Bratseth scheme

for high latitude intermittent data assimilation using the PSU/

NCAR MM5 mesoscale model. Preprints, 18th Conf. on

Weather Analysis and Forecasting/14th Conf. on Numerical

Weather Prediction, Ft. Lauderdale, FL, Amer. Meteor. Soc.,

CD-ROM, JP1.11.

——, and ——, 2002: The impact of assimilating AVHRR-derived

humidity on high-latitude MM5 forecasts. Preprints, 15th

Conf. on Numerical Weather Prediction, San Antonio, TX,

Amer. Meteor. Soc., CD-ROM, P1.4.

——, and ——, 2003: Tests of a satellite-based cloud initialization

scheme for high-latitude application in MM5. Preprints, Sev-

enth Conf. on Polar Meteorology and Oceanography, Hyan-

nis, MA, Amer. Meteor. Soc., CD-ROM, 9.6.

Francis, J. A., 2002: Validation of reanalysis upper-level winds in

the Arctic with independent rawinsonde data. Geophys. Res.

Lett., 29, 1315, doi:10.1029/2001GL014578.

Garand, L., and S. Nadon, 1998: High-resolution satellite analysis

and model evaluation of clouds and radiation over the Mac-

kenzie Basin using AVHRR data. J. Climate, 11, 1976–1996.

Grell, G. A., 1993: Prognostic evaluation of assumptions used by

cumulus parameterizations. Mon. Wea. Rev., 121, 764–787.

——, J. Dudhia, and D. R. Stauffer, 1994: A description of the

fifth-generation Penn State/NCAR mesoscale model (MM5).

NCAR Tech. Note NCAR/TN-398�ST, 117 pp.

Groves, D. G., and J. A. Francis, 2002: Moisture budget of the

Arctic atmosphere from TOVS satellite data. J. Geophys.

Res., 107, 4391, doi:10.1029/2001JD001191.

Haag, W., B. Karcher, J. Strom, A. Minikin, J. Ovarlez, U. Loh-

mann, and A. Stohl, 2003: Freezing thresholds and cirrus

cloud formation mechanisms inferred from in situ measure-

ments of relative humidity. Atmos. Chem. Phys., 3, 1791–

1806.

Harms, D. E., S. Raman, and R. V. Madala, 1992: An examination

of four-dimensional data-assimilation techniques for numeri-

cal weather prediction. Bull. Amer. Meteor. Soc., 73, 425–440.

Hines, K. M., D. H. Bromwich, and G. J. Marshall, 2000: Artificial

surface pressure trends in the NCEP–NCAR reanalysis over

the Southern Ocean and Antarctica. J. Climate, 13, 3940–

3952.

Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer verti-

cal diffusion in a medium-range forecast model. Mon. Wea.

Rev., 124, 2322–2339.

Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and

Predictability. Cambridge University Press, 341 pp.

Key, J., D. Santek, C. S. Velden, N. Bormann, J.-N. Thepaut, L. P.

Riishojgaard, Y. Zhu, and W. P. Menzel, 2003: Cloud-drift

and water vapor winds in the polar regions from MODIS.

IEEE Trans. Geosci. Remote Sens., 41, 482–492.

King, M. D., and Coauthors, 2003: Cloud and aerosol properties,

precipitable water, and profiles of temperature and humidity

from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442–

458.

Lazarus, S. M., S. K. Krueger, and S. A. Frisch, 1999: An evalua-

tion of the Xu–Randall cloud fraction parameterization using

ASTEX data. Preprints, 13th Symp. on Boundary Layers and

Turbulence, Dallas, TX, Amer. Meteor. Soc., 582–585.

Lipton, A. E., 1993: Cloud shading retrieval and assimilation in a

satellite-model coupled mesoscale analysis system. Mon.

Wea. Rev., 121, 3062–3081.

——, and G. D. Modica, 1999: Assimilation of visible-band satel-

lite data for mesoscale forecasting in cloudy conditions. Mon.

Wea. Rev., 127, 265–278.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos.

Sci., 20, 130–141.

Martin, W. J., and M. Xue, 2004: Initial convection sensitivity

analysis of a mesoscale forecast using very-large ensembles.

Preprints, 20th Conf. on Weather Analysis Forecasting/16th

Conf. on Numerical Weather Prediction, Seattle, WA, Amer.

Meteor. Soc, CD-ROM, J8.2.

Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does

increasing horizontal resolution produce more skillful fore-

cast? Bull. Amer. Meteor. Soc., 83, 407–430.

——, and Coauthors, 2003: Regional environmental prediction

over the Pacific Northwest. Bull. Amer. Meteor. Soc., 84,

1353–1366.

Menzel, W. P., B. A. Baum, K.I. Strabala, and R. A. Frey, 1997:

DECEMBER 2005 F A N A N D T I L L E Y 3479



Cloud top properties and cloud phase algorithm theoretical

basis document. NASA GSFC, 61 pp. [Available online at

http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod04.pdf.]

——, S. W. Seemann, J. Li, and L. E. Gumley, 2002: MODIS at-

mospheric profile retrieval algorithm theoretical basis docu-

ment. NASA GSFC, 35 pp. [Available online at http://modis-

atmos.gsfc.nasa.gov/_docs/atbd_mod07.pdf.]

Mesinger, F., 1996: Improvements in quantitative precipitation

forecasts with the Eta regional model at the National Centers

for Environmental Prediction: The 48-km upgrade. Bull.

Amer. Meteor. Soc., 77, 2637–2649.

Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American

Institute of Physics, 520 pp.

——, and ——, 1996: The climatology of relative humidity in the

atmosphere. J. Climate, 9, 3443–3463.

Powers, J. G., A. J. Monaghan, A. M. Cayette, D. H. Bromwich,

Y.-H. Kuo, and K. W. Manning, 2003: Real-time mesoscale

modeling over Antarctica: The Antarctic mesoscale predic-

tion system. Bull. Amer. Meteor. Soc., 84, 1533–1545.

Randall, D. A., J. A. Coakley Jr., D. H. Lenschow, C. W. Fairall,

and R. A. Kropfli, 1984: Outlook for research on subtropical

marine stratification clouds. Bull. Amer. Meteor. Soc., 65,

1290–1301.

Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit

forecasting of supercooled liquid water in winter storms using

the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124,

1071–1107.

Ruggiero, F. H., G. D. Modica, and A. E. Lipton, 2000: Assimila-

tion of satellite imager data and surface observations to im-

prove analysis of circulations forced by cloud shading con-

trasts. Mon. Wea. Rev., 128, 434–448.

Serreze, M. C., M. P. Clark, and D. H. Bromwich, 2003: Monitor-

ing precipitation over the Arctic terrestrial drainage system:

Data requirements, shortcomings and applications of atmo-

spheric reanalysis. J. Hydrometeor., 4, 387–407.

Slingo, A., 1990: Sensitivity of the Earth’s radiation budget to

changes in low clouds. Nature, 343, 49–51.

Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional

data assimilation in a limited area mesoscale model. Part I:

Experiments with synoptic-scale data. Mon. Wea. Rev., 118,

1250–1277.

Strom, J., and Coauthors, 2003: Cirrus cloud occurrence as func-

tion of ambient relative humidity: A comparison of observa-

tions obtained during the INCA experiment. Atmos. Chem.

Phys., 3, 1807–1816.

Tilley, J. S., and D. H. Bromwich, 2005: Short-to-medium range

numerical weather prediction in the Arctic and Antarctic.

Bull. Amer. Meteor. Soc., 86, 983–988.

——, X. Fan, and J. E. Walsh, 2005: Application of a Mesoscale

3DVAR system at high latitudes as a step towards Arctic

Reanalysis. Preprints, Eighth Conf. on Polar Meteorology

and Oceanography, San Diego, CA, Amer. Meteor. Soc.,

CD-ROM, JP2.11.

Wang, J., and J. A. Curry, 1998: Relative humidity variations in

the tropical western Pacific and relations with deep convec-

tive clouds. Proc. Eighth Atmospheric Radiation Measure-

ment (ARM) Science Team Meeting, Tucson, AZ, ARM, 787–

790.

——, W. B. Rossow, and Y.-C. Zhang, 2000: Cloud vertical struc-

ture and its variations from a 20-year global rawinsonde

dataset. J. Climate, 13, 3041–3056.

Wilks, D., 1995: Statistical Methods in the Atmospheric Sciences:

An Introduction. Academic Press, 467 pp.

Xu, K.-M., and D. A. Randall, 1996: A semi-empirical cloudiness

parameterization for use in climate models. J. Atmos. Sci., 53,

3084–3102.

Yi, Y., P. Minnis, J. Huang, J. K. Ayers, D. R. Doelling, M. M.

Khaiyer, M. L. Nordeen, 2004: Cloud detection using mea-

sured and modeled state parameters. Preprints, 13th Conf. on

Satellite Oceanography and Meteorology, Norfolk, VA,

Amer. Meteor. Soc., CD-ROM, P6.11.

Yucel, I., W. J. Shuttleworth, R. T. Pinker, L. Lu, and S. So-

rooshian, 2002: Impact of ingesting satellite-derived cloud

cover into the Regional Atmospheric Modeling System. Mon.

Wea. Rev., 130, 610–628.

——, ——, X. Gao, and S. Sorooshian, 2003: Short-term perfor-

mance of MM5 with cloud-cover assimilation from satellite

observations. Mon. Wea. Rev., 131, 1797–1810.

3480 M O N T H L Y W E A T H E R R E V I E W — S P E C I A L S E C T I O N VOLUME 133




