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teractions is of great importance in the
study of global energy and water cycles. Much
attention has been focused on the examination
of energy partitioning and budger (Kim et al,,
2000a and b) and the hydrological cycle (Nagai
et al., 2000), but few presentations have been
made regarding required soil thermal properties.
While hydrometeorological modelers focus on
distinguishing conductive processes from con-
vective processes in soil, micrometeorologists
usually consider only apparent soil thermal diffu-
sivity in their models. Micrometeorologists de-
scribe atmospheric motion in much detail; but
their descriptions of hydrographic processes lack
sophistication. As a result the modeling of energy
components and surface temperature by some
land surface schemes are disappointing. For ex-
ample, for reasons that are not yet clear, the Sim-
ple Biosphere Model version 2 (SiB2) tends to
overestimate sensible heat flux and surface tem-
perature while underestimating latent heat flux
(Zhang, et al., 1996; Schelde et al., 1997; Doran
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The equation of one-dimensional thermal conduction and convection
in soil is solved analytically by applying the traditional harmonic method
(HM) and the Laplace transform method (LTM). A simple method to de-
termine accurate values of soil heat diffusivity and liquid water flux den-
sity is given. Using this method, we determined the soil thermal diffu-
sivity, k = 0.85 X 1076 m? s~!, and liquid water flux density, W = 4.3 X
1076 m? s™! m~2, for the Naqu site in the summer of 1998. An experi-
mental evaluation of the proposed methods is also given. (Soil Science
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et al., 1998). It is, therefore, crucial to determine
a better way to describe soil thermal processes.
The distribution of soil temperature and
moisture content are key variables in the investi-
gation of'soil thermal properties. Areas of concern
include thermal conductivity, thermal diffusivicy,
and volumetric heat capacity. Volumetric heat ca-
pacity can be derived easily from soil components
(Van Wijk, 1963). Thermal conductivity and
thermal diffusivity are related by volumetric heat
capacity, and, thus, only one of them needs to be
determined. Generally speaking, the soil thermal
diffusivity (or apparent diffusivity) should be esti-
mated because it describes the transient process of
heat conduction based on temperature boundary
conditions. Soil heat transfer is caused by a com-
plex combination of conductive processes and in-
traporous convective processes (Passerat de Silans
et al., 1996). Passerat de Silans et al. (1996) pre-
ferred to consider soil thermal diffusion as a bulk
process which was assimilated to a conductive
process. Several methods of determining apparent
soil thermal diffusivity and conductivity have
been published. Some involved theoretical mod-
els (de Vries, 1963) or semiempirical models (Jo-
hansen, 1975). Most resulted from the analytical
solution of the one-dimensional heat conduction
equation with constant diffusivity in a semi-
infinite medium (Horton et al.,, 1983) because
they were applied to homogeneous soil, Horton
et al. (1983) examined several of the methods un-
der the assumption that the temperature at the
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upper boundary is well described by a sinusoidal
function or by a Fourier series. They showed that
the Harmonic method (HM) is more reliable than
the other methods examined. The analytical solu-
tion used in these methods does not require
knowledge of the initial temperature profile be-
cause the hypothesis of a constant initial temper-
ature profile is not always fulfilled, particularly in
regions where abrupt climatic changes may occur
in a short period of time as a result of events such
as encountering a cold front. Other authors have
used methods based on the Laplace Transform
(LTM) that require a constant initial temperature
profile (Kavianipoor and Beck, 1977; Asrar and
Kanemasu, 1982). Passerat de Silans et al. (1996)
summarized these studies and examined them
with data from HAPEX-Sahel experiment. It is
likely that both HM and LTM make it possibile to
obtain apparent soil thermal diffusivity from a
measured soil temperature profile with the aid of
the least-squares method.

After developing an analytical solution for
the heat conduction-convection equation by
Fourier transformation, Shao et al. (1998) com-
pared the results from the analytical solution with
the data from a field infiltration experiment with
natural temperature variations and found good
agreement. Ren et al. (2000) presented a method
to determine soil water flux and pore water ve-
locity by a heat-pulse technique. This method
improved earlier methods by reducing distortion
of the water flow field and minimizing heat-
induced soil water redistribution. These studies
represent the latest developments in determining
soil temperature distribution and water flux.

The objectives of this study are (i) to solve the
soil thermal conduction-convection equation by
applying the traditional harmonic method (HM)
and the Laplace transform method (LTM); (ii) to
present a simple method to determine accurately
values of soil heat diffusivity and liquid water flux
density; and (iii) to evaluate the proposed meth-
ods experimentally,

DERIVATION OF EQUATIONS

Heat can be transferred in the soil by con-
duction, convection, and radiation (Rybach and
Muffler, 1981); however, most soil temperature
changes occur within a shallow layer near the
surface (Stull, 1988) where the radiative compo-
nents may be neglected.

Thermal Conduction
Inasmuch as molecular conduction domi-
nates the transport pracess, the subsurface heat
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flux Q, (W m™2) at depth z in the soil can be de-
sn:ribi:(fl by Fourier's law of heat conduction in a
homogeneous body. That is, the flux depends on
the soil temperature gradient as follows:

Q, = —MT/dz, (1)

where the negative sign denotes that heat flows
down the temperature gradient 8T/dz, A is the soil
thermal molecular conductivitcy (W m~! K=1) of
the soil, T'is the soil temperature (K), and z is the
vertical coordinate (positive down) in the soil. For
a thin layer of the soil of thickness Az, neglecting
any horizontal conduction of heat in the soil
(Garratt, 1992), the change in soil temperature
with time is governed by the difference in the heat
fluxes flowing in and out of the layer. The rela-
tionship between Q,, the surface soil heat Aux,
and Q,, the heat flux at a small depth in the soil,
can be found by the study of conservation of heat
in this shallow layer. The second law of thermo-
dynamics yields the simple prognostic equation:

CAT/3t = =3Q,/dz, @)

where the left side term denotes the time-
dependent rate of change of energy in a unit vol-
ume of soil; the right side term is the net input of
energy per unit volume as a result of the molec-
ular conduction in the soil; C, is the soil volu-
metric heat capacity (] m™3 K1), G =pupis
the soil density (kg m™3) and ¢ is soil specific heat
(J kg=' K~'); and 1 is the time in seconds.

‘We assumed that soil in the research domain
has the properties of (i) isotropy and homogene-
ity, and (ii) depth-independent water content or
its variation showing negligible effect on C, and
A. In addition, it was assumed that energy ex-
change occurred only in a vertical direction and
that Eq. (2) could be simplified to the equation for
thermal conduction inside a solid column, viz.,

oT _, #T
or | a2’ ©)
where k = \/C, (m? s™") is the soil hear diffu-
sivity.
Thermal Convection

Letting Q, represent the heat flux caused by
the vertical movement of water, and assuming the
liquid infiltration rate (m3 s' m?) is w (positive
up), Q, can be expressed as:

Q, = C weAT, (4)
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where C_ is the heat capacity of water, @ is the
water content of the soil, and AT is the vertical
difference of water temperature in the soil (Fan
and Tang, 1994). According to the second law of
thermodynamics,

CAT/ar = —3Q,/3z, )

where the left side term denotes the time-
dependent change rate of energy in a unit vol-
ume of soil, and the right side term is the net in-
put of energy per unit volume as a result of the
vertical movement of water. Combining Egs. (4)
and (5), we obtain:

C,
aT/at = C"

z

letting W= C_/ Cg wp, Eq. (6) can be rewritten as

wedT/dz, (6)

aT/dt = WaT/oz, @)

where W is usually considered to be the liquid
water flux density (m®s~! m~3),

Incorporation of Thermal Conduction and Convection

Because the processes of thermal conduction
and convection are independent, it is reasonable
to incorporate thermal conduction Eq. (3) and
convection Eq. (7) to consider these two
processes together. This gives:
3T aT

aT
= s wi 8
at az? Az ®

SOLUTIONS OF EQUATIONS

Application of the Harmonic Method

Hillel (1982) took diurnal forcing as a purely
sinusoidal forcing function, T(f)|,., = T, + Asin
wt, t > 0, where T, is a constant, A is the ampli-
tude of the variation of the soil surface tempera-
ture, and  is the angular velocity of the Earth's
rotation. w = 2w/P = 7.292 X 1075 rads~!,
where P (P = 24 X 3600 seconds) is the har-
monic period of the surface temperature. Under
this boundary condition, he solved Eq. (3); how-
ever, he did not account for the convection
process.

Given the same boundary condition, the soil
thermal conductive equation with the thermal
convection term included may be written as:

oT *T aT
— = W=
at az . 9z

Tliey = Ty + Asinor

(r>0 z>0).

)
((=0)]
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Expanding the harmonic method, and setting
T(z, ) = Ty + u(z, 1), where u(z, 1) is a solution
to Eq. (10),

du 3% du
e Ty L]
% ka Waz (t=0 2>0).
(10)
H|.mg = Asinet (r=0)

It is apparent that there should be a complex ex-
ponential solution to Eq. (10), assuming

u(z,f) = Aelestbn, (11)
where a and b are complex constants. Because
“L-n = A sin wt,and U = A sin wy, it is ap-
parent that A4 sin wt is the imaginary part of Ae™,
resulting in b = iw.

In order to determine a and b, we put u(z, f)
=A™ into (u/d) = k(@u/d2) +
W(du/dz) of Eq. (10), and then find that
Abe**P) = kA2 b + P Ae(rtb), resulting
in b= ka? + Wa. Combining b = ka® + Wa
to b = iw, we obtain this equation in terms of
a:ka® + Wa — iw = 0. The solutions are a =
(—W = W2 + 4ikw)/(2k), considering that a
should be negative because the amplitude of the
soil temperature decreases with increasing depth.
We think a = (=W ~ W2 + 4ikw)/(2k) is right
and a = (= W? + 4ikw)/(2k) is wrong physically.

Setting W2 + 4ikw = & + Bi where o and
are real, we obtained

J W VI (6w?
2

a=

2 V2keo
VI + VIWi+ 1skin?

(12)

ﬁ:

0 a= (~W-V W+ VWit 6kt 2)/
Ve ;
Vw2Vt okea:

Putting Eq. (13) and b = w into Eq. (11), we find
that

(2k) - o)

[ 2 vimvra.)
u(z,f) = Ae"* *
Ve

: (14)
["ﬂ quUwu.w ]"

L4
Considering the boundary condition as a sinu-

soidal function, the imaginary part of Eq. (14)
should be the solution to Eq. (10). We find
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(15)
sin(i-V2o0z/ VW24 VIt +16knd).

Thus the solution to Eq. (9) is

Tz0= Tn+Acxp[ -—-m W2+ VWi +16ke z:{

(16)

Vo
Vw2+ Vit ieke? ]

Equation (16) holds for a semi-infinite medium
with an upper boundary condition given by a
sine function of time. The soil thermal diffusivicy
k and the convective velocity W can be obtained
using measured soil temperature at two different
layers at depths 2, and 2,. The formula is:

_ (z,“zgzmln(AzlAl)
k= @=0)(®,-P)™F (n(4/A)

'sin[u:l 1—z

(17)

2(In(4,/A))) :
D))* +(In(4y/A)))?

o(z,—z,) _
!V—¢ -9, [l @

where A,, A, are amplitudes, and @, P, are ini-
tial phases of soil temperatures at the depths of z,
and z, in soil (Fan and Tang, 1994).

Application of the Laplace Transformation Method

It has become traditional in micrometeoro-
logical and hydrographic research to assume that
the initial soil profile is constant rather than to
varying linearly with depth. Garratt (1992) gave
an idealized variation of soil temperature through
a diurnal cycle for several depths in the soil. He
assumed that mean soil temperature at all levels in
soil is uniform by regarding it as the temperature
of deep soils; i.e., ¥ = 0.0. This assumption has
been used widely (e.g., Passerat de Silans et al.,
1996). However, in reality, mean soil temperature
may vary somewhat with increasing soil depth.
We set the initial condition T|., = T, — vz,
(z = 0), where Tj is the surface mean tempera-
ture (K), v is éhc soi] temperature lapse rate
(Km™), y-—— T/zand'y 0.0 is the
idealized situation, ol is the soil depth (m).
Setting the boundary condition the same as
above, we obtain:

AT _ , FT aT

=k—+ W— >
% azz % (>0 z2>0)
Tlmo = Ty=yz (=0 . (18
Tl,up = Ty+Asinat (1= 0)
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We solve Eq. (18) in terms of the Laplace
transform scheme by setting T = T" + T, — vz
— y Wt and we get

2 o TV
oT _ 2T
az? az?

Thus, TW = k— + H/{ -7).

at az?
2
o _ ET 8T
at ax? 9z

Thatis, [ for t=0 T =0
Jor z=0 T = Asinot + yWi

(19)

2
- 0T o BT L BT

at az? dz

Setting

gives

8z = 9z ;ﬂ;
ol 1] 2
a_TT= .3‘;'{;+*_V 21 Sl
922 822 2k dz
V2,
W T , W Yol
| [ ——— T' /3 -Ik
2% oz T Te
— _32'1" E aT‘ W T‘] li'w%l.
az2 k odz 4k2

It follows that AT = -&i-!:—

at dz-
Consequently, we get a definite problem in the
form

L A 3T
ar az2
t=0 T™ =0 (20)
wa
z=0 = (Asinat + yWne *

We now make the Laplace transformation of T**
and set T = £ [T"*] so that



VoL. 168 ~ No. 2

atz=0,T = L[A sin wt + yWi)e(w?/4k)}, and
T*|,_, is a bounded function. We have

and

From z — + ®, meaning T is bounded, we get
¢ =0.

From z = 0, we obtain ¢, = £[(A sin wt +
1,(,‘,t)‘,'.(\.-ﬂ.hl W)

As a result, T = [[(A sin wr + vyoi).
e(\.znk)] cal—2p/k)

From retrieval it follows that

u?

u2 Iz
T** = (Asinwt + YWi)e ™ *£L e V¥

= ’ my
(A sinwr + yWie ™ = EXY/" e

-t (Asinortyy-c | 2
2 Vix " (1—1)32 Hhefr—1)
i:ﬁr . '"—% 2
ze 2k (Asinwt+yH7)e ' i
T =V o g
T=T,-yz—yWr+ T, (21)
e EF:E,
Tz,f) = Ty—yz—yWr + m
(Usinwrtyw® =
e =R gy, (22)

0 (;_t}.!!!

FIELD EXPERIMENT

The data used in this research were collected
at the Naqu flux site on the Tibetan Plateau dur-
ing an intensive observation period from July 15
to 21, 1998, Details on the instruments and the
various data processing techniques are provided
at the web site: http://monsoon.t.u-tokyo.
ac.jp/tibet/data/iop/pbltower/doc/naqu-fx.txt.
This site was designed for the GAME/Tibet pro-
ject at the position (91.54E, 31.22N) with an al-
titude of 4580 m. The ground surface covered by
sparse short grass was flat and homogeneous. The
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soil at the site was predominantly sandy silt loam.
Soil temperatures were measured at 0.5-h inter-
vals at depths of 0.015 m and 0.04 m below sur-
face by using two Campbell TCAV-averaging
Soil Thermocouple Probes. It must be noted that
the surface skin temperature was measured with a
downward-facing radiometer (CNR1) at the
height of 1.5 m. In this process, the Stefan-
Boltzmann Law

1T = eaT,", (23)
was used, where I T is long wave (infrared, IR)
radiation emitted upward from the surface, € =
0.96 is the infrared emissivity (Garratr, 1992,
p-292),0 = 5.67 X 1078 W m~2 K4 is the Ste-
fan-Boltzmann constant, and T, is the ground
effective radiative temperature (in Kelvin). In ad-
dition, the volumetric soil water content was
measured by two CS615 soil moisture reflec-
tometers in the surface layer, that is, from the
ground surface to a depth of 0.15 m. Figure 1a
shows the variation in soil temperatures with
time at three different layers at the Naqu site
from July 15 to July 21, 1998. T, o5 and T, are
soil temperatures measured at depths of 0.015 m
and 0.04 m. Figure 1b shows the averaged volu-
metric soil water content, and Fig. 1c gives the
precipitation during this period. It is apparent
that both soil temperature and volumetric soil
water content responded dramatically to precipi-
tation.

RESULTS AND DISCUSSION

Estimations of Soil Thermal Diffusivity k and Liquid
Water Flux Density W

In our analysis above, we assumed the soil
temperature varies sinusoidally. In reality, the soil
temperature distribution depends on many fac-
tors, such as accepted radiation energy, cloud
cover, vegetation cover, and some internal physi-
cal processes. We used a seven-point smoothing
technique to deal with the soil temperatures (re-
sults are shown in Fig. 2). It must be noted that in
the period selected, there are some gaps caused by
precipitation. : ;

The maximum temperature averaged over 7
days at the depth of 0.015 m reached 295.98 K,
and at the depth of 0.04 m it reached 293.7 K.
Therefore, we will use two different sine func-
tions in our attempt to best approximate the
curves of soil temperatures at these depths. These
are 285 + 10.98sin(tw/12 — xm) and 285 +
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Flg. 1. Yarlation of soil temperature (T in Kelvin), volumetric water content (%) and precipitation (mm) with time at
the Naqu site in the Tibetan Plateau from Jullan 196 to 208, 1998.

8.7sin(tmw/12 — y), where f is time in hours, x
and y are variables, 285 is the soil temperature at
0900 (local time) at 0.015 m (this is considered as
the base of daily variation), 10.98 is the averaged
amplitude of soil temperature at a depth of 0.015
m, and 8.7 is the averaged amplitude of soil tem-

perature at a depth of 0.04 m. Results show that
x = 0.84 and y = 0.89. We determined soil ther-
mal diffusivity k = 0.85 X 1075 m%~! and liquid
water flux densicy W= 4.3 X 107 m™3s~! ;2
by applying A, = 8.7 m, A, = 1098 m, d, =
—0.891,and ®, = —0.847 to Eq. (17).

— moothed T,
IO T
-0 wmocthed T,

. :ls-mM|mz-o.u-1
=-- 288+8.TONN{12-0.80)

3opF

7.

Julian day (1898)

Fig. 2. Variation of smoothed soil temperature (T In Kelvin) and two sine curves with time at the Naqu site in the Ti.

betan Plateau from Jullan 196 to 202, 1998.
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Garratt (1992, p. 291) offered some represen-
tative values of thermal diffusivity. k = 0.85 X
1076 m?%~!, obtained in this paper, is very close
to the value in his table for thermal diffusivity of
sand soil with volumetric soil water content of
20% (0.84 X 10~ m?%~'). Ren et al. (2000) gave
liquid soil water fluxes for sand, sandy loam, and
clay loam. Their values ranged from 1.16 X 10~5
m®s™!' m~2t0 6.31 X 10~3 m? s=! m~2, These
are larger than our value (H' = 4.3 X 10~ m?
s™! m™?) because their experimental work was
done in water-saturated soil materials.

Modeling of Soil Temperature Profiles

Assuming y = 0, we rewrite Eq. (22) as fol-
lows:

w P
ETRT . w2
T = T fo e
@2)

Because both soil thermal diffusivity k and liquid
soil water flux W are determined, the profile of
soil temperature can be obtained by using Eq.
(16) or (22') when surface temperature distribu-
tion is known. A 2-day period from Julian Day
208 to 209 in 1998 is chosen to test our equa-
tions. Figure 3 is the same as Fig. 1 except during
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this period. Results for Julian Day 208 to 210 are
similar to those seen in Fig. 1 for Julian Days 196
to 203. No precipitation distribution is presented
in Fig. 3 since there was no precipitation. Figure
4 shows the measured values together with our
modeled values at the depth of 0.015 m. In this
process, we fill the gaps of surface temperature by
extrapolation and interpolation. These modeled
values are from Egs. (16) and (22') for two cases:
(i) W = 0 (the convective process is not consid-
ered) and (i) W= 4.3 X 1074 m? s~! m~2 (the
convective process is considered). One finds that
(i) both Egs. (16) and (22") give more realistic re-
sults when the convective process is considered,
(ii) Eqgs. (16) and (22) generate almost the same
results for both cases mentioned above, and (iii)
all modeled maximum (minimum) values are
higher (lower) than measurement. We also mod-
eled soil temperature at the depth of 0.04 m, but
because the results are similar to those in Fig. 4,
the figure is not shown here.

CONCLUSIONS

The soil thermal conduction-convection
equation has been solved by applying the tradi-
tional methods: the harmonic method (HM) and
the Laplace transform method (LTM). We con-
cluded that if the assumption of steady-periodicity
for soil temperature is valid, methods based on

-—205 T

< o

Ezo- i

¥ | )

5151 ' B

'§'

g‘lﬂ- .

>200 21;9 210
Julian day (1998)

Fig. 3. Variation of soil temperature (T In Kelvin) and volumetric water content (%) with time at the Naqu site in the

Tibetan Plateau from Julian 208 to 209, 1998.
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"Ezao- ¢ %
s ¥
L ] L]

209
Jullan day {1998)

210

Fig. 4. Variation of the measured and modeled soil temperatures (T in Kelvin) at the depth of 0.015 m with time at
the Naqu site in the Tibetan Plateau from Julian 208 to 209, 1998.

harmonic analysis and the Laplace transform can
be used to test soil thermal diffusivity, even when
the assumption of vertical homogeneity is not
fully satisfied. The resolutions obtained by the
two methods are expected to be applied in mod-
els. Because the HM is simpler to program, we
recommend its use.

A simple method (Eq. (17)) to determine val-
ues of soil heat diffusivity and liquid soil water
flux accurately is presented. With this method, we
determined the soil thermal diffusivity k = 0.85
X 107¢ m? s~! and the liquid water flux densiry
W=4.3X10"%m’s™! m~2 for the Naqu site.

An experimental evaluaction of the proposed
methods shows that our models, which take into
account soil thermal convection processes, give
more realistic results.
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