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Summary

An atmosphere-land coupled simple climate model is con-
structed and its climatic properties are analyzed by in-
troducing a global analysis method, cell mapping. The
simple model is a nonlinear six order simplified climate
model featured with chaotic dynamics, dissipation, and
forcing source, which are the main features of the real
climate system. The cell mapping method is applied with
this coupled system. Numerical experiments are carried out
for investigating the interactions between the fast-changing
atmospheric variables and slow-changing underlying sur-
face variables. The predictability of the system is also in-
vestigated via the global analysis, with which the evolution
of the system is translated to the evolution of probability
transition on a Markov Chain. An effective scheme is pro-
posed for computing the probability transition matrix for
the coupled system. Predictions can be made based on the
combination of dynamics and statistics. The importance of
constructing the coupled model is shown by globally analyz-
ing the predictability of the coupled system. The coupling
mechanism prolongs the memorization of initial informa-
tion, and then the predictability as well.

1. Introduction

Lorenz revealed first in 1963 (Lorenz, 1963)
that there may exist an indeterminate state in a
perfectly deterministic nonlinear system because
of initial error. Lorenz also found chaotic solu-

tion in his Hadley circulation system model and
pointed out that the long-term behavior of the
system was of indeterminacy (Lorenz, 1984). In
terms of long-term behavior of chaotic systems,
Chou (1983, 1986, 1987, and 1989) has explored
atmospheric system models from the view point
of geometrical visualization and pointed out that
there exists an asymptotic state for the atmo-
spheric system, which is regarded as the strange
attractor.

With the help of geometrical visualization,
Chou (1995) discovered the fact that the dynamic
atmospheric equation set is actually a very spe-
cial operator equation in the Hilbert space. A
nonlinear system with forcing and dissipation
has been revealed to have several attractors in
the state space. The attractors are distributed in
a finite area and each is a set of points of zero
volume within an attracting region of non-zero
volume. Any system state must be within the
attracting region of a certain attractor and tends
to the attractor with time. Chou (1995) has also
reviewed the work in the area of nonlinear
climate dynamics and concluded that chaotic
systems need global analysis of long term asymp-
totic state, which is also considered a new impor-
tant feature of the climate system.



For global analysis, Nicolis (1990) put forward
the ‘‘coarse graining’’ or ‘‘lumping’’ method to
display the global evolution of a chaotic system
and to carry out statistical prediction. However, it
is difficult to obtain a priori knowledge of invari-
ant probability for atmospheric dynamic systems,
which is needed to determine the transition prob-
ability matrix of a Markov Chain. Hsu (1980, 1981,
and 1982) raised another global analysis method,
cell-to-cell mapping, for use in various dynamic
systems. Guo et al. (1996) and Zhang et al. (1998,
hereafter Zhang98) have successfully applied this
method to their simplified climate system.

By applying the cell-to-cell mapping method to
a simplified climate model, Zhang98 has de-
monstrated the benefits and advantages of utiliz-
ing simplified models and of introducing new
mathematical methods in climate study. However,
the simplified model in Zhang98 is of an atmo-
spheric model and contains only fast-changing
atmospheric variables. As illustrated by Zhang98,
the behavior of this system varies with external
parameters, especially the surface temperatures
(T1)4, (T2)4 and (T3)4 (see also Section 2), which
are slow-changing variables.

In fact, the climate system contains move-
ments of different kinds of mediums dependent
upon their heat capacity. Particularly, the air
mass has small heat capacity and it is a fast chang-
ing component, while the underlying surface
(either land or ocean) has larger heat capacity
and it is a relatively slow-changing component
in the climate system. There are interactions
between the components, which may be influ-
enced or controlled by external parameters.

The objective of this paper is to construct a
coupled system in which different kinds of com-
ponents, at least two, are contained, so that more
properties of the climate system could be re-
vealed, especially the long-term behavior of both
fast- and slow-changing variables, their interac-
tions, and external force dependence. Specifi-
cally, a coupled system based on the Zhang98
simplified climate model will be constructed, in
which the surface temperatures (T1)4, (T2)4 and
(T3)4 are no longer external parameters, but state
variables. The solar radiation term will be the
external parameter which determines the ultimate
chaotic state of the system.

In earlier classical studies of deterministic
predictability, the deterministic prediction of sub-

sequent evolution of atmospheric states is limited
to a few days due to the presence of dynamical in-
stabilities and nonlinear interactions (Lorenz, 1965,
1969, 1982; Charney et al., 1966; Smagorinsky,
1969), and the theoretical upper limit in general
circulation models is determined by the growth rate
and the magnitude of error between the two model
evolutions for which the initial conditions differed
by only a small random perturbation. Shukla
(1981) studied the dynamical predictability of
space and time averages based on the question
raised by Charney and Shukla (1980). It was indi-
cated that there is a physical basis to make dynam-
ical prediction of monthly means at least up to
one month, and that there still is the possibility, at
least in principle, to extend the predictability limit
even beyond one month by improving the model,
the initial conditions, and the parameterizations of
physical processes.

The cell mapping method will be used here to
globally analyze the coupled climate system. An
improved method for computing transition prob-
ability matrix for the coupled model has been put
forward and been utilized to investigate the pre-
dictability of the system. Zhang98 has also shown
the hope of extending the climate predictability
if the effects of the land and ocean are coupled
with the atmospheric model. This is another moti-
vation of establishing a coupled model.

2. Simplified climate model

The simplified climate model in Zhang98 is a set
of third order autonomous ordinary differential
equations. Its vector form is:

d

dt

X1

X2

X3

2
64

3
75¼

0 a12 ��1X2 a13 ��1X3

�1X2 �a12 0 a23 ��2X1

�1X3 �a13 �2X1 �a23 0

2
64

3
75

X1

X2

X3

2
64

3
75þ

a11 0 0

0 a22 0

0 0 a33

2
64

3
75

X1

X2

X3

2
64

3
75

þ
b1

b2

b3

2
64

3
75 ð1Þ

where X¼ [X1, X2, X3]T are dimensionless atmo-
spheric variables that represents three spherical
harmonic components of 500 hPa temperature,
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aij (i 6¼ j) and bi (i, j¼ 1,2,3) are functions of
dimensionless underlying surface temperature
(T)4¼ [(T1)4, (T2)4, (T3)4]T (also three spherical
harmonic components), and aii (i¼ 1,2,3), �1 and
�2 are constants. All of the coefficients and con-
stants in the model (1) can be found in Zhang98.
Given a set of (T)4, [0.414336, �0.01243,
�0.4870765], and an appropriate initial X
(within the range shown in (2)–(4) below), this
model can be steadily integrated to get the evolu-
tion of X (Zhang98), which falls on a chaotic
attractor that lies in the domain of:

X1 2½�3:1188;�0:9422�; X2 2½�2:0747;0:4987�;
X3 2½�1:2103;1:9749� ð2Þ

The state variables in Eq. (1) are the dimen-
sionless atmospheric variables, so Eq. (1) is con-
sidered a nonlinear dynamic system in a general
sense. Its asymptotic state is a chaotic attractor in
the phase space as shown in Fig. 1a–c.

3. A coupled simple climate model

3.1 Model

The external forcing terms of the simplified cli-
mate model (1), b1, b2, and b3 depends on (T1)4,
(T2)4, and (T3)4, which are underlying surface
temperatures as defined at the level 1000 hPa in
the model (1). To better simulate the real climate

Fig. 1. Projections of the coupled mo-
del evolutions on planes X1–X2, X2–
X3, X3–X1, T1–T2, T2–T3, and T3–T1

in phase space of the portion of the
points between the years 101–120
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with a simplified model, these underlying surface
temperatures are also going to be considered as
state variables. Therefore, a coupled simple cli-
mate model is constructed herein.

The underlying surface model is considered
as a third boundary value problem of the linear
thermal conductive equation. Guo et al. (1996)
derived an analytical solution of the thermal con-
ductive equation as (see Appendix):

TSð0; tÞ ¼
Xn
i¼1

F1ð0; t; �iÞf ð�; �; �iÞ

þ
Xm
i¼1

F2ð0; t; �iÞTSð�i; 0Þ ð3Þ

where TS(0,t) represents surface temperatures
(T1)4, (T2)4, and (T3)4; f(�,�,� i) is the boundary
condition term which stands for the influences
from the atmosphere; TS(�i,0) is initial soil tem-
perature; and F1 and F2 are integral coefficients
(Guo et al., 1996).

The models (1) and (3) compose a coupled
nonlinear system. The coupling mechanism (see
Appendix) is the energy balance at the interface
between atmosphere and underlying surface
(land or ocean). Now, in this coupled system,
the unique external forcing is from solar radia-
tion Rs. When the solar radiation is determined,
the model evolves toward its attractor from a
given initial point in phase space X–T (T¼
[T1, T2, T3]T, ( )4 is omitted hereafter).

3.2 Model performance

Based on the coupling mechanism of the coupled
model and corresponding parameters and con-
stants (see Appendix; Zhang98; Guo et al.,
1996), the model is integrated from the initial
point (X1, X2, X3, T1, T2, T3)¼ (�1.68078,
�0.80321, 0.23754, 0.48165, 0.03022, �0.51504).
The integral time step is 0.25 h. Due to the slow-
changing characteristics of the variable T, model
(3) is coupled once a day (96 time steps) with
model (1). By taking 360 days as the period of
solar radiation, which is also the model year (the
first day starts from the winter solstice), the
coupled model has been integrated for one thou-
sand years. Figure 1 shows the projections on
X1–X2, X2–X3, X3–X1, T1–T2, T2–T3 and T3–T1

planes in the phase space of the portion of the
points corresponding to the days between the

year 101 to 120. The results show clearly a cha-
otic attractor in the X–T space, lying in the X
domain of (2) and T domain of:

T1 2½0:38567;0:51203�;T2 2½�0:01997;0:08647�;
T3 2½�0:57118;�0:44552�: ð4Þ

The domains (2) and (4) determine the attrac-
tor area in the 6-dimensional phase space.

Here presents further discussions about other
features of the model and reflections of the real
climate system within this simple system.

i) The coupled model is computationally effec-
tive such that a large amount of numerical
experiments could be performed. As shown
by Zhang98 and the experiments in section
5, the generalized cell mapping can be used
with this model. To introduce new math-
ematical theories and methods for studying
climate is one of our original purposes of
building this model.

ii) From the standpoint of physics, the coupled
system retains basic features of the real cli-
mate system, while the complex physical
processes and their mathematical equations
are simplified. These features include a chao-
tic attractor as shown in Fig. 1, nonlinear
interactions between fast- and slow changing
components, dissipative effects, and external
forcing. Figure 2 shows the time series of
each variable, from which the fast-changing
X variables and slow-changing T variables
are illustrated.

iii) Figures 1 and 2 shows qualitatively the cha-
otic character of the model evolution. Gen-
erally, there are several statistic values that
have been used to quantitatively depict a
chaotic system, such as fractal dimension,
Lyapnov index, graduation index, and power
spectrum index (Thompson and Stewart,
1986). Among them, the fractal dimension
indicates the complexity (or nonperiodicity)
of a system. According to Guo et al.’s (1996)
calculation, the simple atmospheric model’s
fractal dimension varies from 1.04 to 2.33 for
different underlying surface temperatures.
These results reveal that the chaotic charac-
ter of the atmosphere is affected significantly
by land surface, which acts as the external
forcing for the atmosphere. The results also
imply that the interaction of the atmosphere
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and the land surface in the coupled simple
system is complex, which is helpful in our
study of complex climate states. The results
of Lyapnov index and power spectrum index
of Guo et al. (1996) provide proofs that the
simple coupled system is sensitive to initial
conditions and has a strange chaotic attrac-

tor. Long-term evolution of the model tends
to the chaotic attractor. The chaotic attractor,
i.e. chaotic states, is the destination of all
states started from all initial points after a
long-term evolution. In other words, the
chaotic states are final states of the system
when all initial information has been

Fig. 2. Time series of variables X1, X2, X3, T1, T2, and T3 during the first half of the year 101
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completely lost, which is the climate states.
Therefore, studying long-term behavior and
the chaotic states is a way to study the cli-
mate. This leads to a new definition of cli-
mate based on chaotic dynamics: climate is a
probability distribution of state variables on
chaotic attractor determined by certain exter-
nal forcing (or control variables).

iv) The simple coupled model has been built
intentionally to have chaotic solution. Since
it is mostly simplified, some of the constants
and parameters are allowed to be out of their
physical value ranges (Guo et al., 1996). For
example, as shown in Zhang98, the model
requires the variable T to be in the domain
of (4). In addition, due to the assumption of
symmetry of the northern and southern hemi-
spheres (Zhang98), the model has a half year
period of change instead of one year in
regard to the solar radiation (see Fig. 2).
Nevertheless, the periodic component is illu-
strated in variable T1, besides the chaotic
evolution in all the six variables.

v) The results from Figs. 1 and 2 also imply that
there exists three kinds of time scales in this
coupled system: 1) long periodic changes of
external forcing of solar radiation; 2) slow
changes of underlying land surface tempera-
ture controlled by solar radiation; and 3) fast
adjustment processes of atmospheric vari-
ables to the chaotic attractor determined by
land surface temperatures. This is another
major feature of the real climate system that
is reflected from this simplified nonlinear
coupled model.

From the above discussion, the simplified cli-
mate model possesses the basic features of the
real climate system and can be use to perform
adequate numerical experiments to study basic
problems of climate.

4. Global analysis method: cell mapping

Cell mapping method is put forward to globally
analyze nonlinear systems (Hsu, 1987). As can
be seen, discretization transforms have been
carried out during all the previous simplifying
processes from continuous partial differential
equations to ordinary differential equations, and
then to difference equations. They are all discre-
tizations with respect to the independent spatial

and temporal variables. The dependence of
dependent variables on the independent variables
has never been changed. It is still continuous in
terms of mapping; however, all the dependent
variables are actually discretized in a computer
due to the limited word-length of a computer.

4.1 Simple cell mapping: a global
analysis to round-off error

According to Hsu (1987), the phase space of a
model running on a computer is divided into
small cells with side-length equals to the compu-
ter word-length (i.e. round-off error) and turns
into a cell space. Any model state in a computer
goes from one cell to another in one time step.
Obviously, the dynamical system in the cell
space is still a deterministic system provided
the modeling never overflows. Each cell has only
one image cell of mapping. This is called simple
cell mapping (Hsu, 1987).

In terms of simple cell mapping, the long-term
global property of a dynamic system is featured
by its periodic solution in the cell space. For a
given system running on a computer, the total
number of cells is finite, say N. There are two
kinds of cells in the cell space, periodic and tran-
sient cells. A periodic cell returns to itself after a
finite number of mapping steps and a transient
cell never returns to itself, but indeed, goes to
periodic cells after finite mapping steps. Ob-
viously, there are at least one and at most N
periodic solutions in a cell space. Therefore,
the chaotic attractor is also a periodic solution
despite its period being very long.

Under the concept of simple cell mapping, the
impact of round-off error of computation has
been eliminated. With the aid of simple cell map-
ping, the long-term asymptotic behavior, i.e. the
climate is determined by the probability distribu-
tion on all periodic cells. The uncertainty of indiv-
idual points turns into certainty in a simple cell,
and the system evolution is deterministic.

4.2 Generalized cell mapping: a global
analysis to observational error

Generalized cell mapping has been used diversely
in nonlinear system analysis since Hsu (1980)
first put forward the method (Hsu, 1981, 1982,
1987; Hsu et al., 1980, 1982; Zhang98; Guo et al.,
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1996). It has been applied by Zhang98 to the sim-
plified atmospheric model and its advantages in
global analysis and predictability study have been
shown.

For any numerical model, the initial state of
state variables is obtained from observation, of
which the observational error is unavoidable
and generally far greater than the round-off error.
Subsequently, the simple cell space is divided
into larger cells with side-length equal to the
observational error and turns into the so-called
generalized cell space. Each generalized cell
has many simple cells and can have more than
one image cell. Obviously, uncertainty of model
evolution is unavoidable because it is impossible
to know which simple cell is the true initial even
if the generalized cell is given by the observation.

Assume there are a total of M generalized cells
and the system state is in the generalized cell Qj

when t¼ tn, the state at t¼ tnþ 1 could fall in cell
Q1 with probability p1, j, in cell Q2 with probabil-
ity p2, j, . . . , and in cell Qi with probability pi, j,
i¼ 1, 2, . . . ,M. The term pi, j is called the transi-
tion probability from cell j to cell i, and is calcu-
lated with a sampling method as given in
Zhang98. For all M generalized cells, the transi-
tion probabilities construct a transition probabil-
ity matrix P of order M�M. Let p(n) denote the
probability distribution of time tn, so the prob-
ability distribution of tnþ 1 is

pðnþ 1Þ ¼ PpðnÞ ð5Þ

Once p(0) at time t0 is given, the subsequent
evolution is simply given by

pðnÞ ¼ Pnpð0Þ ð6Þ

The evolution of the system is changed from
simple cell-to-cell mapping to the transition of
probability in generalized cell-to-cell mapping
and is completely described by (5) or (6), and
therefore, is controlled by the transition probabil-
ity matrix P. Meanwhile, this generalized cell
mapping formulation leads to finite Markov
chains. The establishment and evolution of the
coupled model shows that the system is aperiodic
and ergodic and the limit probability distribution
exists as n!1. Thus, the long-term asymptotic
behavior is deterministic under the concept of
generalized cell mapping although the individual
system state is indeterministic. The climate state

of the system is now determined by the limit
probability distribution on the chaotic attractor.

4.3 Improved algorithm of generalized
cell mapping for the coupled model

As pointed out in Zhang98, cell partition is cri-
tical for the method. A reasonable cell number
could give a satisfactory result while the com-
putation could easily be carried out. For the
3-dimensional phase space of (2), Zhang98 sug-
gested 1000 regular cells and obtained validated
results. In each cell, 163 samples were used for
sampling.

The coupled model has a 6-dimentional phase
space. If a similar sampling method to the atmo-
spheric model is used here, the computation
amount will be extremely large due to two fac-
tors: 1) the transition probability matrix is of
order 106 (if a similar partition for X is used
for T); and 2) because of the periodic changing
of external forcing (solar radiation), the system
evolution can no longer be a stationary Markov
chain, and consequently, the matrix P of each
time step of land model should be calculated
and stored.

A time and memory saving algorithm for cal-
culating a transition probability matrix of the
coupled model is given as follows. With refer-
ence to the partition in X space, we discretize
the T space (4) into 216 cells (6 parts on each
direction).

The transition matrix of X with a given T,
which corresponds to the kth cell in the T space,
can be written as

Pk
X ¼

pk1;1 pk1;2 . . . pk1;1000

pk2;1 pk2;2 . . . pk2;1000

..

. ..
.

pki; j
..
.

pk1000;1 pk1000;2 . . . pk1000;1000

2
66664

3
77775 ð7Þ

where the element pki; j is the transition probability
from cell j to i when T lies in cell k. Assume T
has its own transition probability matrix

PT ¼

q1;1 q1;2 . . . q1;216

q2;1 q2;2 . . . q2;216

..

. ..
.

ql;k
..
.

q216;1 q216;2 . . . q216;216

2
6664

3
7775 ð8Þ

where the element ql,k expresses the one-step
transition probability from cell k to cell l. Known
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from the land model (3), the change of T depends
on solar radiation, initial T, and feedback of X.
Thus, T can be expressed as

T ¼ TR þ TI þ TX ð9Þ
where R, I and X stands for radiation, initial, and
X, respectively. Once the initial at one time is
given, TR and TI at the next step are determined
readily. However, the state of X at the next step
after transition is not unique. This leads to uncer-
tainty of the next step T. Indeed, the transition
probability from cell k to l, ql,k, equals to the sum
of the probabilities of all those X cells that can
make the next step T fall into cell l. For a certain
k, therefore, the kth column of PT is obtained.
Therefore, for different initial T cells of an initial
distribution, the transition probability matrix PT

is obtained. Insodoing, a joint transition probabil-
ity matrix of X and T can be written out using the
knowledge of probability theory:

PXT ¼

P1
Xq1;1 P2

Xq1;2 . . . P216
X q1;216

P1
Xq2;1 P2

Xq2;2 . . . P216
X q2;216

..

. ..
.

Pk
Xql;k

..

.

P1
Xq216;1 P2

Xq216;2 . . . P216
X q216;216

2
66664

3
77775

ð10Þ
Similar rules as (5) and (6) can be used to

obtain the evolution of the coupled model. The
long-term behavior of the coupled system can be
investigated by global analysis.

According to the analysis of the algorithm, the
actual calculation of PT is column by column,
which is the same for PXT . The storage of the
whole PXT is avoided.

5. Climate predictability of the simple
climate system

The perspective of chaotic climate attractor dis-
cussed in previous sections has established the
foundation for the climate predictability study.
With the introduction of cell mapping global anal-
ysis method, the infinite system becomes finite;
the individual uncertainty turns into integral cer-
tainty. These provide the prerequisite for the study
of climate predictability and climate prediction.

As discussed in the previous section, there
exists a limit probability distribution for the
coupled system. The limit probability distribu-
tion stands for the final system states when all

the initial information has been completely lost.
Predictability is to study the period when the
initial information still has effects on the sys-
tem evolution. Ulteriorly, predictability limit is
straight forwardly defined as the time period
before the system reaches its limit probability
distribution on the climate attractor.

Zhang98 has applied the cell mapping method
to get the atmospheric model’s day-to-day predict-
ability limit, which has been shown as 15–31 days
corresponding to different external parameters. In
this paper, the atmospheric predictability is in-
vestigated within the environment of the coupled
model, so do the climate predictability.

Given an initial probability distribution and a
convergence criteriaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN
i¼1

ðpðnþ1Þ
i � p

ðnÞ
i Þ2

vuut <"; ð11Þ

where N is total number of cells and n is time
step, the climate probability distribution can be
obtained according to Eq. (6) when (11) is satis-
fied after n iterations. The predictability limit
will be n� , where � is the time scale of probabil-
ity transition. For the coupled model, both day-
to-day and temporal averaging predictions are
studied in this article.

For temporal averaging prediction, for exam-
ple, the monthly mean prediction of the coupled
model is performed following the method in sec-
tion 4.3. The probability transition of mean T,
denoted as �TT , is determined by �TTR, �TTI , and �TTX.
The term �TTR is the contribution of average solar
radiation in the month, �TTI is the monthly mean of
initial effects on each day, and �TTX is the feedback
of mean X after its transition. So, the transition
matrix of �TT , and subsequently the joint transition
matrix of �XX and �TT can be obtained. The distribu-
tion of monthly mean can be predicted with a
given initial.

According to the definition of the predictabil-
ity limit, its actual value will vary with different
iteration precision ". Therefore, predictability
limits of multiple " have been studied in order
to get a global understanding. Actually, under the
concept of generalized cell mapping, the iteration
precision " is equivalent to the observation pre-
cision. High precision " means small impacts of
initial condition can be measured and, therefore,
has a longer predictability limit.
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The atmospheric predictability is investigated
separately in both the atmospheric model
(Zhang98) and the coupled model (this study).
However, the calculating procedure of predict-
ability for the coupled model is different from
the atmospheric model. As mentioned before,
the periodic solar radiation has been considered
as half-year cycles. So, when the root-mean-
square error (RMSE) of predicted probability
distribution between two days that are half-year
apart is less than a given precision ", the two
days’ probability distributions are considered
identical. In other words, the prediction of the

day ahead has already reached the climate state
and the day-to-day prediction later on is meaning-
less. Therefore, the period from initial time to this
day is the predictability limit. Figure 3a shows
only the atmospheric predictability limit of day-
to-day prediction versus precision ". The results
indicate that the atmospheric predictability limit
is extended one or two days in the coupled model
than in the uncoupled atmospheric model for
most precision cases.

Monthly mean atmospheric prediction has also
been investigated in both the atmospheric model
and the coupled model. With the half-year period

Fig. 3. Daily and monthly predictability
limit of different ‘observational’ errors:
a) Daily predictability limit of atmo-
spheric variables (X) in both the atmo-
spheric and coupled models; b) Monthly
predictability limit of atmospheric (X)
and land (T) variables in both the atmo-
spheric and coupled models
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of solar radiation in mind, when the RMSE
between one month’s probability distribution
and the month of half-year later is less than a
given precision ", the month’s probability distri-
bution is considered being on the climate state.
This is the procedure through which the predict-
ability limit of monthly mean prediction is
obtained. Figure 3b shows the results of monthly
mean prediction. The atmospheric predictability
limit in the coupled model is one to three months
longer than in the atmospheric model for most
precision cases.

Here is why temporal average prediction pro-
longs the predictability limit from the viewpoint
of simple cell mapping. Since the system is
deterministic under the concept of simple cell
mapping, the system evolution from a given
initial cell is completely determined. Thus, the
averages of a given time scale fall in definite
cells. On the other hand, the averaging operation
has smoothed out the variation of system states,
which leads to a smaller volume attractor. How-
ever, the precision of prediction only needs to
be within the observation precision which means
the cell size need not to be changed. There-
fore, the total number of cells (or states) on the
attractor has been lessened, so do the uncer-
tainty. On the contrary, the predictability is
increased.

Another conclusion drawn from Fig. 3a and 3b
is that the coupling of land model prolongs the
atmospheric predictability limit for both day-to-
day prediction and monthly mean prediction. The
physical mechanism behind this conclusion can
be explained like this: The changes of the atmo-
sphere are fast-changing processes, and the
changes of the underlying surface temperature
are slow-changing processes. The later is rela-
tively a stable component in the coupled system.
Although the feedback from the atmosphere is a
kind of random perturbation, the underlying sur-
face is functioning as a predominant, stable, and
more deterministic component to the atmo-
sphere. Thus, the certainty of the atmosphere is
enhanced by the coupling. From the viewpoint of
information, the slow-changing underlying sur-
face has longer memory of initial information
that prolongs the atmospheric predictability
limit.

Figure 3b also shows the results when predict-
ing all the state variable of the coupled system.

The predictability limit for the whole coupled
system is longer than the atmospheric model at
higher observation precisions while it is shorter
at lower observation precisions. The reason can
also be explained from the viewpoint of cell
mapping. There are more cells in the coupled
cell space (6-dimensional) than in the atmo-
spheric cell space (3-dimensional). For an ini-
tial condition with lower precision, there is less
information. Therefore the predictability is
lessened.

6. Conclusions and discussion

The coupling of slow-changing land model with
the fast-changing atmosphere model helps to get
more climate features involved in the study.
There are chaotic and stable (periodic) compo-
nents in the evolution of the coupled system.
Three time scales are recognized in the coupled
system. A fast process of the atmosphere evolv-
ing toward the chaotic attractor determined by
the underlying surface temperature, a slow pro-
cess of the underlying surface temperature
affected by solar radiation, and a much slower
changing of solar radiation.

The global analysis method, cell mapping, is
used to analyze the coupled climate model. The
simple cell mapping is a global analysis to
round-off error while the generalized cell map-
ping is a global analysis to observational error.
The improved generalized cell mapping method
is computationally efficient to be used in the
coupled model. Although the evolution of the
coupled system is undeterministic due to obser-
vational error, it is transformed into a probability
transition on a Markov chain by global analysis.
The long-term behavior is turned into a determi-
nistic probability distribution on the chaotic
attractor, which implies that the climate state
can be predicted by means of a combination of
dynamics and statistics. There exists a predict-
ability limit determined by observational error
in reality.

In terms of climate predictability, the coupling
of the land model helps to get longer memory of
the initial atmospheric information, and then the
predictability limit is extended as a result. Tem-
poral averaging prediction is a way for climate
predictions to extend beyond a day-to-day pre-
dictability limit.
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The coupled simple climate model has the
potential to be used in theoretical climate studies,
especially for introducing new mathematical the-
ories and methods. As was noticed in this study,
the information and fractal theories could be
applied in climate prediction study; applied pre-
diction methods based on probability distribution
might be studied in this system. There is a wide
area for exploration of various climate issues
further from this study.

Appendix: Coupling the underlying
surface model with the simplified
atmospheric model

A.1 Model

The connection between the atmosphere and its underlying
surface is established through the energy equilibrium at the
interface. Based on the assumption that the solar radiation is
absorbed all by the surface, the atmosphere has no affect on
the long-wave radiation, and there is no cloud effect and
evaporation, then the surface energy equation is simplified as:

RS þ RL ¼ Pþ AS ðA1Þ
where RS is solar short-wave radiation, RL is surface long-
wave radiation, P is turbulent heat flux between surface and
atmosphere, AS is heat flux between surface and deep earth.
They are given as:

RSð’; tÞ ¼
��S0 cos

�
’þ 23:5 cos 2�

tR
t
���þ S0 cos

�
’þ 23:5 cos 2�

tR
t
�

2

ðA2Þ

RLðTS0Þ ¼ ��T4
S0 ¼ ��½�TTS0 þ ðTS0 � �TTS0Þ�4

� �4��TT3
S0TS0 þ 3��TT4

S0 ðA3Þ

P ¼ �CpCdjVjðTS0 � 2ðTÞ2Þ ðA4Þ

AS ¼ ��SCPSKS

@TS
@z

ðA5Þ

where the independent variables t and ’ are time and latitude
(�90� to 90�), respectively; S0 is the solar constant; tR is the
yearly period of solar radiation; þ23.5 cos(2�t=tR) means
the year starts from the winter solstice; TS0 ¼ TSjz¼0 is land
surface temperature and �TTS0 is land surface eigen tempera-
ture; � is the Stephen-Boltzman constant; �, CP are air den-
sity and specific heat, respectively; jV j is absolute wind
speed at conventional observation height; Cd is dimension-
less dragging coefficient; (T)2 is the model (1) variables X
(see Appendix in Zhang98); �S is soil density; CPS is specific
heat of soil; KS is conductivity coefficient; and z is depth
coordinate with positive direction downward.

Applying (A2)–(A5) to (A1), we obtain the boundary
condition for land model as

@TS
@z

� HSTS ¼ Fð�; �; tÞ ðA6Þ

where

HS ¼
1

�SCPSKS

ð�CPCdjV j þ 4��TT3
S0Þ ðA7Þ

Fð�; �; tÞ ¼ � 1

�SCPSKS

ð2�CPCdjVjðTÞ2 þ RS þ 3��TT4
S0Þ

ðA8Þ
The soil temperature TS is considered satisfying linear

thermal conductive equation with the third boundary
conditions:

@TS
@t � K2

S
@2TS
@z2 ¼ 0

TSðz; tÞjt¼0 ¼ TSðz; 0Þ
@TS
@z � HSTS ¼ Fð�; �; tÞ when z ¼ 0

TS ¼ 0 when z ¼ D

8>><
>>:

ðA9Þ

where D is the depth of soil temperature annual variation or
the thickness of active layer in the ocean.

Assume TS ¼ �TTS0T
0
S, t ¼ 1

� t
0, z¼Dz0, Eq. (A9) is non-

dimensioned to get the linear model of soil temperature:

@TS
@t � k2

S
@2TS
@z2 ¼ 0

TSðz; tÞjt¼0 ¼ TSðz; 0Þ
@TS
@z � hSTS ¼ f ð�; �; tÞ when z ¼ 0

TS ¼ 0 when z ¼ D

8>><
>>:

ðA10Þ

where

k2
S ¼

K2
S

�D2
ðA11Þ

hS ¼ DHS ðA12Þ

f ð�; �; tÞ ¼ a1ðTÞ2 þ a2ðRS þ 3��TT4
S0Þ ðA13Þ

a1 ¼ � 2a2
0�

2D�CPCdjVj
�SCPSKS

�TTS0R
ðA14Þ

a2 ¼ � D

�SCPSKS
�TTS0

ðA15Þ

By referencing to Guo et al. (1996), an analytical solution to
the model (A10) exists as

TSðz; tÞ ¼ �
ðt

0

ksffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðt � �Þ

p h
e
� z2

4k2
S
ðt��Þ

� hS

ð1
0

e
�hS�� ðzþ�Þ2

4k2
S
ðt��Þd�

i
f ð�; �; �Þd�

þ 1

2kS
ffiffiffiffiffi
�t

p
ðD

0

h
e
�ðz��Þ2

4k2
S
t þ e

�ðzþ�Þ2

4k2
S
t

� 2hS

ð1
0

e
�hS��ðzþ�þ�Þ2

4k2
S
t d�

i
TSð�; 0Þd� ðA16Þ

A.2 Algorithm for calculating solution (A16)

There are difficulties in calculating TS from Eq. (A16)
because the two infinite integrals in (A16) are difficult to
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compute. The following gives an algorithm which can be
used for calculation. The two integrals are denoted as:

I1 ¼
ð1

0

e
�hS�� ðzþ�Þ2

4k2
S
ðt��Þd� ðA17Þ

I2 ¼
ð1

0

e
�hS��ðzþ�þ�Þ2

4k2
S
t d� ðA18Þ

For I1, let 	 ¼ zþ�

2kS
ffiffiffiffiffiffi
t��

p þ kShS
ffiffiffiffiffiffiffiffiffiffi
t � �

p
and do transformation,

then

I1 ¼ 2kS
ffiffiffiffiffiffiffiffiffiffi
t � �

p
ehSzþk2

S
h2
S
ðt��Þ

� ð1
0

e�	2

d	

�
ð z

2kS
ffiffiffiffi
t��

p þkShS
ffiffiffiffiffiffi
t��

p

0

e�	2

d	

�
ðA19Þ

Using the probability integral �ðxÞ ¼
Ð x

0
e�	2

d	, we get

I1 ¼ 2kS
ffiffiffiffiffiffiffiffiffiffi
t � �

p
ehSzþk2

S
h2
S
ðt��Þ

� ffiffiffi
�

p

2
� �

�
z

2kS
ffiffiffiffiffiffiffiffiffiffi
t � �

p þ kShS
ffiffiffiffiffiffiffiffiffiffi
t � �

p ��
ðA20Þ

For I2, let S ¼ zþ�þ�

2kS
ffiffi
t

p þ kShS
ffiffi
t

p
, and do similar deduction as

for I1, we get

I2 ¼ 2kS
ffiffi
t

p
ehSðzþ�Þþk2

Sh
2
St

� ffiffiffi
�

p

2
��

�
zþ �

2kS
ffiffi
t

p þ kShS
ffiffi
t

p ��

ðA21Þ

Applying (A20) and (A21) to (A16), we get

TSðz; tÞ ¼ � kSffiffiffi
�

p
ðt

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � �Þ

p e
� z2

4k2
S
ðt��Þf ð�; �; �Þd�

þ k2
ShSe

hSz

ðt
0

ek
2
Sh

2
Sðt��Þf ð�; �; �Þd�

� 2k2
ShSffiffiffi
�

p ehSz
ðt

0

ek
2
S
h2
S
ðt��Þ�

�
z

2kS
ffiffiffiffiffiffiffiffiffiffi
t � �

p

þ kShS
ffiffiffiffiffiffiffiffiffiffi
t � �

p �
f ð�; �; �Þd�

þ 1

2kS
ffiffiffiffiffi
�t

p
ðD

0

e
�ðz��Þ2

4k2
S
t TSð�; 0Þd�

þ
ðD

0

e
�ðzþ�Þ2

4k2
S
t TSð�; 0Þd�

� hS

ðD
0

ehSðzþ�Þþk2
Sh

2
StTSð�; 0Þd�

þ 2hSffiffiffi
�

p
ðD

0

ehSðzþ�Þþk2
S
h2
S
t�

�
zþ �

2kS
ffiffi
t

p

þ kShS
ffiffi
t

p �
TSð�; 0Þd� ðA22Þ

For practical calculation, the integrals in the above equa-
tion should be substituted by summation. Through discretiz-
ing the integral range t and D into n and m parts, respectively,
when �t¼ t=n and �D¼D=m are small enough, the inte-

gral intermediate value theorem is used for (A22). Now we
have:

TSðz; tÞ ¼
Xn
i¼1

½F1ðz; t; �iÞf ð�;�; �iÞ� þ
Xm
i¼1

½F2ðz; t; �iÞTSð�i;0Þ�

ðA23Þ
where

F1ðz; t; �iÞ ¼ � 2kSffiffiffi
�

p
� ffiffiffiffiffiffiffi

i�t
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði� 1Þ�t

p �
e
� z2

4k2
S
ðt��iÞ

þ 2k2
ShS�tffiffiffi
�

p
� ffiffiffi

�
p

2
� �

�
z

2kS
ffiffiffiffiffiffiffiffiffiffiffi
t � �i

p

þ kShS
ffiffiffiffiffiffiffiffiffiffiffi
t � �i

p ��
ehSzþk2

S
h2
S
ðt��iÞ ðA24Þ

F2ðz; t; �iÞ ¼ � �D

2kS
ffiffiffiffiffi
�t

p
�
e
�ðz��iÞ2

4k2
S
t þ e

�ðzþ�iÞ2

4k2
S
t

�

� 2hS�Dffiffiffi
�

p
� ffiffiffi

�
p

2
��

�
zþ �i

2kS
ffiffi
t

p

þ kShS
ffiffi
t

p ��
ehSðzþ�iÞþk2

Sh
2
St ðA25Þ

ði� 1Þ�t<�i< i�t and ði� 1Þ�D<�i< i�D ðA26Þ

A.3 Coupling with the atmospheric model (1)

The land model can be easily coupled with the atmospheric
model (1) through the temperature continuity condition at the
interface:

ðTÞ4 ¼ Tsjz¼0 � T̂T ðA27Þ

where T̂T is environment temperature, Tsjz¼0 is the land sur-
face temperature calculated from land model (3), (T)4 is the
external forcing required by the atmospheric model. Here we
select similar base functions as in Appendix of Zhang98:

P0
2 ¼ 1

2
ð3 cos 2�� 1Þ;P2

4 ¼ 15

2
ð�7 cos 4�þ 8 cos 2�� 1Þ

ðA28Þ
and suppose

ðTÞ4 ¼ ðT1Þ4 � 10P0
2 þ ðT2Þ4P

2
4 cos 2�þ ðT3Þ4P

2
4 sin 2�

ðA29Þ
then we can get

ðT1Þ4 ¼
Ð 2�

0

Ð �
0
ðTsjz¼0 � T̂TÞP0

2 sin � d�d�

20�
Ð �

0
ðP0

2Þ
2

sin � d�
ðA30Þ

ðT2Þ4 ¼
Ð 2�

0

Ð �
0
ðTsjz¼0 � T̂TÞP2

4 cos 2� sin � d�d�

�
Ð �

0
ðP2

4Þ
2

sin � d�
ðA31Þ

ðT3Þ4 ¼
Ð 2�

0

Ð �
0
ðTsjz¼0 � T̂TÞP2

4 sin 2� sin � d�d�

�
Ð �

0
ðP2

4Þ
2

sin � d�
ðA32Þ

Through (A30)–(A32), the two models are coupled. When
a set of initial land surface temperature (T)4 is given, an
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approximate set of initial soil temperature for different depth
can be derived by utilizing a lapse rate of soil temperature,

s, which is set as a constant.

A.4 Constants and parameters

S0 ¼ 9:57391�107 J m�2 s�1

�TTS0 ¼ 2:98816�103 K

Cd ¼ 2:8�10�2

T̂T1 ¼ �261:0 K

T̂T2 ¼ �20:0 K

T̂T3 ¼ 5:0 K

jVj ¼ 10 m s�1

D ¼ 400 m


s ¼ 2:0�10�2 K m�1

� ¼ 1:2923 kg m�3

CP ¼ 1:0061�103 J kg�1 K�1

�s ¼ 1:0�103 kg m�3

CPS ¼ 4:18684�103 J kg�1 K�1

KS ¼ 1:17399�101 J m�2 s�1 K�1

ð�TT1Þ4 ¼ 345:1 K

ð�TT2Þ4 ¼ 24:0 K

ð�TT3Þ4 ¼ �388:6 K
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