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ABSTRACT. The Wallman ordered compactification wyX of a topological ordered space X is T3-ordered
(and hence equivalent to the Stone-Cech ordered compactification) iff X is a Ty-ordered c-space. In particular,
these two ordered compactifications are equivalent when X is n dimensional Euclidean space iff n < 2. When
X is a c-space, wp.X is Tj-ordered; we give conditions on X under which the converse statement is also true.
We also find conditions on X which are necessary and sufficient for wyX to be T;. Several examples provide
further insight into the separation properties of wo.X.
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Introduction.

The Wallman ordered compactification woX of a Tj-ordered space X was introduced in 1979 by Choe
and Park [1). In [3] one of the authors showed (in the terminology of this paper) that woX is T;-ordered iff X
is a Ty-ordered c-space, and that for such spaces, woX is equivalent to the Stone-Cech ordered (or Nachbin)
compactification fo.X of X.
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This paper continues the study of the separation properties of woX. If X is a c-space (meaning that
the increasing and decreasing hulls of every c-set are closed), then wpX is Tj-ordered, and under certain
further restrictions on X the condition of being a c-space is shown to be necessary in order for woX to be
Ty-ordered (see Theorems 2.7 and 2.8). Two conditions on X are found which are necessary and sufficient
for wpX to be Ty; one is an ultrafilter condition, while the other is a version of normality for ordered spaces
which we call “c-normally ordered.” For T}-ordered c-spaces, the notions “c-normally ordered” and “nor-
mally ordered” (as defined by Nachbin, [5]) are equivalent, but for T}-ordered spaces in general it is shown
by examples that neither property implies the other.

One motivation for studying the Wallman ordered compactification is that it gives a convenient filter
characterization for foX when X is a Ty-ordered c-space. For Buclidean n-space R", we show that woR" and
PoR" are equivalent iff n < 2, and we then give a description of foR? based on the Wallman characterization
of compactification points in By R? as non- convergent maximal c-filters. Other examples are given to show how
the separation properties of the Wallman ordered compactification can fail in various ways and combinations.
1. The Wallman Ordered Compactification.

If (X, <) is a poset and A a non-empty subset of X, we define d(A) = {y € X : y < z for some z € A}
to be the decreasing hull of A; the ncreasing hull i(A) is defined dually. We shall write d(z) (s(z)) in place
of d({z}) (({})). A subset A is increasing (respectively, decreasing) if A = i(A) (respectively, A = d(A)).
A set which is either increasing or decreasing is said to be monotone. If A =¢(A) Nd(A), then A is called a
convez set.

We shall use the term space throughout this paper to mean a triple (X, <, 7), where (X, <) is a poset
and r a convez toplogy on X (i.e., a topology for which the open monotone sets constitute an open subbase).
When there is no danger of confusion, we shall designate the space (X, <, r) simply by “X™.

For any space X, we shall use the term fundamental open set to mean any set expressible as a finite
intersection of finite unions of monotone open sets. The set Uy of all fundamental open sets forms an open
base for X. The complement of a fundamental open set will be called a fundamental closed set.

Let Abe a subset of a space X, and let I(A) (respectively, (D(A)) be the smallest closed and increasing
(respectively, closed and decreasing) set containing A, and let AA = I(A)ND(A). If A= A? then A is called
a c-set; let Cx denote the collection of all c-sets on a space X. One can verify that Cx is closed under
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intersections and forms a subbase for the collection of closed sets in a space X. The relationship between
fundamental open sets and c-sets can be described as follows.

Proposstion 1.1 Let X be a space. Then U € Uy iff X - U is a finite union of c-sets.

If 7 is a filter on a space X, let I(7) be the filter generated by {I(F) : F € 7}; the filters D(7),i(7),
and d(7) are defined similarly. The fixed ultrafilter generated by an element z in X is denoted by z. I
7 and § are filters on X which do not contain disjoint sets, let 7 V § designate the filter generated by
{FNG:Fe7,GeG}if FNG = ¢ for some F € 7 and G € §, we say that 7V § “fails to exist® (as a
proper filter).

For any filter 7, the filter FA = I(7) V D(7) exists and is generated by {FA: Fe 7}. f 7 = A,
then 7 is called a c-filter. It is easy to show (using Zorn's Lemma) that every c-flter is coarser than a
l‘naximal c-filter. In our study of the Wallman ordered compactification, which is based on maximal c-filters,
the following characterization will be useful.

Proposition 1.2 A c-filter 7 on a space X is maximal iff, for each c-set A, either A€ For X-A€ 7.

Proof. If 7 is a maximal c-filter and A ¢ 7, then 7 can have no trace on A, for such a trace would
be a c-filter strictly finer than A. Thus X - A € 7. Conversely, if 7 is a c-flter which is not maximal, and §
is a strictly finer c-filter, then some c-set G in § has the property that neither G nor X ~ G is in 7, contrary
to the stated condition. I

A space X is Ty-ordered [4] if, for each 2 € X, 4(2) and d(z) are both closed sets. Note that in &
Ti-ordered space, each singleton {2} is a c-set. A space with closed order is defined to be Tj-ordered [d].
A space X is normally ordered [5) if, whenever A and B are disjoint closed sets, with A increasing and B
decreasing, there are disjoint open sets U and V, with U increasing and V' decreasing, such that A C U and
B C V. A space which is both normally ordered and T;-ordered is said to be T-ordered [3]. Priestly, 6],
defined a C-apace to be one in which §(A) and d(A) are closed whenever A is closed. We define a c-space to
be one in which every c-set A has the property that §(A) and d(A) are closed sets. Obviously, every C-space
is a c-space; in particular, the compact, Tj-ordered spaces are c-spaces. An alternate characterization for
c-spaces is given in the next proposition (see [3]).

Proposition 1.8 If X is a c-space and A, B are c-sets, then I(A) N B = ¢ implies I(A) N D(B) = ¢,
and D(A) N B = ¢ implies D(A) N I(B) = ¢. If X is Ty-ordered and the two preceding implications hold for
arbitrary c-sets A and B, then X is a c-space.
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The Wallman ordered compactification can be constructed for any Tj-ordered space X. The original
construction by Choe and Park [1] was based on “maximal bifilters; we shall follow the approach of (3] in
which maximal c-filters form the underlying set for woX. Given a Tj-ordered space X, let woX = {%: z€
X} U X', where X is the set of all non-convergent maximal c-filters. A partial order relation is defined for
woX a8 follows: 7 < § iff I(F) C § and D(§) C 7. The embedding map ¢ : X — wyX given by p(z) = 2
for all z in X is obviously increasing.

For any subset A of X, let A* = {F € woX : A€ 7}. If 7 is a filter on X, let 7* be the filter on wo X
generated by {F* : F € 7}. The fact that the latter collection is a filter base and other important properties

of this set operator follow from the next proposition.

Proposition 1.4 Let X be a Ty-ordered space.
(a) For all subsets A,B of X, (ANB)* = A*nB*
(b) If A,B € Cx, then ((X - A)U(X - B))* = (X - A)*U(X - B)*
(c) i A € Cx, then (X - A)* = X* - A*.
Proof. Statement (a) is clear, and (b) follows from Proposition 1.2; (c) is an easy consequence of (b). |
The topology for weX is defined by choosing for a subbase of closed sets the collection {A* : A €
Cx}. ¥ U € Ux, then U is a finite intersection of complements of c-sets and U* is open in wyX; indeed
{U*:U € Ux} is a base for the open sets in wpX. In particular, sets of the form V* where V is open and
monotone in X form an open subbase for woX. It should be noted that if V is a non-fundamental open set
in X, it is not generally true that V* is open in wpX. The following facts about the topology of woX will be

stated for future reference.

Proposstion 1.5 Let X be a Ty-ordered space.
(a) If B is a monotone closed (respectively, open) set in X, then B* is monotone in the same
sense and closed (respectively, open) in woX.
(b) ¥ 7 € woX, then the neighborhood filter V*(7) at 7 in woX has for its filter base {U*: U €
Fnlx}.

The next two theorems summarize the main results already known about the Wallman ordered com-

pactification. Proofs for these propositions form the main results of [1] and [3] and the reader is referred to
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these sources for further details. Here we should mention again that the proofs in [1] are formulated in the
language of “bifilters”, but the translation into “c-filter” terminology presents no difficulties.

Theorem 1.6 For any Ti-ordered space X, (woX, ) is an ordered compactification of X, and wpX
i8 a Ty topological space. Also, woX is Ty-ordered iff X is a Ty-ordered c-space.

Theorem 1.7 Let X be a Tj-ordered space, Y a T;-ordered compact space, and f : X = ¥V a
continuous increasing function. Then there is a unique continuous increasing function f : wpX — Y such
that fop = f.

Let us recall that for a space which admits a T;-ordered compactification (see [5] for a characterization
of such spaces) there is always a largest Ty-ordered compactification called the Stone-Cech ordered (or
Nachbin) compactification denoted by X (see [2], [5]). The two preceding theorems yield the following
umportant corollary.

Corollary 1.8 For a space X which admits a Tp-ordered compactification, woX and foX are equiva-
lent iff X is a T}-ordered c-space.
2. Separation Properties of woX.

Given a Tj-ordered space X, we already know that woX is T}, and that wyX is T;-ordered iff X is
a Ty-ordered c-space. We shall now examine conditions on X subject to which woX is T;-ordered or T;. As
it turns out, weX can fail to have either of these latter properties, can have either one without the other,
or can have both properties and still fail to be T;-ordered; examples are given later to illustrate all of these
possibilities. We begin by finding conditions on X which are necessary and sufficient for wyX to be T;.

Proposition 2.1 Let 7 be an ultrafilter and § a maximal cfilter on X. Then p(f) — §
inop X iff 7A C §.

Proof. Let p(¥) — G in woX. Let F € 7 be a c-set. If F ¢ § then either I(F) ¢ § or D(F) ¢ §;
without loss of generality, assume the former. Then I(F) ¢ § implies, by Proposition 1.2, that X - I(F) € §,
and therefore § € (X - I(F))*, which is a subbasic open neighborhood of § in woX. Now p(7) — § implies
(X - I(F))* € p(¥), and consequently X — I(F) € 7. This contradicts the fact that F € 7, and therefore

every element of 74 is in §.
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Conversely, let 7A C §, and (X — A)* be a subbasic open neighborhood of §, where A is closed and
monotone in X. Since 7 is an ultrafilter, either A€ 7 or X - A€ 7. If A€ 7 then A € 7, which in turn
implies A € §, contrary to the fact that X - A € §. Thus X - A€ 7, and hence (X - A)* € p(F). Since
(X — A)* is an arbitrary subbasic open neighborhood of §, () — §.1

Theorem 2.2 Let X be a Ty-ordered space. Then wyX is T, iff, for each ultrafilter 7 on X, there is
a unique maximal c-filter § on X such that 7A C §.

Proof. If wyX is T and 7 an ultrafilter on X, then (7) is an ultrafilter on wgX which must con-
verge to some maximal c-filter §, since wyX is compact. By Proposition 2.1, 7A C §. If there is a different
maximal c-filter ¥ with 74 C X, then () would also converge to X, contrary to the assumption that wpX
18 Tp. Thus § is unique.

Conversely, assume the uniqueness condition. If woX is not Ty, there is a filter 4 on wpX converging
to distinct elements §, ¥ in woX. Let 7 be an ultrafilter on X finer than the filter generated by {A C X :
A* € A}. One easily verifies that p(7) must converge to both § and ¥, which, by Proposition 2.1, violates

our assumed uniqueness condition. |

A space X is defined to be c-normally ordered if, for each pair of disjoint c-sets A, B, there are
disjoint fundamental open sets U,V such that A C U and B C V. As we shall see in later examples, there
are spaces which are c-normally ordered but not normally ordered, and vice versa. Of course, both of these

versions of “ordered normality” reduce to ordinary normality when the partial order for X is equality.

Theorem 2.8 The following conditions on a T;-ordered space X are equivalent.
(1) X is c-normally ordered.
(2) Two disjoint fundamental closed sets in X can be separated by disjoint fundamental open
neighborhoods.
(3) f A is a c-set in X, then every fundamental open set containing A contains a fundamental
closed set which in turn contains a fundamental open neighborhood of A.
(4) For each ultrafilter 7 on X, there is a unique maximal c-filter § finer than 74,
(5) 0oX is T.
Proof. The equivalence of (1), (2), and (3) is a routine exercise, and the equivalence of (4) and (5)

was established in the previous theorem.
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(1) = (5). ¥ 7 and § are distinct maximal c-filters on X, then there are disjoint c-sets F in 7
and G € §. Let U and V be disjoint fundamental open neighborhoods of F and G respectively; then by
Proposition 1.4, U* and V* are disjoint open neighborhoods of 7 and §, respectively, in wpX.

(5) = (1). Let A and B be disjoint c-sets in X. Then A* and B* are disjoint closed sets in wyX, and
since wo X i compact and T, there are disjoint open sets M and N in woX such that A* C M and B* C N.
Since {U* : U € Ux} forms an open base for wgX, there are subcollections {U? : i € I} and {V}* : j € J}
such that M = U{U} : ¢ € I} and N = U{V}’ : j € J}. Using the fact that A°* and B* are compact subsets
in wpX, we can find finite subcovers Uj,---,U;, of A* and V3 o, Vi of B*. Letting U = U;, U---U T,

Oy
and V = Uy U+ UUj,, we obtain disjoint fundamental open neighborhoods of A and Bin X.

Although neither of the properties “normally ordered” and “c-normally ordered” implies the other
in general, the next theorem establishes the equivalence of these properties in Ty-ordered c-spaces. We first

need the following lemma.

Lemma 2.4 Let X be a c-normally ordered c-space. If A is a c-set in X and U is an open, increasing
neighborhood of A, then there is a closed, increasing neighborhood G of A such that ACG CU.

Proof. Let B = X - U; by Proposition 1.3, I(A) N B = ¢, and so I(A) and B can be separated by
disjoint, fundamental open sets W and V', respectively. By Proposition 1.1, X — V is a finite union of c-sets
Cy,+++,Cn. By Proposition 1.3, I(C;) N B = ¢ for all indices 5; let G = U{I(C;) :s=1,---,n}. Thus G is
closed and increasing, and ACW CGCU.1

Theorem 2.5 For a Ty-ordered c-space X, the following statements are equivalent.
(a) X is normally ordered.
(b) X is c-normally ordered.
(¢) woX is Ty-ordered.

Proof. (a) & (c) is established in Theorem 1.6. (c) = (b) follows by Theorem 2.3. (b) = (c): It
is sufficient to show that if 7,§ € woX and 7 £, then there are disjoint neighborhoods of 7 and § in
woX, where the former is an increasing set and the latter decreasing. If 7 £, then either I(7) € § or
D(§) £7; without loss of generality, assume the latter. Since 7 is a maximal c-filter, there are c-sets G € §
and F € 7 such that D(G) N F = ¢. By Lemma 2.4, there is a closed, increasing neighborhood N of F such
that NN D(G) = ¢ and a fundamental open set W such that FCW CN. Now (X- N)*, which is
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a decreasing open set in woX by Proposition 1.5, and the increasing hull of W* in woX provide the desired
neighborhoods which separate 7 and § in woX. I

If woX is Ty-ordered, then X is necessarily a T)-ordered c-space; thus the following corollary is

immediate.
Corollary 2.6 For a Ty-ordered space X, woX is Ty-ordered iff X is a c-normally ordered c-space.

Theorem 2.7 If X is a Ty-ordered c-space, then woX is T-ordered.

Proof. Let 7 € wpX, and let iy(¥) = {G € woX: 7 < §} be the increasing hull of 7 in woX. Let
“ely” denote the closure operator in wX. We shall show that ¢ly(iy(7)) C iy (7); a similar argument shows
that the decreasing hull of 7 is closed, and hence that wyX is Tj-ordered.

If § € cly(ie(7)), then for each A € Cx such that § € (X — A)*, there is ¥ € iy(7) such that
¥ € (X- A)*. With the help of Proposition 1.2, the last sentence may be restated as follows: if § € ely(iw(7))
and A € Cx, then A ¢ § implies there is ¥ € woX such that 7 S¥andAgX.

Now assume that § € ely(tu(7)); if § & tu(7), then either I(7) € § or D(§) € 7. Suppose
I(7) € §; then there is F € 7 such that I(F) ¢ §. But § € cly(to(7)) implies there is ¥ € 1¢(¥) such that
I(F) & X, a contradiction. On the other hand, suppose D(§) € 7. Since 7 is a maximal c-filter, there are
c-sets F € 7 and G € § such that D(G) N F = ¢, and by Proposition 1.3, D(G)NI(F) = ¢. Thus I(F) ¢ §,
and a repetition of the preceding argument again yields a contradiction. We may therefore conclude that
G € iy(7), and hence that iy(F) is closed. |

The converse of Theorem 2.7 does not hold in general, however the next theorem establishes a partial
converse. We shall say that a net (z))sex in 8 space X is upward directed if, for each pair of indices ), p € A,
there is o € A such that ) < 0, p< g, 2) < 2,, and z, < z,. Downward directed nets are defined dually.

Theorem 2.8 Let X be a Ty-ordered space with the property that, whenever A is decreasing (re-
spectively increasing) and z € cly A, there is an upward directed (respectively, downward directed) net on A
which converges to z. Then wyX is Tj-ordered iff X is a c-space.

Proof. Suppose X is not a c-space. Then for some c-set A in X, either §(A) is not closed or else
d(A) is not closed. There is no loss of generality in assuming the latter. Thus there is some y € clxd(A)
such that y ¢ d(A); by assumption there is an upward directed net (z)aea on d(A) converging to y. Then
{i(za)NA: ) €A} isabaseforacfilter Gon X; let 7 be a maximal c-filter finer than §.
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Let K be the filter generated by the net (zy)yex. Then K — y, and if 7 — z for some z € X,
then it must follow that y < z, since K x 7 has a trace on the order, and the order is closed. But y < z
i8 a contradiction since A € 7 and A a c-set implies z € A, and therefore y € d(A). Thus 7 must be a
non-convergent maximal c-filter, and therefore an element of wpX.

One may easily verify that 2, 7 holds for all A € A, but that l‘;f'f . But (z))1ea — y in X implies
(2)aex —¥ in woX, and hence Y cly(dy(7)), but §¢ dy(7). Thus woX is not Tj-ordered. I

Ezample 2.9 Let X = AUBU{a} U{b}, where A= {2;:1=1,2,3,-- Jand B={y;:4=1,2,3,---}.
Define the topology for X by specifying that {z} is open for z € AU B; the neighborhood filter at a (re-
spectively, b) is generated by sets of the form An = {z; : ¢ > n} (respectively, By = {y; : ¢ 2 n}), where
n=1,23"-. The order for X is the smallest partial order such that z; < y; for each positive integer 1.

It is evident from this construction that X is a compact, T3, T}-ordered space; thus we may identify X
with wgX. Note that every closed set in X is a c-set, and every open set is a fundamental open set; it follows
that X is c-normally ordered. However X is not a c-space, since for the c-set C = BU {b},$(C) = AUC is
not closed. Thus X is neither T%-ordered nor normally ordered.

The main points illustrated by this example are that the converse of Theorem 2.7 does not hold in
general, and that the conditions Ty-ordered, T3, and c-normally ordered on X are not sufficient to guarantee
that woX is Th-ordered. This example also shows that a c-normally ordered space need not be normally
ordered, even when the axioms T}-ordered and T are present.

3. Examples in Euclidean Space.

Additional insight into the behavior of the Wallman ordered compactification can be gained by study
ing some simple examples in R™ (by which we mean Euclidean n-space with the usual product topology and
product order), especially in the case n = 2. We shall show that n = 2 is the largest value of n for which
woR" 18 T3-ordered, and hence the largest value of n for which woR" = fyR". We shall use the known
properties woR? to describe foR2. We also examine two simple subspaces of R? for which the Wallman
ordered compactification is not T;-ordered.

Theorem 3.1 Let A be a closed, convex subset of R?. Then i(A) = I(A) and d(4) = D(A), and

hence R? is a c-space.
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Proof. We shall prove that i(A) is closed; a similar argument shows that d(A) is closed.

If (A) is not closed, then there is a sequence (2,,yn) in §(A) such that (zq,yn) — (2o, yo), Where
(20,40) € 5(A). Let (6n, bn) be a sequence in A such that (an,bn) < (2n,yn) for all n € Z. The convergence
of the sequence (2n,yn) implies that the sequences (an) and () are both bounded above. Either of these
sequences may fail to be bounded below, and this leads us to consider four cases.

Case 1. (a5) and (by) are both bounded below. Then there is a convergent subsequence (ap,,bp,) —
(a,b). Since A is closed, (a,b) € A, and since R? is T;-ordered, (a,b) < (2o, yo), contrary to (zo,yo) & §(4).

Case 2. (a,) and (bs) are both unbounded below. Then for some n € Zt, (an,bs) < (20,40), Which
again contradicts (2o, yo) & 1(A).

Case 3. (an) is bounded below, but (bs) is not. In this case, there is no loss of generality in assuming
that @, — a and that (bs) is an unbounded, decreasing sequence. Then there is ng € Z+ such that b, < yo,
for all n > ng. Also a < z; since R! is Ty-ordered, and for n > ny we must have a < ay, for otherwise
(an,ba) < (20,y0) would again yield a contradiction. Thus from the sequence (an)n>n, it is possible to
obtain a decreasing subsequence (a,) — 4, and the corresponding subsequence (b, ) is, of course, decreasing
and unbounded. Now for any 5 € 2%, (an;,bn;) < (an;,bn;) < (any,bn,), and the convexity of A implies that
(anjbny) € A for all 5 € Z*. Thus, (an,,bn,) = (4, bn,) and (a, by, ) € A since A is closed. But a < 2 and
bn, < yo implies (29, yo) € ¢(A), a contradiction.

Case 4. (bn) is bounded below, but (a,) is not. An argument similar to that of case 3 yields a
contradiction. |

Proposstion 8.2 R™ is not a c-space for n > 3.

Proof. Let A= {(m,~L,10,...,0) € B" : m € Z*}. The elements of A are isolated in both the
topological and order sense, and so A is a closed, convex subset of R®. One can verify that I(4) = i(A)
and D(A) = d(A) U B, where B = {(z,0,2,0,---,0) € R : 2 < 0}. Since §(4) N B = ¢, it follows that

A=I(A)n D(A) = AM, and so0 A is a c-set. But d(A) # D(A), and so R is not a c-space. I

Theorem 8.8 R™ is Ty-ordered for all n € 2.

Proof. If 2= (2y,--,2,) € R" and z < y, then N(z,¢) C d(N(y,e)) and N(y,¢) C (N(z,¢)); from
this it easily follows that the increasing and decreasing hulls of open sets in R" are open. If A is a closed
increasing set and B a closed, decreasing set in R® such that AN B = ¢, then for each b € B we may choose
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ry such that AN N(b,#y) = ¢, and consequently A Nd(N(b,ry)) = ¢. Likewise, for each a € A, there is r,
such that BNi(N(a,r,)) = ¢. Let U = N{i(N(a, r4/2)) : ¢ € A} and V = U{d(N(b, r;/2)) : b € B}. Then
U and V are disjoint open sets, the former increasing and the latter decreasing, which separate A and B. 1

Theorem 3.4 The following statements are equivalent.
(a) R" is a c-space.
(b) woR™ is Ty-ordered.
(c) woR" is Ty-ordered.
(d) woR" = oR".
(e n<2
Proof. 1t is obvious that in R!, the increasing or decreasing hull of any closed set is closed, and so
R! is a c-space. Thus (a) ¢ (c) follows by Theorem 3.1 and Proposition 3.2.
(a) & (b) follows from Theorems 2.7 and 2.8. By Theorems 1.6, 3.1, and 3.3, woR" is Tp-ordered for
n < 2, and by Theorem 1.6 and Proposition 3.2, woR" is not Tp-ordered for n > 3; thus (c) ¢ (e). Finally,
(c) ¢ (d) follows by Theorem 1.6 and Corollary 1.8. I

The Wallman ordered compactification of R! is the familiar two point compactification which is
commonly called the “extended real line.” In the case of R?, this compactification, which is not so familiar,
i8 described in the next example.

Ezample 8.5 R? is simultaneously homeomorphic and order isomorphic to the open square § =
{(z1,22) € R*: -1 < 2; < 1, -1 < 23 < 1}. The closed square § = {(z;,2;) € R? : -1 < z; <
1, -1 £ 2 < 1} can thus be regarded as a T;-ordered compactification of R?. The most convenient way
to describe woR? (or, equivalently, foR?) is to is to consider each boundary (i.e., compactification) point
p of S to be replaced by the set M, of all non convergent maximal c filters ¥ on § which converge to p
in §. I p = (1,1), then M, consists of a single maximal c-flter which is the greatest element of wR?.
Similarly, the least element of woR? is the unique maximal c-filter in M(-1,-1)- ¥ p is any boundary point
of § other than (1,1) or (~1,-1), then M, contains 27 distinct elements, where 7 is the cardinality of the
real line, including both a greatest and a least element. For instance, if p = (1,0) the least element in
M, is a maximal c-filter in § which contains the positive x axis and converges in § to (1,0); the greatest

element is a maximal c-filter finer than the filter supremum of {I(¥) : € M,} which converges to (1,0)in §.
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If p,q are two boundary points in § and p < ¢ in §, then § < X for all § € M, and for all ¥ € M;
furthermore if § < ¥ for some § € M, and for some X € Mg, then p < g in §. Similarly if z€ S and pis a
boundary point of §, then z < p in § iff 25 ¥ for some ¥ € My (in which case 2< ¥ for all ¥ € My). I

The next two examples show that even for the simplest subspaces X of R?, various pathologies can
arise in wyX.

Ezample 3.6 Let X; be the closed square S (defined in Example 3.5) with the origin (0,0) .deleted,
and with the topology and order inherited from R2. Let § (respectively, ¥) be the maximal c-filter on
X which contains the negative portion of the x-axis (respectively, y-axis) and converges to (0,0) in §. If
A={(2,0):2<0}and B ={0,y) : y <0}, then A and B are c-sets in X;. Since B C D(A) but
Bnd(A) = ¢,d(A) # D(A) and thus X is not a c-space. Furthermore, it follows from Theorem 2.8 that
woX; is not Ty-ordered. Also, A and B cannot be separated by fundamental open sets, and consequently
00X is not T. However, the argument used to prove Theorem 3.3 can be applied to show that X; is T}-
ordered. We thus have an example which, in contrast to Example 2.9, is normally ordered but not ¢-normally
ordered, and for which the Wallman ordered compactification is neither Tj-ordered nor Tj.

It is easy to describe wpX;. The “hole” at (0,0) in X; is filled in woX; by a set Mg ) of maximal
c-filters on X; which converge to (0,0) in S. The filters § and X described above are minimal elements in
M(og); there are also two maximal elements in M(o0) which are maximal c-filters converging to (0,0) in S
along the positive z and y axes. The set of compactification points contains no greatest or least element and
has cardinality 27.

Ezample 8.7 Let X; be the closed square S with the y axis deleted except for the origin; the topology
and order are those inherited from R?. One may show that this space is both Ty-ordered and c-normally
ordered. However, X; is not a c-space, for if A= {(z,}): z < 0}, then A is a c-set and (0,0) € D(A). Thus,
09X3 is T3 by Theorem 2.3, but wX; is not T;-ordered by Theorem 2.8. Without going into detail, we can
partially describe w9 X3 by remarking that every “hole” in Xj corresponding to a missing point on the y-axis
is filled in wyX; by adding 27 compactification points including, in each case, a pair of minimal elements and

a pair of maximal elements. |

For the sake of completeness, we should give an example of a space X for which woX is Ty-ordered
but not T;. This turns out to be quite easy. Let X be any T3, completely regular toplogical space which is
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not normal, and let the order for X be equality. Then it is well known that wX is T; (and hence T;-ordered)
but not T.

Our final example does not pertain directly to the Wallman ordered compactification, but it does
provide further insight into the nature of c-sets, which are crucial ingredients in the construction of this
compactification. It shows that closed, convex subsets of R® need not be c-sets, and that the relation defined
by “Ais a c-set in B” is not transitive. We are grateful to Dr. Bettina Zoeller for providing this example as

well as the related example used in the proof of Proposition 3.2.

Ezample 8.8 Let K = {(m,-%,1) : m € Z*}U{(-m,1,-L) : m € Z+} be a subset of R*;
note that K is closed and convex. Let L = I(K) N D(K); then L is the union of K with the x-axis, and
consequently K is not a c-set. Furthermore, observe that K is a c-set in L (considered as a subspace of R?)
and L is a c-set in R®, but K is not a c-set in R®.

Such an example cannot be found in R” for n < 2, since in these spaces every closed, convex set is a

c-set.

References

1] T. H. Choe and Y. S. Park, “Wallman’s Type Order Compactification,” Pacific J. Math. 82, (1979),
339 347.

2] P. Fletcher and W. Lindgren, Quass-Uniform Spaces, Lect. Notes in Pure and Appl. Math., Vol. 77
(1982).

3] D. C. Kent, “On the Wallman Order Compactification,” Pacific J. Math. 118 (1985), 159 163.

[4] S. D. McCartan, “Separation Axioms for Topological Ordered Spaces,” Proc. Camb. Phil. Soc. 64
(1968), 965 973.

[5] L. Nachbin, Topology and Order, Van Nostrand Mathematical Series 4, Princeton, N.J. 1965.

6] H. A. Priestly, “Ordered Topological Spaces and Representation of Distributive Lattices,” Proc. London
Math. Soc. 24 (1972), 507 530.




