
MINIMIZING TIMES BETWEEN BOUNDARY POINTS

ON RECTANGULAR POOLS

TONJA MIICK AND TOM RICHMOND1

Abstract. The well-known “do dogs know calculus” problem op-
timizes the travel time from an onshore dog to an offshore stick,
given different running and swimming speeds and a straight coast-
line. Here, we optimize the travel time between two points on the
boundary of a rectangular swimming pool, assuming that running
speed along the edge differs from the swimming speed.

A common calculus problem is to minimize the time from point A to
point B if part of the distance can be covered at a faster speed than the
rest. If a dog is at point A on a straight shoreline and a stick is at point
B in the ocean, the dog may wish to minimize the time from A to B if the
running speed r is greater than the swimming speed s (see “Do Dogs Know
Calculus?” [5]). With a straight boundary between media, the problem is
equivalent to Snell’s law in optics, based on Fermat’s principle that light
takes the fastest route from A to B (see [2, 6]).

An interesting variation is to consider getting from A to B if both points
lie on the boundary of a circular pond. It is an easy exercise in calculus
to show that the optimal path may run around the border from A to B or
may swim directly from A to B, but will never mix running and swimming.

Here, we consider the problem of getting from A to B as quickly as
possible if A and B both lie on the boundary of a rectangular pool. These
results are based on [4]. Some of the results of Section 1 have appeared in [3].
A special case where A and B lie outside the boundary of a rectangular
pool is considered in [1].

1. The 2-Sided Case

Suppose we are traveling from a point A = (0, a) on an edge of a rect-
angular pool [0,∞)× [0,∞) to point B = (b, 0) on an adjacent edge of the
pool, where a and b are positive. By scaling and reflecting, we may assume
a ≥ b = 1 and the swim speed s is 1 unit. Then the running speed r may
be thought of as the ratio of the running speed to swimming speed. If the
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running speed r is less than s = 1, then the all swimming path is shortest
and fastest, and thus optimal. So, we will assume r > s = 1. The most
general path from A to B to consider is one as shown in Figure 1 which
runs a bit from A along the poolside before swimming across a corner of
the pool and then running on to B along the terminal side.

Figure 1. 2-sided rectangle path possibilities.

With the points as labeled in Figure 1, the time to traverse this path is

T (x, y) =
1− x+ a− y

r
+
√

x2 + y2,

where (x, y) ∈ [0, 1]× [0, a]. This time will be minimized either at a point
on the boundary of the domain [0, 1]× [0, a] or at a critical point.

The critical points occur where the partial derivates Tx(x, y) and Ty(x, y)
are simultaneously zero, which occurs when x = y. Substituting x = y into
Tx(x, y) = 0 leads to r =

√
2. With r =

√
2, the time function T (x, y)

for x = y becomes T (x, x) = 1+a√
2
, a constant function, so any such path

cutting the corner at 45◦ angles will take the same time. Indeed, this holds
for x = y = 0 which corresponds to the all-running path. Thus, the optimal
paths occurring at critical points only occur in the special case r =

√
2,

when we may run all the way or cut across the corner at 45◦ angles.
If r 6=

√
2, the minimal time will correspond to a boundary point on

the domain, and even if r =
√
2, we must compare the value at the critical

points to the values on the boundary of the domain. We will consider the
cases 1 < r <

√
2, r =

√
2, and r >

√
2 separately.
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Referring to Figure 1, it is easy to see that no minimum can occur for
boundary points of form (0, y) for y ∈ (0, a] or of form (x, 0) for x ∈ (0, 1],
for such points correspond to paths which follow the edge of the pool all
the way from A to B but traverse part of an edge swimming, which is
slower than running. This does not exclude the possibility of a minimum
at (x, y) = (0, 0), which corresponds to the all running path.

For points (1, y) for y ∈ [0, a] on the right boundary, we have T (x, y) =

T (1, y) = Tr(y) =
a−y
r

+
√

1 + y2, and T ′
r(y) > 0 if and only if y > 1√

r2−1
.

Thus, Tr(y) decreases until y = 1√
r2−1

and increases after that, so there

will be a minimum along this edge at this critical point if it falls in the
domain y ∈ [0, a], and otherwise the minimum along this edge will occur
when y = a, the all-swimming path. So, if the minimum of T (x, y) occurs
on this edge, it is either T (1, 1√

r2−1
) corresponding to a run-swim path or

T (1, a) corresponding to the swim path.
We note that the critical point 1√

r2−1
falls in the domain [0, a] if and

only if a ≥ 1√
r2−1

if and only if r ≥
√

1 + 1
a
. Since a ≥ 1, this critical point

always occurs in the domain if r ≥
√
2.

The case for top boundary points of form (x, a) for x ∈ [0, 1] is dual,

with T (x, y) = T (x, a) = Tt(x) = 1−x
r

+
√
x2 + a2 decreasing along the

edge [0, 1]× {a} until x = a√
r2−1

, giving a local minimum along this edge

at this critical point if it is in the domain x ∈ [0, 1], and at x = 1 otherwise,
giving the all-swimming path. So, if the minimum of T (x, y) occurs on this
edge, it is either T ( a√

r2−1
, a) corresponding to a swim-run path, or T (1, a)

arising from the swimming path.
We note that the critical point a√

r2−1
falls in the domain [0, 1] if and

only if a ≤
√
r2 − 1 if and only if r ≥

√
a+ 1. Since a ≥ 1, this critical

point will not fall in the domain if r <
√
2.

Thus, there are four possibilities for the minimum for T (x, y) along the
boundary of the domain [0, 1] × [0, a], which we will view and label as
functions of a. The paths giving rise to these minimal times, their associated
time functions, and their domains are given in Figure 2.

The following lemma will help us determine which of these, or the paths
occurring at the critical points for r =

√
2, actually gives the minimum

time.

Lemma 1.1. For a ∈ [1,∞),

(a) R(a) ≤ RS(a) if and only if r ≥
√
2, with strict inequality if r >√

2.
(b) SR(a) ≤ S(a) and equality holds only at a =

√
r2 − 1.

(c) RS(a) ≤ S(a) and equality holds only at a = 1√
r2−1

.
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the Run path the Swim path the Run-Swim path the Swim-Run path
R(a) S(a) RS(a) SR(a)

= 1+a

r
=

√
a2 + 1 = 1

r
(a +

√
r2 − 1) = 1

r
(1 + a

√
r2 − 1)

for a ≥ 1 for a ≥ 1 for a ≥ 1√
r
2
−1

for a ∈ [1,
√
r2 − 1]

Figure 2. Possible optimal paths on the boundary of the
domain and their time functions.

(d) For a > 1, SR(a) < RS(a) if and only if r <
√
2.

(e) S(a) < R(a) if and only if r <
√
2 and 1−r

√
2−r2

r2−1 < a < 1+r
√
2−r2

r2−1 .

Proof. (a) As functions of a, R and RS are parallel lines with slope 1
r
, and

R ≤ RS if and only if R(0) ≤ RS(0), that is, if and only if r ≥
√
2, with

strict inequality if r >
√
2.

(b)-(c) It is easy to verify that the line SR(a) is tangent to the hyperbola

S(a) at a =
√
r2 − 1, and RS(a) is tangent to S(a) at a = 1√

r2−1
. In

particular, since the hyperbola S(a) is concave up, these tangent lines lie
below S(a), and thus the all swim solution S will never be minimal, except
possibly at the point of tangency, if either of the critical points giving rise
to the lines RS and SR actually falls in the domain of T (x, y).

(d) The lines RS and SR have slopes 1
r
and

√
r2−1
r

, respectively, and

intersect at a = 1. Thus, RS has the larger slope if and only if 1 >
√
r2 − 1,

or equivalently if and only if r <
√
2. Thus, on the domain a > 1, we have

SR < RS if and only if r <
√
2.

(e) The inequality S(a) < R(a) leads to p(a) = a2(1−r2)+2a+1−r2 > 0.

Now p(a) = 0 at 1±r
√
2−r2

r2−1 if the discriminant is nonnegative, that is, if

r <
√
2. Since r > 1, p(a) is a parabola opening downward, and is either

never positive or only positive between the zeros if r <
√
2. �

MISSOURI J. OF MATH. SCI., SPRING 2016 5



T. MIICK AND T. RICHMOND

Theorem 1.2. Suppose A = (0, a) and B = (b, 0) with a ≥ b = 1 are on
adjacent edges of a rectangular pool [0,∞)× [0,∞), where the running speed
is r > 1 and the swimming speed is 1.

(a) For 1 < r <
√
2, the run-swim path from A to (0, 1√

r2−1
) to B is

optimal if 1√
r2−1

≤ a, and the swim path form A to B is optimal if
1√

r2−1
> a.

(b) For r =
√
2, the run path from A to (0, 0) to B is optimal, as are

any paths which swim across a 45◦ corner.
(c) For r >

√
2, the run path from A to (0, 0) to B is optimal.

Proof. For (a), suppose 1 < r <
√
2. Then SR(a) = T ( a√

r2−1
, a) is

not valid since the critical point x = a√
r2−1

falls outside the domain

x ∈ [0, 1]. We have RS(a) < R(a) by Lemma 1.1(a), and RS(a) ≤ S(a) by
Lemma 1.1(c), so, if RS(a) is a valid option, then it gives the minimum.

We will show that the interval a ∈ [1, 1√
r2−1

) = [1,
√
r2−1
r2−1 ) where RS(a)

is not a valid option falls entirely in the interval (1−r
√
2−r2

r2−1 , 1+r
√
2−r2

r2−1 )

where, by Lemma 1.1(e), S(a) < R(a). For 1 < r <
√
2, we have√

r2 − 1 < 1 < 1 + r
√
2− r2 so

√
r2−1
r2−1 < 1+r

√
2−r2

r2−1 . Also, 1−r
√
2−r2

r2−1 < 1 is

equivalent to f(r) = 2
r
<

√
2− r2 + r = g(r), which holds for r ∈ (1,

√
2)

since f and g agree at the endpoints of this interval and f is concave up,
and g is concave down on the interval. Thus, RS(a) = T (1, 1√

r2−1
) is the

minimum where it is valid, and S(a) is minimum otherwise.

For (b), suppose r =
√
2. Then RS(a) = SR(a) = R(a) ≤ S(a), Thus,

the minimal time corresponding to points (x, y) on the boundary of the
domain [0, 1]× [0, a] of T (x, y) is produced by the all running path (R(a) =

T (0, 0)). But recall that this case r =
√
2 was the only case with interior

critical points. They corresponded to run-swim-run paths cutting any 45◦

corner off the pool. Each of these requires the same time, so each will give
the minimum. The minima corresponding to RS(a) = T (1, 1√

r2−1
) and

SR(1) involve swimming across a 45◦ corner, and thus are accounted for.

For (c), suppose r >
√
2. Then by Lemma 1.1, we have R(a) < RS(a) ≤

SR(a) ≤ S(a), so the all running path R(a) is minimum. �

The discussion above assumed a ≥ b = 1. If we drop the restriction that
b = 1, then scaling by b simply has the effect of moving the potential critical
point y = 1√

r2−1
on the long edge corresponding to RS(a) to y = b√

r2−1
.

We note that the critical point x = a√
r2−1

on the short edge corresponding

to SR(a) was only used in the situation of Theorem 1.2(b) where a = b

and r =
√
2, when it generated the same path as S and RS, so this critical

point is not needed. That is, swimming from the long side then running
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along the short side will never be optimal, except in the case where a = b

and r =
√
2.

Furthermore, by interchanging the roles of a and b, we may drop the
assumption that a ≥ b. The results for r ≥

√
2 remain the same, but for

r <
√
2, if b > a, then interchanging a and b would give a minimal path

from running A = (0, a) to ( a√
r2−1

, 0) then swim to B = (b, 0) provided
a√

r2−1
≤ b, as seen in the reflections and relabeling of Figure 3. Solving

the latter inequality for a, we may now summarize the results with no
restriction on the relative size of a and b.

Figure 3. Reflecting over y = x and relabeling for the
case a < b.

Corollary 1.3. Suppose A = (0, a) and B = (b, 0) with a, b > 0 are on
adjacent edges of a rectangular pool with vertex at (0, 0), where the running
speed is r > 1 and the swimming speed is 1.

(a) For 1 < r <
√
2, the swim-run path from A to ( a√

r2−1
, 0) to B is

optimal if a ≤ b
√
r2 − 1, the all-swim path from A to B is optimal if

b
√
r2 − 1 ≤ a ≤ b√

r2−1
, and the run-swim path from A to (0, b√

r2−1
)

to B is optimal if a ≥ b√
r2−1

.

(b) For r =
√
2, the all run path from A to (0, 0) to B is optimal, as

are any paths which swim across a 45◦ corner.
(c) For r >

√
2, the all run path from A to (0, 0) to B is optimal.

2. The 3-Sided Case

Suppose now that we wish to find the fastest path from A = (0, a) on
the left side of a rectangular pool [0, b]× [0,∞) to a point C = (b, c) on the
right side. Again, if the swimming rate s is greater than or equal to the
running rate r, then the all swimming path is the shortest path, all traced
in the fastest medium, and thus would be optimal. Thus, we will again
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assume r > s = 1. We will classify the paths into to categories: those that
contain points on the adjacent “bottom” edge and those that do not.

2.1. Paths avoiding the bottom edge. We will first consider those paths
that do not contain points on the bottom edge. If A and C are horizontally
aligned, then the optimal path will be the all-swim path, since any other
path will involve a longer swim time plus some running time. Assume A

and C are not horizontally aligned, so a 6= c. Without loss of generality,
we will assume a > c and further that a − c = 1. Thus, with a possible
vertical translation, the problem reduces to finding the fastest path from
A = (0, 1) to C = (b, 0). We note that a run-swim-run path has the same
time as a run-swim path or a swim-run path with parallel swim path. Thus
we only need to consider the run-swim paths. Running from A = (0, 1) to
(0, y) then swimming to C = (b, 0) has time function

t(y) =
1− y

r
+
√

y2 + b2 for y ∈ [0, 1].

The critical point of t is y = b√
r2−1

, which falls in the domain [0, 1] if

and only if b ≤
√
r2 − 1. Furthermore, t(y) is decreasing on the interval

[0, b√
r2−1

] to the left of the critical point and increasing to the right, so

t(0), corresponding to the path that crosses the pool perpendicularly, is
never minimum, the run-swim path with time RS(b) = t( b√

r2−1
) = 1

r
(1 +

b
√
r2 − 1) is minimum if b ≤

√
r2 − 1, and the all swim path with time

S(b) = t(1) =
√
1 + b2 is minimum if b >

√
r2 − 1.

Lemma 2.1. With a swimming rate of s = 1 and a running rate of r > 1,
among the paths from A = (0, 1) to C = (b, 0) on opposite edges of the
rectangle [0, b]× [0,∞) which do not touch the bottom edge,

(a) If r <
√
1 + b2 (or equivalently, b >

√
r2 − 1), then the all swim path

with time S(b) = t(1) =
√
1 + b2 is optimal.

(b) If r ≥
√
1 + b2 (or equivalently, b ≤

√
r2 − 1), then the run-swim path

with time RS(b) = t( b√
r2−1

) = 1
r
(1 + b

√
r2 − 1) is optimal.

For the general case a > c, without the assumption that a − c = 1,
we simply scale the lengths above and thus the times by a − c to get the
following.

Corollary 2.2. Among the paths which do not contain points on the bottom
side, the optimal path from (0, a−c) to (b′, 0) on opposite sides of a rectangle
[0, b′] × [0,∞) where b′ = b(a − c), is the path running from (0, a − c) to

(0, b′√
r2−1

) then swimming to (b′, 0), unless b′√
r2−1

> a − c, in which case

the path swimming directly from (0, a − c) to (b′, 0) is optimal. The times
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for such paths are a−c
r

(1+ b
√
r2 − 1) for the run-swim path if b ≤

√
r2 − 1,

and (a− c)
√
1 + b2 for the all-swim path if b ≥

√
r2 − 1.

Similar scaling is possible on our further results, which we will not state
in such full generality. At the boundaries of piecewise criteria, the optimal
path may arise from two of the functions in Lemma 1.1. For simplicity, we
do not always mention such duplication.

2.2. Paths touching the bottom edge. Now let us consider the paths
from A = (0, a) to C = (b, c) on opposite sides of the rectangle [0, b]× [0,∞)
which include a point B = (x, 0) on the bottom edge. The optimal such
path must be optimal from A to B and from B to C, and each of these
is an optimal path between points on adjacent sides, as considered in the
previous section.

If r ≥
√
2, then the all running paths from A to B and from B to C are

optimal, so the all running path will be optimal from A to C. And further-
more, in the case r =

√
2, the minimum time of a+b+c

r
is also achieved by

paths which cut off 45◦ corners.
Now suppose 1 < r <

√
2. We have two cases based on the distance b

between the opposite sides.

Case 1: b > a+c√
r2−1

, or equivalently, r >
√

1 + (a+c
b
)2. In this case, the

critical point for the swim-run path from A to the bottom occurs to the left
of the critical point for the swim-run path from C to the bottom, allowing
these paths to connect for an optimal swim-run-swim path. Formally, either
(a) the point B is farther than a√

r2−1
from the left endpoint (0, 0) of the

bottom edge, or (b) B is farther than c√
r2−1

from the right endpoint (b, 0) of

the bottom edge. Suppose (a). Now the fastest path from A to C through
B necessarily starts with the fastest path from A to B, and by the two-sided
problem, we know that this path swims from A to B′ = ( a√

r2−1
, 0) then

runs to B. Now this path passes through B′, which is more than c√
r2−1

from the right endpoint (b, 0) of the bottom edge, and ends at C. For this
path to be optimal from B′ to C, by the two-sided analysis it must run
from B′ to the point B′′ = (b− c√

r2−1
, 0) which is c√

r2−1
units from (b, 0),

then swim to C = (c, b). The case (b) is similar. Thus, the optimal path is
a swim-run-swim path from A to B′ to B′′ to C. The time for this path is
SRS(b) = 1

r
(b+ (a+ c)

√
r2 − 1).

Case 2: b ≤ a+c√
r2−1

, or equivalently, r ≤
√

1 + (a+c
b
)2. In this case, the

critical point for the swim-run path from A to the bottom is too far to the
right to allow an optimal swim-run path from C to the bottom to connect
with the optimal swim-run path from A. We will see that in this case, no
path containing a point on the bottom edge is optimal. Formally, we have
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b − c√
r2−1

< a√
r2−1

. Now either (a) the included point B on the bottom

edge is no more than a√
r2−1

to the left edge, (b) the included point bottom

edge point B is no more than c√
r2−1

to the right edge, or (c) both.

Suppose only (a) holds. Then applying the two-sided analysis, the op-
timal path from A to B is either an all-swim path or a swim-run path
arriving at B by swimming from a point A′ on the left edge. Since (b) does
not hold, the minimal path from C to B is a run-swim path from C to
B′ = (b− c√

r2−1
, 0) to B. But if this path from A to B to B′ to C is mini-

mal, the path from A to B′ must be minimal, and since b− c√
r2−1

< a√
r2−1

,

the minimal path from A to B′ arrives at B′ by swimming. Thus, B = B′.
Now the minimal path involves swimming from a point A′ on the left edge
to B = B′ then swimming on to C. The swimming portion of this path can
be done faster by swimming directly from A′ to C, so this is not optimal.

If only (b) holds, the symmetric argument obtained by interchanging a

and c above shows that running to a point B on the bottom edge is not
minimal.

If both (a) and (b) hold, then the minimal paths from A to B and from
C to B both arrive at B by swimming, either in an all-swim path or a run-
swim path from points A′ and C′ on the left and right edges, respectively.
Again, swimming directly from A′ to C′ without detouring through the
point B is faster, so this is not optimal. Thus, in Case 2, an optimal path
will never hit the bottom edge.

We summarize our results.

Lemma 2.3. With a running rate of r > 1 and swimming rate s = 1,
the minimal time for a path from A = (a, 0) on one side of a rectangular
pool [0, b]× [0,∞) to a point B on the bottom and on to C = (b, c) on the
opposite side is determined as follows:

(a) if
√

1 + (a+c
b
)2 < r <

√
2, the swim-run-swim path with time SRS(b) =

1
r
(b+ (a+ c)

√
r2 − 1) is minimum.

(b) If r =
√
2, the all running path or any path that swims across one or

two 45◦ corners is minimum, with time a+b+c
r

.

(c) If r >
√
2, the all running path with time a+b+c

r
is minimum.

Furthermore, if 1 < r ≤
√

1 + (a+c
b
)2, then the optimal path from A to

C will not include any point on the bottom.

2.3. Comparing paths touching or avoiding the bottom edge. Hav-
ing optimized paths from A = (0, a) to C = (b, c) which do or do not contain
points B = (x, 0) on the bottom edge, we will now compare all such paths
to find the optimal path from A to C.

10 MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1



MINIMIZING TIMES BETWEEN BOUNDARY POINTS ON POOLS

We first address the case a = c of horizontally aligned points.

Theorem 2.4. Suppose A = (0, a) and C = (b, a) are horizontally aligned
points on opposite sides of a rectangular pool [0, b]× [0,∞).

(a) If r ≥
√
2, the all swimming path with time b is optimal if and only if

b ≤ 2a
r−1 if and only if r ≤ 1 + 2a

b
. Otherwise, the all running with time

2a+b
r

is optimal.

(b) If 1 < r <
√
2, the swim-run-swim path with time SRS(b) = 1

r
(b +

2a
√
r2 − 1) is optimal if and only if b ≥ 2a

√
r2−1

r−1 = 2a
√

1 + 2
r−1 . Oth-

erwise, the all swimming path with time b is optimal. In particular, all
swimming is optimal if b < 2a.

Proof. With A and C vertically aligned, the fastest path not hitting the
bottom was the path swimming directly, b units, requiring b units of time.
For r ≥

√
2, the fastest path hitting the bottom edge is all running, which

takes 2a+b
r

units of time, so the all-swim path is optimal if and only if

b ≤ 2a+b
r

if and only if b ≤ 2a
r−1 if and only if r ≤ 1 + 2a

b
. This proves (a).

For r <
√
2, we must compare the swim-run-swim time 1

r
(b+2a

√
r2 − 1)

with the all swim time b. Now 1
r
(b + 2a

√
r2 − 1) > b if and only if b ≥

2a
√
r2−1

r−1 . However, the swim-run-swim path is only valid if b > 2a√
r2−1

. But

since r > 1, we have r − 1 < r2 − 1, so 2a
√
r2−1

r−1 > 2a
√
r2−1

r2−1 = 2a√
r2−1

. So,

b ≥ 2a
√
r2−1

r−1 implies b > 2a√
r2−1

, so that the swim-run-swim is indeed valid.

This completes the proof of (b). �

Now we consider non-horizontally aligned points A and C. Again we
will assume a > c and scale the problem so that a− c = 1. We will present
separate theorems for the cases 1 < r <

√
2 and r ≥

√
2.

Theorem 2.5. If 1 < r <
√
2 and a − c = 1, the minimal time for a

path from A = (a, 0) to C = (b, c) on opposite sides of a rectangular pool
[0, b]× [0,∞) is determined as follows:

(a) If 1 < r <
√
1 + b2 and b ≤ (2c+1)+2r

√
c(1+c)√

r2−1
, then the all swim path

with time S(b) =
√
1 + b2 is minimum.

(b) If 1 < r <
√
1 + b2 and b ≥ (2c+1)+2r

√
c(1+c)√

r2−1
, then the swim-run-swim

path with time SRS(b) = 1
r
(b+ (2c+ 1)

√
r2 − 1) is minimum.

(c) If r ≥
√
1 + b2, then the run-swim path with time RS(b) = 1

r
(1 +

b
√
r2 − 1) is minimum.

Proof. Suppose 1 < r <
√
2. If r <

√
1 + b2, then S(b) is the optimal

time not hitting the bottom and if b > 2c+1√
r2−1

, the path to the bottom
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with time SRS(b) may be optimal. The line SRS(b) intersects the con-

cave up hyperbola S(b) at b =
(2c+1)±2r

√
c(1+c)√

r2−1
, so S(b) is below SRS(b)

only between these two intersection points. But, SRS(b) is not valid

to the left of
(2c+1)−2r

√
c(1+c)√

r2−1
< 2c+1√

r2−1
, so SRS(b) is optimal only for

b ≥ (2c+1)+2r
√

c(1+c)√
r2−1

.

For r ≥
√
1 + b2, we only need to compare the optimal time RS(b) not

hitting the bottom and, if b > 2c+1√
r2−1

, the optimal time SRS(b) hitting the

bottom. Now RS(b) and SRS(b) are linear functions of b which intersect

at b = P = 1−(2c+1)
√
r2−1

1−
√
r2−1

. Since RS(b) has the smaller slope, RS(b) <

SRS(b) for all points b to the right of the intersection point P . Letting

x =
√
r2 − 1, and noting c > 0 and 0 <

√
r2 − 1 < 1, we see that if SRS(b)

is an option, then b > 2c+1√
r2−1

> 1√
r2−1

> 1 >
1−(2c+1)x

1−x
= P , so b is to the

right of P and RS(b) < SRS(b). �

Now we consider the case for r ≥
√
2.

Theorem 2.6. If r ≥
√
2 and a− c = 1, the minimal time for a path from

A = (a, 0) to C = (b, c) on opposite sides of a rectangular pool [0, b]× [0,∞)
is determined as follows:
(a) If

√
2 ≤ r <

√
1 + b2, and b ≤ 2c + 1 = a + c, the all swim path with

time S(b) =
√
1 + b2 is minimum for b between

(2c+1)±r
√

(2c+1)2+1−r2

r2−1 , and

the all run path (possibly with swimming across 45◦ corners if r =
√
2) with

time R(b) = 2c+1+b
r

is minimum otherwise.

(b) If
√
2 ≤ r <

√
1 + b2, and b > 2c+1 = a+ c, then the all run path (pos-

sibly with swimming across 45◦ corners if r =
√
2) with time R(b) = 2c+1+b

r

is minimum.
(c) If r >

√
2 and r ≥

√
1 + b2, then the all run path with time R(b) =

2c+1+b
r

is minimum if b > 2c√
r2−1−1

, and the run-swim path with time

RS(b) = 1
r
(1 + b

√
r2 − 1) is minimum otherwise.

(d) If r =
√
2 and b ≤ 1 so that r ≥

√
1 + b2, then the run-swim path with

time RS(b) = 1
r
(1 + b

√
r2 − 1) is minimum.

Proof. Suppose r ≥
√
2.

If
√
2 ≤ r <

√
1 + b2, then we need to compare the optimal times R(b)

and S(b) for paths hitting and not hitting the bottom, respectively. Equat-

ing R and S, we find that they intersect when b =
2c+1±r

√
(2c+1)2+1−r2

r2−1 ,
provided the discriminant is nonnegative. The curves do not intersect if
and only if the discriminant (2c + 1)2 + 1 − r2 is negative, which occurs

precisely when r >
√

(2c+ 1)2 + 1, which implies r > 2c+ 1. In this case,
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R(0) = 2c+1
r

< 1 = S(0), so R(b) is always below S(b) if they do not inter-
sect. If the curves do intersect, since S is concave up, S(b) is below R(b)
only between these two intersection points. The curves do intersect if and
only if r <

√

(2c+ 1)2 + 1. Thus, the requirement that r <
√
b2 + 1 im-

plies the curves do not intersect if 2c+1 < b. This proves (b). If 2c+1 ≥ b,
then the curves intersect and we have the result of (a).

If r ≥
√
1 + b2, the optimal paths hitting and not hitting the bottom

are R(b) and RS(b). Notice that R(b) and RS(b) are linear functions. If

r >
√
2, RS(b) has the larger slope, so RS(b) will be below R(b) to the

left of their intersection point b = 2c√
r2−1−1

, proving (c). If r =
√
2 then

RS(b) < RS(b) + 2c√
2
= R(b), so RS(b) is minimum, proving (d). �

3. The 4-sided case

If we have points A = (0, a) and C = (b, c) on opposite sides of a rectangle
[0, b]× [0, d], we have considered the case of getting from A to C optimally
with the possibility of hitting the bottom edge. Hitting the bottom edge
was never optimal if b ≤ a+c√

r2−1
where a and c were the distances along

the vertical edges from A and C respectively to the bottom. If a′ and c′

are the vertical distances from A and C to the top, the paths that hit the
top reduce to the previously considered 3-sided case (rotated 180◦). Let us
assume a + c < a′ + c′. Then we should consider where b falls among the

points a+c√
r2−1

< a′+c′√
r2−1

. If b is smaller than both, then neither paths to the

top nor the bottom are optimal. If b is only smaller than a′+c′√
r2−1

, then only

the paths to the bottom may be optimal. If b is larger than both, then the
minimal path to the bottom takes 1

r
(b+(a+c)

√
r2 − 1) units of time, which

is less than the minimal time 1
r
(b+ (a′ + c′)

√
r2 − 1) for a path hitting the

top. Thus, in the 4-sided case, we only need to consider paths reaching the
horizontal side—top or bottom—which is “closest” in the sense that the
sum of the vertical distances from that side to A and to C is smallest, and
apply the 3-sided analysis.
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