Papers by Thomas A. Richmond
     
Click on a title to download the paper in .pdf


T. Clark and T. Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, Involve, to appear.

T. Richmond and A. Young, Instant Insanity II, College Math. Journal, Vol. 44 no. 4 (September 2013) 265-272.  doi.org/10.4169/college.math.j.44.4.265

T. Clark and T. Richmond, Cantor Sets Arising from Continued Radicals, The Ramanujan Journal, to appear.   DOI 10.1007/s11139-012-9457-8
T. A. Richmond, Complements in the Lattice of Locally Convex Topologies, Order, Vol. 30, no. 2 (2013) 487-496.  DOI 10.1007/s11083-012-9257-1
Ralph Kopperman, Homeira Pajoohesh, and Tom Richmond, Topologies Arising from Metrics Valued in Abelian l-Groups, Algebra Universalis, Vol. 65, no. 4 (2011) 315-330. DOI 10.1007/s00012-011-0132-5
T. Clark and T. Richmond, Collections of Mutually Disjoint Convex Subsets of a Totally Ordered Set, Fibonacci Quarterly, Vol. 48, no. 1 (February 2010) 77-79.

T. Richmond and J. Šlapal, Neighborhood Spaces and Convergence, Topology Proceedings, 35 (2010)  165-175.

M. B. Richmond and T. A. Richmond, How to Recognize a Parabola, American Mathematical Monthly, Vol. 116, no. 10 (December 2009) 910-922.

Aisling McCluskey, Hans-Peter Künzi, and T. A. Richmond, Ordered Separation Axioms and the Wallman Ordered Compactification, Publicationes Mathematicae Debrecen, Vol. 73 no. 3-4 (2008) 361-377.

Asli Güldürdek and T. A. Richmond, Every Finite Topology is Generated by a Partial Pseudometric, Order, Vol. 22 no. 4 (2005) 415-421.

Hans-Peter Künzi and T. A. Richmond, T_i-Ordered Reflections, Applied General Topology, Vol. 6 no. 2 (2005) 207-216.

J. Johnson and T. A. Richmond, Continued Radicals, The Ramanujan Journal, Vol. 15 no. 2 (2008) 259-273.

Hans-Peter Künzi and T. A. Richmond, Completely Regular Ordered Spaces verses T2-ordered Spaces which are Completely Regular,  Topology and its Applications, 135 no. 1 (2004) 185-196.

T. A. Richmond, A Curious Example Involving Ordered Compactifications, Applied General Topology, Vol. 3 no. 2 (2002) 225-233.

T. A. Richmond, Ordered Compactifications, Galois Connections, and Quasi-uniformities, Proceedings of the UNISA Topology Workshop, vol. 1.  University of South Africa, Pretoria, July 2001.

D. D. Mooney and T. A. Richmond, Ordered Compactifications of Products of Two Totally Ordered Spaces, Order, Vol. 16 no. 2 (1999) 113-131.

D. D. Mooney and T. A. Richmond, Ordered Quotients and the Semilattice of Ordered Compactifications, Proceedings of the Tennessee Topology Conference, P. R. Misra and M Rajagopalan, editors, World Scientific Inc, 1997, pp. 141 - 155.

D. D. Mooney and T. A. Richmond, Zero-Dimensional Compactifications and Ordered Compactifications of Totally Ordered Spaces, Proceedings of the Tennessee Topology Conference, P. R. Misra and M Rajagopalan, editors, World Scientific Inc, 1997, pp. 157-166.
M. B. Richmond and T. A. Richmond, Characterizing Power Functions by Volumes of Revolution,  College Math. Journal, Vol. 29 no. 1 (Jan. 1998) 40-41.

M. B. Richmond and T. A. Richmond, Metric Spaces in Which All Triangles are Degenerate, American Mathematical Monthly, Vol. 104, no. 8 (Oct. 1997) 713-719.

D. D. Mooney and T. A. Richmond, The Lattice of Ordered Compactifications of a Direct Sum of Totally Ordered Spaces, Order, Vol. 15 (1998) 1-19.
T. A. Richmond, Ball Transitive Ordered Metric Spaces, Proceedings of the 24th National Conference of Geometry and Topology, Timisoara, Romania, July 5-9,1994, Part one, Lectures. Adrian C. Albu and Mircea Craioveanu, editors. Ed. Mirton Timisoara, 1996, p. 137-143.
T. A. Richmond, Quasiorders, Principal Topologies, and Partially Ordered Partitions,  Internat. J. Math. & Math. Sci., Vol. 21 no. 2 (1998) 221-234.

D. D. Mooney and T. A. Richmond, Cardinality and Structure of Semilattices of Ordered Compactifications,  pp. 188-193 in Papers on General Topology and Applications:  Ninth Summer Conference at Slippery Rock University, Susan Andima, et. al, editors, Annals of the New York Academy of Sciences, Vol. 767, New York, 1995.

D. C.  Kent, Dongmei Liu, and T. A. Richmond, On the Nachbin Compactification of Products of Totally Ordered Spaces, Internat. J. Math. & Math. Sci., Vol. 18 no. 4 (1995) 665-676.

D. C.  Kent and T. A. Richmond, Ordered Compactifications with Countable Remainders, Bull.  Austral. Math. Soc., 49 (1994) 483-488.
D. C.  Kent and T. A. Richmond, A New Ordered Compactification, Internat. J. Math. & Math. Sci., Vol. 16 no.1 (1993) 117-124.
M. B. Richmond and T. A. Richmond, The Equal Area Zones Property, American Mathematical Monthly, Vol. 100 no. 5 (May 1993) 475-477.

T. A. Richmond, Posets of Ordered Compactifications,  Bull.  Austral. Math. Soc., 47 (1993) 1-14.

T. A. Richmond, Remarks on N-point Order Compactifications, Indian J. Pure and Appl.  Math., 21 (6) (1990) 527-529.  Errata, ibid, 22 (1) (1991) 99.
T. A. Richmond and R. Vainio, Order-Theoretical Connectivity, Internat. J. Math.  & Math. Sci., Vol. 13, no. 4 (1990) 717-720.
D. C.  Kent and T. A. Richmond, Separation Properties of the Wallman Ordered Compactification,  Internat. J. Math. & Math. Sci., Vol. 13, no. 2 (1990) 209-222.
D.  C.  Kent and T. A. Richmond, Ordered Compactifications of Totally Ordered Spaces, Internat. J. Math. & Math. Sci., Vol. 11, no. 4 (1988) 683-694.
T. A. Richmond, Finite-Point Order Compactifications, Math. Proc. Camb. Philos. Soc. (1987) 102, 467-473.



  Books

Bettina Richmond and Thomas Richmond, A Discrete Transition to Advanced Mathematics,  Pure and Applied Undergraduate Texts, Volume 3, American Mathematical Society, ISBN 978-0-8218-4789-3 © 2004, 424 pages.  Complete Solutions Manaul for A Discrete Transition to Advanced Mathematics,  204 pages, Brooks/Cole, ISBN 0534405207 © 2004.   Student Solutions Manual for A Discrete Transition to Advanced Mathematics, 62 pages, Brooks/Cole, ISBN 0534405193 © 2004.