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O. Introduction.

A totally ordered space X is defined to be a totally ordered set equipped with a topology

which is locally convex and T-ordered (i.e., the order is a closed subset of X X). A study of

ordered compactifications was made previously by J. Blatter [1]. Our goal is to give a more intu-

itive treatment of this subject based on the notion of "singularity," which is the term that we use

to designate a non-convergent, monotone, free, convex filter (or, equivalently, a non-convergent

maximal c-filter).

The singularities of a totally ordered space X may be classified in several ways (e.g., bounded

or unbounded, increasing or decreasing), but the most important distinction is between simple
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and essential singularities. For every T2-ordered compactification of X, there is a unique corn-

pactification point corresponding to each simple singularity; it follows that a totally ordered space

which has only simple singularities has a unique T2-ordered compactification. Essential singulari-

ties always occur as ordered pairs, and to a given Trordered compactification each pair of essential

singularities contributes either one or two compctification points. There is (as Blatter showed

earlier) a smallest T2-ordered compactification obtained by assigning a single compactification

point to each pair of essential singularities, and a largest T-ordered compactification obtained

by assigning two compactification points to each essential pair. The latter is, of course, the

Nachbin (or Stone-(ech ordered) compactification. Any other Trordered compactification may

be described by partitioning the set p(X) of all essential pairs of singularities into two subsets,

and assigning one compactification point to each pair in the first subset and two compactification

points to each pair in the second. Thus there is a natural one-to-one correspondence between the

subsets of p(X) and the Trordered compactifications of X.

Every T2-ordered compactification of a totally ordered space is also totally ordered, and the

compactification space always has the order topology.

1. Totall/ Ordered Spaces.

We shall assume throughout this paper that X is a totally ordered set. If a, b are distinct

elements inX and a

_
z

_
b implies z a or z b, then b is said to cover a. A subset A of X

is increosing (respectively, decreasing) if a E A and a

_
z (respectively, z

_
a) implies z E A.

For a e X, let [a,---) be the set of upper bounds of a, and let (a,--) {x e X a < x} be

the proper upper bounds of a; the sets (-, a] and (--, a) are defined dually. For a,b X, we

define the "open" interval (a,b) (a,--), (--,b) and the "closed" interval [a,b] [a, )f(,b].

If A C__ X, let i(A) U{[a,--,) a A) denote the increasing hull of A, d(A) the decreasing

hull of A, and A^ i(A) n d(A) the convez hull of A. If A A^, then A is called a convez set.

Let A (respectively, At) designate the set of all upper (respectively, lower) bounds of A.

We shall always use the term "filter" to mean a proper set filter. A filter jr is .free if there is

no 1)oint common to all the sets in Y’. A filter which is not free is ]ized: in varticular, the symbol
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will denote the fixed ultrafilter generated by a point

For any filter jr, let jr^ be the filter generated by {F^ F E jr}; if jr jr^, then jr is said

to be convex. The set of upper bounds of a filter jr is defined to be jrr t2{Fr F E Y’}; y’t is

defined dually. For any free convex filter jr on X, the sets jrT and jrt partition X. A filter jr is

said to be increxsing (respectively, decreasing) if jrt 6 jr(respectively, jr E jr); a filter which is

either increasing or decreasing is said to be monotone.

The free, convex filters are of three different types, which may be described as follows.

Proposition 1.1 Each free, convex filter jr on a totally ordered set X is of exactly one of the

following types:

(a) Increasing, in which case jr has a filter base consisting of sets of the form (x, 4) f jrt,

where

(b) Decreasing, in which case jr has a filter base consisting of sets of the form (--,x)

where x jr?;

(c) Non-monotone, in which case jr has a filter base of sets of the form (a, b), where a rt and

b jr?. In this case jr n, where (generated by sets of the form (x,-)njrt,x e jrt)

is increasing and (generated by sets of the form (*-,x) )rr, z e r) is decreasing.

If . is any free ultrafilter on X, one may easily verify that .^ is a free, convex filter. Since

the sets .r and .1 partition X, at least one of these sets is in ., and hence in .^. Thus the

convex hull of any free ultrafilter must be monotone. With the help of these observations and the

preceding proposition, we obtain the next proposition.

Proposition 1. A flee, convex filter jr is monotone iff there is a free ultrafilter . on X such

that jr .^. Furthermore if jr is a monotone, flee, convex filter and )/ is any ultrafilter finer

than jr, then jr 4^.

The order topology 0 on X has as an open subbase all sets of the form (a,-,) and (-,b), for

a, b X. This topology is locally convex (meaning that the neighborhood filter at each point has

a filter base of convex sets) and T2oordered (meaning that the order relation is closed in X x X).
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We shall write -r 0 x" to indicate that a filter :T converges to a point x in the order topology on

X. It is well known that for any totally ordered set, order convergence coincides with convergence

in the order topology; this can be stated as follows: 0_ x iff x sup inf

Proposition 1.3 Every free, convex filter " on X is of exactly one of the three following forms.

(a) rt or .v , but not both;

(b) r x for some x E X;

(c) ’t # and r = , but sup ’t and inf rT both fail to exist.

Proof. If a free convex filter " has the property ’t , then rt X. In particular,

and ’ cannot both hold. Next, suppose that (a) does not hold, so that r? and are both

non-empty. If there is x E X such that x inf ’? (respectively, x sup :T), then one can show

by a direct argument that x sup ’ (respectively, x inf :T?). Thus the statement that either

x inf .T? or x sup :T is sufficient to guarantee that " _0 x. Therefore, if (a) and (b) both fail

to hold, then ’t and ’l must both be non-empty and inf :T and sup ’l must both fail to exist;

consequently, (c) must hold.

We define a totally ordered space (X, r) to be a totally ordered set X equipped with a topology

r which is locally convex and T2-ordered. For any totally ordered set X, (X, 0) is a totally ordered

space, and indeed 0 is the coarsest topology on X which is both T2-ordered and locally convex.

In particular, if r is a compact, T2-ordered, locally convex topology on X, then it follows from the

preceding statement that r 0. Thus every compact, totally ordered space has the order topology.

It should be noted that the term "totally ordered space" is defined in a more general way here

than in [3], where this term is applied only to spaces with the order topology. We shall normally

designate a totally ordered space (X, r) simply by

For any totally ordered space X, a singularity on X is defined to be any non-convergent,

monotone, free, convex filter, or, equivalently in view of Proposition 1.2, the convex hull of any

non-convergent ultrafilter. We shall use Proposition 1.3 to define several different types of singu-

larities:
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(1) If jr is a singularity such that jrT (respectively, jr ), then jr is an increasing

(respectively, decreasing) unbounded, simple, singularity.

(2) If jr is a singularity such that jr _0 x for some x E X, then jr is a bounded, simple singu-

larity.

(3) If jr is a singularity such that jrT # and jr # , then jr is an essential singularity.

Let S (X) be the set of all singularities on a totally ordered space X. We totally order $ (X)

by imposing the relation: jr . iff there is F E jr such that F ft. If X has no greatest

(respectively, least) element, then there is an increasing (respectively, decreasing}, unbounded,

simple singularity which is the greatest (respectively, least) element in .q (X). Thus there are at

most two unbounded simple singularities. The next proposition shows that the essential singu-

larities always occur as ordered pairs.

Proposition 1. A singularity jr on a totally ordered space X is essential iff there is a sin-

gularity . such that jr f3 is a non-monotone, convex filter. If jr is an increasing {respectively,

decreasing) essential singularity, then . is a decreasing (respectively, increasing} essential singu-

larity and jr (respectively, jr).

Proof. Let jr be an increasing, essential singularity. Recall that jrt and jrr are decreasing and

increasing sets, respectively, which partition X. Since jr is essential, sup jr and inf jrr both fail

to exist; thus jrt contains no greatest element and jrr contains no least element. Thus the filter

generated by {(,--, a) f3 jrr a e jr} is well-defined, convex, and free; .q is lso decreasin (since

jrr gr g) and essential (since inf gr fails to exist). Furthermore jrt jr and (jr)r jrr E g,

which implies jr < . Finally, one can verify that jr n is a non-monotone, free, convex filter. If

we assume, on the other hand, that jr is a decreasing, essential singularity, one can similarly show

that the filter . generated by {(a,-) f jr and a jr} is an increasing, essential singularity such

that jr n . is a non-monotone, free, convex filter and . < jr.

Conversely, let jr be a singularity and assume that a singularity . exists such that jr f . is a

non-monotone, convex filter; jr f3 . must also be free since jr and . are both free. Thus jr f3 .
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has the form described in Proposition 1.1 (c), and one can easily show that

and rt .t (y" n .)t. If Y" is not essential, then Y" z and this implies that z E (a,b) for all

a E (y’.)t and b (Y’f)T. But these open" intervals form a base for Y’, contrary to the fact

that Y" n.G is a free filter. Thus Y" is an essential singularity, and the same reasoning applies to ..
If Y and . are essential singularities on a totally ordered space X such that Y" . is a non-

monotone, convex filter and if Y" < ., then the ordered pair (Y’, .) will be called an essential pair

singularities. Let j0(X) be the set of all such essential pairs on X.

Proposition 1.5 Let Y" be an increasing and . a decreasing singularity on a totally ordered

space X. Then (/’, .) p(X) iff/’ ,r and y’t g.

Proof. If (Y’, ) e(X), then y’t .t and Y’t .t was established in the proof of the

preceding proposition. Conversely, Y’r r and y’t imply that Y’r .r (Y" n .) and

Sets of the form (a,--,) n y’t, a G y’t form a filter base for Y’, and sets of

the form (,b) n .r, b E .r form a filter base for .; unions of such sets are "open" intervals of

the form (a, b), a (Y" .)t and b (Y’ .), and these constitute a filter base for Y" . Thus

Y" . is non-monotone and convex, and (Y’, .) G p(X) follows by Proposition 1.4.

If X is the set of rational numbers with the usual order and topology, then $ (X) consists

of two unbounded, simple singularities and an uncountable number of essential singularities; in

this case there are no bounded simple singularities since the usual topology is the order topoi-

ogy. Furthermore, there is a natural one-to-one correspondence between p(X) and the "irrational

numbers." On the other hand, if X is the Sorgenfrey line (i.e., the real line with the usual or-

der and half-open interval" topology), then $ (z) contains two unbounded simple singularities,

uncountably many bounded, simple singularities, and no essential singularities. For an arbitrary

totally ordered space X, $ (X) @ ifl" X is compact.

Ordered Compactificationa.

If Y is a poset with a topology, (Z,) is a topological compactification of Y, and Z is also a

poet, then (Z, ) is an ordered compactification of the ordered topological space Y if the embed-

ding Y Z is increasing in both directions (i.e., z < .v imvlies (z) < (.v) and vice-versa.)
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We shall be interested only in T2-ordered compactifications, which have the additional requirement

that Z be T2-ordered.

Nachbin, [4], has characterized those spaces (which he calls completely regular ordered spaces)

which allow T-ordered compactifications. In particular, completely regular ordered spaces must

be T-ordered and locally convex. A T-ordered space is said to be T4-ordered (normally ordered in

[4]) if, for each pair A, B of disjoint closed sets such that A is increasing and B is decreasing, there

are disjoint open sets U and V, with U increasing and V decreasing, such that A C U and B C V.

Every T4-ordered, locally convex space is completely regular ordered (see [2]). Furthermore, it

is a simple matter to show that every totally ordered space is T-ordered. Thus we have established

Proposition $.1 A totally ordered set X with a topology has a T2-ordered compactification iff

X is a totally ordered space.

In general, ordered compactifications of totally ordered spaces need not be totally ordered

unless one imposes the restriction that the compactification be T2-ordered. Recall the following

characterization of T-ordered spaces: If Y" x, . y, and the product filter r has a trace

on the order, then x _< y.

Proposition $.$ A T2-ordered compactification of any totally ordered space is a totally ordered

space with the order topology.

Proof. Let X be a totally ordered space, and let Y be a compact, T-ordered space (not

necessarily totally ordered) which contains X as a dense subset. If y, y2 E Y X, then yl and

y2 are limits of singularities on X, and since S (X) is totally ordered it follows that yl _< y2 or

y _< yr. Ifx E Xandy C Y-X, then y is the limit of a singularity Y" C S(X), and since

and partition X x is in y’t or ’. If x Y’r, then ’ has a trace on the order of X (and

hence on the order of Y). Since Y is T-ordered, y _< x. Similarly, if x Y’l, then x <_ y. Thus Y

is totally ordered, and we recall that every compact, totally ordered space has the order topology.

The familiar procedure for "ordering" the T compactifications of a completely regular (non-

ordered) space extends in a natural and obvious way to the T2-ordered compactifications of a
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completely regular ordered space. If (Yl,a,) and (Y2, or2) are Tz-ordered compactifications of X,

we say that (Yl,a,) () (Yz,az) if there is a continuous, increasing function j’:

which makes the diagram

X Y

el Y1
commute. Two T-ordered compactifications of X are equivalent if each is larger than the other

in this sense.

Our goal is to describe all the Tz-ordered compactifications of a totally ordered space, and we

begin with the largest, which is called the Nachbin (or Stone-Oech ordered) compoctification ([2],

[4]). It turns out that for totally ordered spaces, the Nachbin compactification is equivalent to

the Wallman ordered eompactification [3], and it will be useful to give a brief description of the

latter compactification at this point.

Let Y be a T-ordered topological space (partially but not necessarily totally ordered) with

a subbase of monotone open sets; it is shown in [4] that all completely regular ordered spaces

(and, hence, all totally ordered spaces) satisfy these requirements. A subset A of Y is called a

c-set if it is the intersection of a closed increasing set and a closed decreasing set. Note that every

c-set is closed and convex, but the converse is generally false. A c-filter is one which has filter

base of c-sets. The maximal c-filters on Y form the underlying set for woY, the Wallman ordered

compactification of Y.

For any subset A of Y, let A* { 6 woY A 6 ’}. The collection 12 * (U* U a monotone,

open subset of X} constitutes an open subbase for the compactification topology of woY. The

partial order relation on woY is defined by: " <_* iff I(r) C . and D(.) _C ’, where I(r) is

the filter generated by all closed, increasing sets in r and D(.) is generated by all the closed,

decreasing sets in .. The embedding r Y woY is the obvious one: r (y) , for all y e Y.

Proposition .8 Let X be a totally ordered space.

The c-sets of X are precisely the closed, convex subsets.
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(b) The non-convergent, maximal c-filters are precisely the singularities of X, and thus woX

{}: : x} v s (x).

(c) The Wallman ordered compactification is the largest T:-ordered compactification of X.

Proof. The first assertion is obvious. The second follows by first observing that each singu-

larity has a filter base of closed, convex sets and then applying Proposition 1.2. In order to prove

(c), it is necessary and sufficient (by Corollaries 1.4 and 1.5 of [3]) to show that X is T4-ordered

and satisfies the additional condition: For each closed, convex subset A of X, i(A) and d(A) are

both closed. But these conditions clearly hold for totally ordered spaces.

Proposition 2.4 Let X be a totally ordered space. If J’, E woX, then r <:, . iff exactly one

of the following is true:

(a) There are x, y E X such that " , . y, and x _< y in X;

(b) .T for some x X, . $ (X), and x .;
(c) . = for some y X," e $(X), and y

(d) J’,. E $(X) and " < .
Lemrna 2.5 Let X be a totally ordered space. Then (.T, .) (X) iff , . e $ (X) and there

is no x E X such that " _<* _<* ..
Proof. Using Proposition 2.4, we see that ,v <_, <_, . is equivalent to z rT N .. If

(r,.> (X), then by Proposition 1.5, ’T .T, which implies r? f3 . . Conversely if

x rt n , then r? . is impossible, and so by Proposition 1.5 (Y, .> p(X).

Proposition 2.6 Let X be a totally ordered space. If r, . woX, then . covers r iff exactly

one of the following is true.

(a) There are x, y E X such that r , . y, and y covers x.

(b) r for some x X, . is a decreasing, simple, bounded singularity, and . 0_, x.

(c) . for some x X, ,v is an increasing, simple, bounded singularity, and r 0_, x.

(d) <r, ) (X).
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Proof. We limit the proof to the case where . and . are both singularities. In this case, it

follows from Lemma 2.5 that . covers . ill (Y’, > e p(X).

Since woX has the order topology for any totally ordered space X, we may use Lemma 2.5 and

Proposition 2.6 to describe the basic neighborhoods in woX for each compactification point. If

Y is an increasing singularity (either simple or essential, bounded or unbounded), then "closed"

intervals in woX of the form [, :T], for x r, form a base for the neighborhood filter at :T.

Likewise for a decreasing singularity :T, intervals in woX of the form [r, ], for x ’T, constitute

a basic family of neighborhoods.

We next make use of our knowledge of woX to describe an arbitrary T2-ordered compactifi-

cation of a totally ordered space X. Since (woX, x) is the largest T2-ordered compactification

of X, any other T2-ordered compactification (Y, ) of X is related to the former by" (Y, )(

(woX, ox). Thus there is an increasing, continuous function az woX - Y which makes the

diagram

commute.

X woX

We can think of Y as the quotient space of woX obtained by identifying the compactification

points (i.e., the singularities of X) in an appropriate way.

Proposition 2. 7 Let (Y, ) be a T2-ordered compactification of a totally ordered space X, and

let or "woX Y be the function described in the preceding paragraph. If r and are distinct

singularities of X such that r < ., then a a; implies (r, .) p(X).

Proof. If <’,> p(X), then by Lemma 2.5 there is x X such that " _<* <_* .. Since

ar is an increasing function and az(r) ar(.), we must conclude that ar(:T) ar(). But

at(r) Y- (X), whereas ar() (X).

Thus the only possible way that singularities can be identified in order to form a T2-ordered

compactification Y as a quotient of woX is to identify essential pairs of singularities to single
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elements in Y. To be more explicit, let P _C p(X) be a set of essential pairs on X, and let Yp be

the topological quotient space obtained from woX as follows" for each pair <, .> E P, the distinct

elements Y" and . in woX we identified to a single element, denoted by (Y’, .>. Let ap woX Yp

be the canonical quotient map; ap is continuous by construction, and we impose on Yp the unique

total order relative to which ap is increasing. Let Cp X Yp be the composition ap o x.

In order to get a clearer picture of the T2-ordered compactification (Yp, p), we may iden-

tify the set Yp with P’LJ P, where P’ {/ E woX does not belong to an essential pair in

P}. Yp consists of equivalence classes of members of woX, each of which contains either one or

two elements. Thus P’ consists of the elements of woX which determine singleton classes in Yp,

whereas P can be identified with the two element classes in Yp. If k’ E P’, the upper bounds of

’ in Yp consist of those elements in P’ which are upper bounds of )4 in woX, along with those

elements (Y’,.) P such that <_* ,z (or equivalently, _<* .) in woX. If (Y’,.) P, the

upper bounds of <,z,.> in Yp consist of those elements in P’ which are above r in woX and

also those elements (Y", .’) E P such that Y" <* Y" in woX. For those elements of Yp in P’, the

basic neighborhoods have the same form in Yp as in woX except of course, that the intervals

involved must be construed as lying in Yp instead of woX. On the other hand, for (Y’, .> E P,

the neighborhood filter in Yp has a filter base of =closed intervals in Yp of the form [, .], where

<* :r <* .
If P, Q are subsets of p(X) and P C Q, then Yo can be regarded as the quotient space of

obtained by identifying those essential pairs Y’, . in P’ such that (Y’, .) E Q. The canonical

quotient map apo Yp --, Y@ is continuous and increasing, and the quotient map a0 "woX Y@

is given by a0 ap0 o crp. Our results on T=-ordered compactificatiorm of a totally ordered space

X may be summarized in the following theorems.

Theorem .8 Let X be a totally ordered space, and let P be an arbitrary subset of p(X).

Then (Yp, Cp) is a T2-ordered compactification of X. If P, Q are subsets of (X), then P C_ Q

itf (Yo,o)((Y,,p). If P (, then (Yp,p) is equivalent to (woX,ox) and is the largest



694 D.C. KENT AND T.A. RICHMOND

T2-ordered compactification of X. If Q p(X), then (Y, CQ) is the smallest Trordered corn-

pactification of X.

Theorem .9 If (Y, ) is any Trordered compactification of a totally ordered space X, then

there is a subset e of (x) such that (I/’, ) is equivalent to

CorollarF e.10 A totally ordered space X has a unique ordered compactification iff X has no

essential singularities.

Examples of Trordered spaces with unique T-ordered compactification include the real line

(with usual order and topology), the Sorgenfrey line, and the discrete line (the real numbers with

usual order and discrete topology). In the case of the Sorgenfrey line, one compactification point

corresponding to each real number is added, along with least element -oo and greatest element

oo. The T2 ordered compactification of the discrete line is similar, except that two compactifica-

tion points are added for each real number (one on each side).
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