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Abstract. The lattice of ordered compactifications of a topological sum of a finite number of
totally ordered spaces is investigated. This investigation proceeds by decomposing the lattice into
equivalence classes determined by the identification of essential pairs of singularities. This lattice of
equivalence classes is isomorphic to a power set lattice. Each of these equivalence classes is further
decomposed into equivalence classes determined by admissible partially ordered partitions of the
ordered Stone–̌Cech remainder. The lattice structure within each equivalence class is determined
using an algorithm based on the incidence matrix of the partially ordered partition. As examples, the
ordered compactification lattices for the spaces[0,1) ⊕ [0, 1), [0, 1) ⊕ [0,1) ⊕ [0, 1),R ⊕ R, and
R\{0} ⊕R\{0} are determined.

1. Introduction

An ordered (topological) spaceis a triple(X, τ,≤) whereX is a set,≤ is a partial
order onX, andτ is a topology onX having a base of≤-convex sets. A natural
compatibility condition between the topologyτ and order≤ of an ordered space
is theT2-ordered property, which is satisfied if the graph of≤ is closed in the
product(X, τ) × (X, τ). A compactT2-ordered space(Y, τY ,≤Y ) is anordered
compactificationof the ordered space(X, τ,≤) if (X, τ) is (homeomorphic to) a
dense subspace of the compact space(Y, τY ) and≤Y restricted toX is ≤. The
set of all ordered compactifications of(X, τ,≤) is denotedKo(X), and can be
ordered by(Y, τY ,≤Y ) ≤ (Y ′, τY ′,≤Y ′) if there exists a continuous increasing
function fY ′,Y : Y ′ → Y that leaves each point ofX fixed. This is technically
only a preorder onKo(X), but we will consider it to be a partial order sinceY and
Y ′ are homeomorphic and order isomorphic wheneverY ≤ Y ′ andY ′ ≤ Y . With
this partial order,Ko(X) is a complete∨-semilattice with largest elementβoX, the
Stone–̌Cech ordered-or Nachbin- compactification(see [4]). For eachY ∈ Ko(X),
sinceβoX ≥ Y , it follows thatY induces a partition{f −1

βoX,Y
(x) : x ∈ Y } of βoX\X.

The blocks of this partition can be given the partial order ofY\X, which results in
a “partially ordered partition” or “popartition” ofβoX\X.

Ordered compactifications of totally ordered spaces are studied in Blatter [1]
and Kent and Richmond [3]. IfX is a totally ordered space, the latter paper charac-
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2 D. D. MOONEY AND T. A. RICHMOND

terizes the points ofβoX\X as the convex hulls of nonconvergent ultrafilters onX,
which are calledsingularities. For anyY ∈ Ko(X), the blocks of the popartition of
βoX\X induced byY are either singletons or pairs of elements ofβoX\X. Two
singularities form anessential pairif the corresponding pointsb, c ∈ βoX\X
appear together as a block{b, c} in the popartition ofβoX\X induced by some
Y ∈ Ko(X). Any singularity that is not part of an essential pair is asimple sin-
gularity. A singularity isunboundedif the corresponding pointb ∈ βoX\X is the
greatest or least element ofβoX, and isboundedotherwise. For example, given
the usual topology and order inherited from the real line,[0,1) ∪ [2,3) has a
simple bounded singularity at 1 and a simple unbounded singularity at 3, while
[0,1) ∪ (1,2] has an essential pair of singularities at 1. The definitions of this
paragraph are given in terms of filters onX in [3]. There, it is shown that ifE is
the set of essential pairs of singularities of a totally ordered spaceX, thenKo(X)
is isomorphic toP (E), the power set lattice ofE.

In this paper, the analysis ofKo(X) is extended to spaces which are direct sums
of finitely many totally ordered spaces. Specifically, we will considerKo(X) for
spaces of the formX =⊕n

i=1Xi, where eachXi is a totally ordered space andX
has the topological sum topology and the direct sum order. Thedirect sum order
is defined bya ≤ b in X if and only if there exists ani ∈ {1, . . . , n} such that
a, b ∈ Xi anda ≤ b in Xi . To handle the increased complexity of this setting,
Ko(X) will be partitioned according to how the essential singularities of the sum-
mands are identified (E-equivalence), and then partitioned further according to
the induced popartitions ofβoX\X (popar equivalence). In Section 2, a matrix
algorithm is developed to analyze the structure of each popar equivalence class.
In Section 3,Ko(X) is described for the direct sum of three copies of[0,1). In
Section 4,Ko(R⊕R) is described. Section 5 deals withE-equivalence classes that
arise from summands with bounded singularities.

If X = ⊕n
i=1Xi is a direct sum of totally ordered spaces, the Stone–Čech or-

dered compactificationβoX = βo(⊕n
i=1Xi) is given by

⊕n
i=1 βoXi . The elements

of Ko(X) are obtained by a combination of identifying compactification points
of βoX, imposing additional order between compactification points, and imposing
additional order between compactification points and the points of the base space.

As an illustration of these ideas, considerX1 = X2 = [0,1), the half open
interval with the usual topology and order. We will denote the direct sumX =

X1⊕X2 schematically by . NowβoX = βo(X1⊕X2) = βo(X1)⊕ βo(X2) ≈

[0,1] ⊕ [0,1] which will be schematically denoted by . Throughout the
paperαi will denote the “top” compactification point of theith summand.

The ordered compactifications ofX are obtained by identifying the compacti-
fication points ofβoX and/or adding some additional order. The identification of
the compactification points corresponds to a partition of the set{α1, α2} of com-
pactification points. The additional order can only be between compactification
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ORDERED COMPACTIFICATIONS OF TOTALLY ORDERED SPACES 3

points and the base space or between compactification points. The instances of the
latter case give an order relation on the blocks of the partition ofβoX\X, that is, a
popartition ofβoX\X.

In general, there are not ordered compactifications of a spaceX corresponding
to every partially ordered partition ofβoX\X; those that do arise from an ordered
compactification will be calledadmissible popartitionsof βoX\X. For example,
the 1-block partition{{−∞,+∞}} of βoR\R is not admissible since+∞ and−∞
may not be identified in any ordered compactification of the real lineR.

We will divideKo(X) into popar equivalence classes by saying that two ordered
compactifications ofX are popar equivalent if they correspond to the same partially
ordered partition ofβoX\X. The partially ordered partitions of a set form a lattice
when ordered byP ≤ Q if and only if Q is a refinement ofP and the map
[x]Q 7→ [x]P is increasing. This lattice is equivalent to the lattice of quasiorders on
the set and to the lattice of principal topologies (topologies closed under arbitrary
intersections) on the set (see [2]).

For a spaceX = [0,1)⊕[0,1), the lattice of popartitions ofβoX\X = {α1, α2}
is shown below.

The popar equivalence class of the ordered Stone–Čech compactification

consists of ordered compactifications of the form whereaij is the
largest element of thej th summand such thatαi ≥ [0, aij ]. The pointaij must
come from the set{−∞} ∪ [0,1), whereaij = −∞ indicates theith compactifi-
cation pointαi is not related to any points of thej th summand. For two ordered
compactifications with the same underlying topological compactification, as is the
case within any popar equivalence class, we recall that the larger ordered compact-
ification is the one with the smaller order. Thus, the ordered compactifications of
the popar equivalence class of this current example are determined by the points
(a12, a21) ∈ {−∞}∪ [0,1)× {−∞}× [0,1) and are ordered by the (dual) product
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4 D. D. MOONEY AND T. A. RICHMOND

order on this product. This popar equivalence class can be depicted by the diagram
below.

Similarly one can perform an analysis on the popar equivalence class

which contains ordered compactifications of the form
wherea12 ∈ {−∞} ∪ [0,1); hence this equivalence class can be schematically

represented as. The case is analogous. Finally is the only
element in its popar equivalence class. Putting the appropriate equivalence classes
together gives usKo([0,1) ⊕ [0,1)), which, with the dual order, is represented
schematically by

A similar analysis of the spaceX = [0,1) ⊕ [0,1) ⊕ [0,1) quickly becomes
complicated. In this case there are 29 partially ordered partition equivalence classes
to consider (see [2]). For each of these classes, a diagram needs to be considered
and care must be taken not to introduce prohibited order. Spaces with bottom or
middle holes further complicate the situation. Clearly a systematic analysis of the
equivalence class structure is needed. This is the theme of Section 2. Section 3 will
use the results of Section 2 to analyze the spaceX = [0,1) ⊕ [0,1)⊕ [0,1).

2. A Matrix Algorithm

In this section, we develop a matrix algorithm for investigating a popar equivalence
class of ordered compactifications determined by a given partially ordered partition
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ORDERED COMPACTIFICATIONS OF TOTALLY ORDERED SPACES 5

of the ordered Stone–̌Cech remainder. In this section, we will only consider direct
sums of totally ordered spaceswithout essential singularities or simple bounded
singularities. In other words, the summands only have top or bottom holes, but not
holes in the middle. Spaces with holes in the middle (i.e. spaces which have closed
bounded noncompact subsets) will be examined in Section 5.

We will begin with some notation. IfX =⊕n
i=1Xi , thenT ⊆ {1, . . . , n}will be

the set of indices of summands with “top” singularities (i.e. increasing unbounded
singularities) andB ⊆ {1, . . . , n} will be the set of indices of summands with
“bottom” singularities (i.e. decreasing unbounded singularities). We will consider

partitionsP of the disjoint unionT
•∪ B of form P = {T1, . . . , Tk, B1, . . . , Bl}

whereTi ⊆ T for all i ∈ {1, . . . , k} andBj ⊆ B for all j ∈ {1, . . . , l}. An
admissible partial order ofP will be one such that 1)∀i ∈ {1, . . . , k} and∀j ∈
{1, . . . , l}, Ti 6≤ Bj and 2) IfTi∩Bj 6= ∅ when considered as subsets of{1, . . . , n},
thenTi > Bj .

We will denote the top compactification points by the symbolα, with αTi being
the compactification point corresponding to the partition elementTi. Similarly, the
symbolω will be used for bottom compactification points. The symbolaij will
determine the added order between theith top compactification point and thej th
summand, i.e.αTi is greater than or equal toaij and all points beneathaij in thej th
summand andαTi is greater than no other points of thej th summand. Similarlyzij
will denote the least point of thej th summand that is aboveωBi . If there is no order
betweenαTi and thej th summand, then we writeaij = −∞; if there is no order
betweenωBi and thej th summand then we will writezij = ∞. The symbol−∞
is less than every element in its summand. The symbol∞ is greater than every
element in its summand.

Identifying the equivalence classes of a partially ordered partition ofβoX\X
results in one topological compactification ofX. The order between the com-
pactification points is determined by the partially ordered partition and thus the
compactification points are ordered with respect to each other in exactly one way.
The many different ordered compactifications are obtained by defining order be-
tween the compactification points and the points of the base space, which is the
same as defining theaij ’s and thezij ’s. In principle theaij ’s and thezij ’s could
take any value in thej th summand, but many of their values are either forced by
the partially ordered partition, or restricted by it. Notice that no choice ofaij and
zij will add order to the base space, but some choices will add order to the partially
ordered partition which is illegal since the partially ordered partition was givena
priori .

Consider two blocks of a partially ordered partition (Ti andTj , Ti andBj , orBi
andBj ) indexed byi andj , and a summand indexed bys. There are six possible
order arrangements for the blocks, namely:Ti > Bj, Ti ≯ Bj, Ti ≥ Tj , Ti 6≥
Tj , Bi ≥ Bj , andBi 6≥ Bj (equality is impossible between top and bottom blocks).
For each of these cases, either the indexs is in one of the two blocks or it is not.
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6 D. D. MOONEY AND T. A. RICHMOND

This presents twelve cases and each implies a set of restrictions, which we list
below.

I. Suppose thats is in one of the two blocks (Ti andTj , Ti andBj , orBi andBj )
then
a. Ti > Bj impliesais 6= −∞ andzjs 6= ∞;
b. Ti ≯ Bj impliesais = −∞ andzjs = ∞;

c. Ti ≥ Tj impliesais =
{
αTj if s ∈ Tj ,
αTi if s ∈ Ti;

d. Ti 6≥ Tj impliesais 6= αTj ;
e. Bi ≤ Bj implieszis =

{
ωBj if s ∈ Bj,
ωBi if s ∈ Bi;

f. Bi 6≤ Bj implieszis 6= ωBj .
II. Supposes is not in any of either of the two blocks (Ti andTj , Ti andBj , orBi

andBj ) then
a. Ti > Bj implies no restrictions onais or zjs except that they cannot be

the top or bottom compactification points if that would change the partially
ordered partition;

b. Ti ≯ Bj impliesais 6≥ zjs;
c. Ti ≥ Tj impliesais ≥ ajs ;
d. Ti 6≥ Tj implies no restrictions onais andajs except that they cannot be the

top compactification point of thes summand (if any) if that adds order to
the partially ordered partition;

e. Bi ≥ Bj implieszis ≥ zjs;
f. Bi 6≥ Bj implies no restrictions onzis andzjs except that they cannot be the

bottom compactification point of thes summand (if any) if that adds order
to the partially ordered partition.

These restrictions are evident. We detail IIb, but others can be reasoned simi-
larly. Consider the following diagram.

This diagram illustrates that ifais ≥ zjs then order would be introduced be-
tweenαTi andωBj that was not already present. Requiringais < zjs prevents this
problem.

A matrix is a natural bookkeeping tool to keep track of all theaij ’s andzij ’s.
In this section, an algorithm is presented which constructs a matrix whose rows
correspond to the compactification points (or partition blocks), whose columns
correspond to the summands, and whose entries are theaij ’s and zij ’s. The al-
gorithm systematically takes care of all of the possible restrictions of theaij ’s and
zij ’s. To justify the algorithm, note that items under the heading I are implied by
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ORDERED COMPACTIFICATIONS OF TOTALLY ORDERED SPACES 7

the incidence matrix of the partially ordered partition. In Steps 1 through 4 of
the algorithm below, we start with the incidence matrix (and its dual) and encode
Ib, Ic, and Ie which force certain choices of theaij ’s andzij ’s. Specifically, Step 1
combines the incidence matrix and its dual to create a matrix which has one row and
column for each partition block. Step 2 encodes all restrictions that follow from the
top-to-top, top-to-bottom, bottom-to-top, and bottom-to-bottom partition relations.
Step 3 merely switches the columns of the matrix from representing compactifi-
cation points or partition elements to summands. Since both the top and bottom
blocks get converted to summands separately, each summand occurs as two sepa-
rate columns. Step 4 combines summand information from the two columns into a
single column. This gives a matrix of the desired size. Step 5 incorporates of the
rest of the restrictions. Several of the restrictions are restatements of the restrictions
Ia, IIb, IIc, and IIe; but note that by restricting theaij ’s to {−∞} ∪ βoXj\{αj } and
thezij ’s to (βoXj ∪ {∞})\{ωj} we incorporate Id and If and the “. . . no restrictions
except . . . ” requirements of IIa, IId, andIIf.

Throughout this section we will use a running example to illustrate notation and
operations. This example is denoted schematically by

For this example,T = {1,2,4} andB = {4,5}. The disjoint unionT
•∪ B

is partitioned byT1 = {1}, T2 = {2,4}, B1 = {4} andB2 = {5}. The partition
P = {T1, T2, B1, B2} is partially ordered byB1 < T2 < T1 andB1 < B2. This
popartition is admissible.

2.1. STEP1: THE COMBINED INCIDENCE MATRIX

Form the(k + l)× (k + l) incidence matricesM≥ andM≤ for the partial orders≥
and≤ on P . LetM be the(k + l) × (k + l) matrix whose topk rows agree with
M≥ and whose bottoml rows agree withM≤. We callM the combined incidence
matrix for the partially ordered partition.

In our example

M =


T1 T2 B1 B2

T1 1 1 1 0
T2 0 1 1 0
B1 1 1 1 1
B2 0 0 0 1

.
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8 D. D. MOONEY AND T. A. RICHMOND

It is convenient to think ofM = (mij ) in terms of four submatricesT ′×T ′, T ′×
B ′,B ′ ×T ′, andB ′ ×B ′ corresponding to the order from top-to-top, top-to-bottom,
bottom-to-top, and bottom-to-bottom respectively.

2.2. STEP2: REFINEMENT

As we have seen, the order between top compactification points and that between
bottom compactification points will force somea’s to beα’s and somez’s to be
ω’s. Similarly, the order relation (or lack thereof) between top and bottom com-
pactification points will introduce further restriction of the choices ofaij ’s and
zij ’s. Codifying these restrictions requires several steps starting from the combined
incidence matrixM.

We alterM = (mij ) as follows:
If (i, j) ∈ T ′ × T ′ andmij = 1, replacemij by αTj .
If (i, j) ∈ T ′ × T ′ andmij = 0, replacemij by a generic lettera.
If (i, j) ∈ T ′ × B ′ andmij = 1, replacemij by a generic lettera.
If (i, j) ∈ T ′ × B ′ andmij = 0, replacemij by−∞.
If (i, j) ∈ B ′ × T ′ andmij = 1, replacemij by a generic letterz.
If (i, j) ∈ B ′ × T ′ andmij = 0, replacemij by∞.
If (i, j) ∈ B ′ × B ′ andmij = 1, replacemij by aωBj .
If (i, j) ∈ B ′ × B ′ andmij = 0, replacemij by a generic letterz.
In our example, we have

M =


αT1 αT2 a −∞
a αT2 a −∞
z z ωB1 ωB2∞ ∞ z ωB2

 .

2.3. STEP3: EXPANSION

Next the(k + l)× (k + l)matrixM is expanded to form a(k + l)× 2n matrixD.
Take theith column ofD (for 1 ≤ i ≤ n) to be thej th column ofM if i ∈ Tj .

If i /∈ Tj for anyj then fill theith column with generica’s in the topk rows and
genericz’s in the bottoml rows. For 1≤ i ≤ n, take the(n+ i)th column ofD to
be the(k + j)th column ofM if i ∈ Bj . If i /∈ Bj for anyj then fill the(n+ i)th
column with generica’s in the topk rows and genericz’s in the bottoml rows.

For our example, we have

D =


αT1 αT2 a αT2 a a a a a −∞
a αT2 a αT2 a a a a a −∞
z z z z z z z z ωB1 ωB2∞ ∞ z ∞ z z z z z ωB2

 .
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ORDERED COMPACTIFICATIONS OF TOTALLY ORDERED SPACES 9

2.4. STEP4: COLLAPSE

The matrixD has one row for each popartition element (i.e. each compactification
point) and two columns for each summand. Despite this redundancy, we observe
that some information comes only from the top down and other information comes
only from the bottom up.

To include all this information in an efficient(k + l) × n matrix C, we “col-
lapse”D by taking the left half ofD and replacing all generica’s andz’s by the
corresponding entries in the right half. Equivalently,

cij =
{
dij if dij+n is not anα,ω, or±∞,
dij+n if dij+n is anα,ω, or±∞.

This step is called “collapsing” or “superimposing”. Observe that there are no
conflicts in this collapsing. The matrixD has two columns for each summand. One
of these contains theaij andzij restrictions imposed by the popartition block that
the top compactification point of the summand (if any) is in. The other column
has restrictions imposed by the popartition block that the bottom compactification
point (if any) is in. Collapsing the matrix combines the restrictions from the top
with the restrictions from the bottom into a single column. Since we had an ad-
missable popartition to begin with, there can be no conflict. Addressing this issue
more concretely, observe that in Step 1 we put onlya’s, α’s, and−∞’s in the top
half of M andz’s, ω’s, and∞’s in the bottom. Sincea’s andz’s do not conflict
with anything, the only conflicts can beα’s with −∞’s andω’s with ∞’s. An α
in a column ofD implies there is order between the compactification point and
everything in the summand, while a−∞ implies there is no order between the
compactification point and the summand. Since these assignments came from an
incidence matrix of an order (and its dual), it is impossible for full order and no
order to be assigned at the same time. Therefore anα will never be superimposed
on a−∞. Similarly anω will never be superimposed on an∞.

For our example, we have

C =


αT1 αT2 a αT2 −∞
a αT2 a αT2 −∞
z z z ωB1 ωB2∞ ∞ z ∞ ωB2

 .

2.5. STEP5: FINISHING

We consider two submatrices associated withC. The topk rows will be denoted
by A, the bottoml rows will be denoted byZ. We will index the elements ac-
cording to their appropriate submatrix. Thusaij will be the(i, j)th element of the
submatrixA of C andzij will be the(i, j)th element of the submatrixZ of C. We
see that many of theaij andzij have already been specified. To create an ordered
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10 D. D. MOONEY AND T. A. RICHMOND

compactification, we can choose the remaining (currently unspecified)aij ’s from
{−∞}∪βoXj\{αj } (whereαj is the top compactification point of thej th summand,
if there is one) subject to the restrictions:

1. asj ≥ atj if Ts > Tt ,
2. aji 6= −∞ if Tj > Bm wherei ∈ Bm.
After theaij ’s are chosen, all the remaining unspecifiedzij ’s can be chosen from

(βoXj ∪ {∞})\{ωj} subject to:
1. zsj ≥ ztj if Bs > Bt ,
2. zji 6= ∞ if Bj < Tm wherei ∈ Tm,
3. zsj > atj if Tt ≯ Bs .
Referring to the running example, we have

C =
(
A

Z

)
=


αT1 αT2 a13 αT2 −∞
a21 αT2 a23 αT2 −∞
z11 z12 z13 ωB1 ωB2∞ ∞ z23 ∞ ωB2

 ,
wherea13 ≥ a23 sinceT1 > T2, andai3 ∈ {−∞}∪βoX3. Similarly z13 ≥ z23 where
zi3 ∈ βoX3 ∪ {∞}. Also z23 > a13 sinceT1 6≥ B2. Thusz13 ≥ z23 > a13 ≥ a23.
SinceB1 < T2 and 2∈ T2, we havez12 6= ∞, and thusz12 ∈ βoX2. Similarly,
z11 ∈ βoX1. There are no restrictions ona21 ∈ {−∞} ∪ βoX1\{α1}.

The last part of this section will be concerned with the order structure within
a popar equivalence class and between elements of different popar equivalence
classes.

THEOREM 2.1. If Y and Y ′ are two ordered compactifications within a popar
equivalence class with associated matricesC andC′, thenY ≤ Y ′ if and only if
every element of the firstk rows ofC is greater than or equal to the corresponding
element ofC′ and every element of the lastl rows ofC is less than or equal to the
corresponding element ofC′.

Proof. The theorem follows immediately from the fact that for topologically
equivalent ordered compactifications, the more order an ordered compactification
has the lower it is in the lattice of ordered compactifications. 2

Thus for our example the lattice structure of the popar equivalence class is the
following set with the product order:

[{−∞} ∪ βoX1\{α1}]d × βoX1× βoX2

×{(u, v, x, y) | u, v ∈ βoX3 ∪ {∞}, x, y ∈ [{−∞} ∪ βoX3]d
andu ≥ v > x ≥ y},

whereXd represents the posetX with the dual order.
In general, Theorem 2.1 will not work when comparing ordered compactifica-

tions in different popar equivalence classes because the matricesC andC′ may be
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ORDERED COMPACTIFICATIONS OF TOTALLY ORDERED SPACES 11

of different sizes. This can be corrected if the matrixC obtained by the algorithm of
this section is expanded to a 2n× nmatrix, which will be calledE in Theorem 2.2
below. Theith row ofE will be the row of the matrixC which corresponds to the
top partition element containing theith summand. If theith summand is not in any
partition element (i.e. theith summand has no top hole) then fill the row withx’s.
Similarly the(i+n)th row ofE will be the row of the matrixC which corresponds
to the bottom partition element containing theith summand. Again the row will be
filled with x’s if the ith summand is not in any bottom partition element (i.e. the
ith summand has no bottom hole).

The following theorem generalizes Theorem 2.1 to include comparing compact-
ifications in different partially ordered partition equivalence classes. In addition to
making use of the expanded matrixE, the order structure of the partially ordered
partitions is included.

THEOREM 2.2. Let Y andY ′ be ordered compactifications ofX. LetE andE′
be the associatedE matrices. Leta anda′ denote the top elements(first n rows)
andz andz′ denote the bottom elements(2ndn rows) ofE andE′ respectively.
Y ≤ Y ′ if and only if

1. The popar class ofY is smaller than the popar class ofY ′ in the popar lattice,
and

2. a′ij ≤ aij andz′ij ≥ zij for all 1≤ i ≤ 2n and1≤ j ≤ n.

3. An Example

In this section, we apply the results of the previous section to characterize the lattice
of compactifications of the space[0,1)⊕[0,1)⊕[0,1), represented schematically

by . There are 29 partially ordered partitions of the ordered Stone–Čech
remainder points (see [2]). For anyX = ⊕n

i=1Xi where eachXi is [0,1), each
partially ordered partition is admissable. Popar equivalence classes with isomor-
phic lattice structures generated by the methods of the previous section will be said
to be of the sameisomorphic type. There are nine isomorphic types. The types,
the number of partially ordered partitions in each type, and the lattice structure for
each of the 9 types are given below.

Type 1: There is only one popartition of this type.

M =
 1 0 0

0 1 0
0 0 1

 C =
 α1 a12 a13

a21 α2 a23

a31 a32 α3


The sixaij entries of the matrixC can each be chosen without restriction from
{−∞}∪[0,1), so the dual of the popartition equivalence classes of this type will be

[{−∞}∪[0,1]6, which can be represented schematically by .
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Type 2: There are six popartitions of this type.

M =
 1 1 0

0 1 0
0 0 1

 C =
 α1 α2 a13

a21 α2 a23

a31 a32 α3


All the aij ’s are elements of{−∞} ∪ [0,1). Noting thata21, a31, and a32 are
unrestricted buta13 ≥ a23, the dual lattice structure for this equivalence class is
[{−∞} ∪ [0,1)]3 × {(a23, a13) ∈ [{−∞} ∪ [0,1)]2 : a23 ≤ a13}, which can be

represented by .

Type 3: There are three popartitions of this type.

M =
 1 1 0

0 1 0
0 1 1

 C =
 α1 α2 a13

a21 α2 a23

a31 α2 α3


Throughout this example, theaij ’s are elements of{−∞} ∪ [0,1). Herea13 ≥ a23

and a31 ≥ a21, so the resulting dual lattice structure is{(a23, a13) ∈ [{−∞} ∪
[0,1)]2 : a23 ≤ a13} × {(a21, a31) ∈ [{−∞} ∪ [0,1)]2 : a21 ≤ a31}, schematically

represented by .

Type 4: There are three popartitions of this type.

M =
 1 0 0

1 1 1
0 0 1

 C =
 α1 a12 a13

α1 α2 α3

a31 a32 α3


There are no restrictions on the fouraij ’s, so the resulting dual lattice structure is

[{−∞} ∪ [0,1)]4, represented schematically by .

Type 5: There are six popartitions of this type.

M =
 1 1 1

0 1 1
0 0 1

 C =
 α1 α2 α3

a21 α2 α3

a31 a32 α3


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Here a32 is unrestricted, buta21 ≥ a31. The resulting dual lattice structure is
[{−∞} ∪ [0,1)] × {(a31, a21) ∈ [{−∞} ∪ [0,1)]2 : a31 ≤ a21} represented

schematically as .

Type 6: There are three popartitions of this type.

M =
(

1 0
0 1

)
C =

(
αT1 αT1 a13

a21 a22 αT2

)
There are no restrictions ona21, a22 or a13, so the resulting dual lattice structure is

[{−∞} ∪ [0,1)]3, representing schematically by .

Type 7: There are three popartitions of this type.

M =
(

1 1
0 1

)
C =

(
αT1 αT1 αT2

a21 a22 αT2

)
Again, there are no restrictions on the two parametersa21 anda22, so the resulting

dual lattice structure is[{−∞} ∪ [0,1)]2, represented schematically by .

Type 8: There are three popartitions of this type.

M =
(

1 0
1 1

)
C =

(
αT1 αT1 a13

αT1 αT1 αT2

)
With no restrictions on the parametera13, the resulting dual lattice structure is

{−∞} ∪ [0,1), represented.

Type 9: There is only popartition of this type.
Since there is only one ordered compactification in this popartition equivalence
class,M = (1) andC = (αT1), so the lattice structure consists of a single point.

The Hasse diagram for the lattice of partially ordered partitions on three ele-
ments (i.e. the lattice of topologies on 3 elements) shown in Figure 1 is given in
[2]. Here, the partially ordered partitions are not individually identified, with only
the type of each partially ordered partition given. Filling in the lattice structures
for each type as given above into the corresponding positions indicated in the
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Figure 1.

diagram of Figure 1 would give the lattice forKo([0,1) ⊕ [0,1) ⊕ [0,1)) where
the order between points of different popar equivalence classes would follow from
Theorem 2.2.

4. Ko(R⊕ R)

In this section, the lattice of ordered compactifications of the direct sum of two
copies of the real line is investigated. By comparing this example withKo(R),
which has only one element, the complexity added to the lattice of ordered com-
pactifications by the topological sum process is evident.

Figure 2 illustrates the 25 admissible partially ordered partitions ofβo(R ⊕
R)\(R⊕ R) by displaying the largest representative from each popar equivalence

class. The spaceX = R⊕ R is denoted by .
Notice that each ordered compactification above has a left-right dual (e.g.,g and

h). This contributes to the left-right symmetry ofKo(X). The ordered compactifi-
cationsa, d, s, t , andy are self-(left-right) dual. The lattice structure of these 25
admissible partially ordered partitions is shown below.

Each of the 25 entries in the lattice shown in Figure 3 represents a popar equiva-
lence class. Several of these popar equivalence classes are isomorphic subposets of
Ko(X). Left-right duals, for example, will be of the same isomorphic type. There
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Figure 2.

are only nine non-isomorphic popar equivalence class structures. The popar equiv-
alence class structures corresponding to each of the 25 popar equivalence classes
have been listed in Figure 4. A complete lattice diagram forKo(R⊕R)would have
these posets at the corresponding vertices of the partially ordered partition lattice
in Figure 3. Order between popar equivalence classes is determined according to
Theorem 2.2.

5. Summands with Bounded Singularities

In the previous sections, the discussion was limited to topological sums of totally
ordered spaces with only unbounded singularities (holes only at the tops or bot-
toms). Now direct sums of spaces with bounded singularities (holes in the middle)
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Figure 3.

will be investigated. Throughout this section,X will denote such a space. (For defi-
nitions, refer to Section 1 or [3].) Bounded simple singularities are characterized by
the fact that in any ordered compactification of the space, they can only introduce
a single compactification point that is neither the greatest nor least element of the
space. Since they must always have the same effect in every ordered compactifica-
tion of the space, they have no variability to affect the lattice structureKo(X) in
any way. Thus, the only middle holes of interest in studying the lattice structure
are the essential singularities, which always occur in pairs. Recall that ifE is the
set of essential pairs of singularities of a totally ordered spaceX, then the lattice
Ko(X) is isomorphic ofP (E). More generally, for a direct sum of totally ordered
spaces, we will letE denote the union of the sets of essential pairs of singularities
from each of the summands. NowKo(X) can be broken intoE-equivalence classes
according to which essential singularities fromE are compactified with two points.
Each of theseE-equivalence classes can be further divided into popar equivalence
classes which can be analyzed using the methods of Section 2.

DEFINITION 5.1. Two ordered compactificationsY andY ′ of a direct sum of to-
tally ordered spaces areE-equivalent if their sets of identified essential singularities
are the same.
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Figure 4.

A complete set ofE-equivalence class representatives will be useful. By the
order relation onKo(X), it is easy to see that eachE-equivalence class has a largest
element.

DEFINITION 5.2. The symbolKE
o (X) will be used to denote the lattice of or-

dered compactifications ofX consisting of the largest elements from each
E-equivalence class.

PROPOSITION 5.3.KE
o (X) ≈ P (E).

The proof is an immediate generalization of the case for a single totally ordered
space, as given in Kent and Richmond [3].

In determiningKo(X), note that each element ofKE
o (X) represents the

E-equivalence class consisting of all the ordered compactifications ofX whose
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middle holes are filled as indicated by a particular subset ofE. Thus, the “middle
behavior” of an element ofKo(X) is determined by its representative element from
KE
o (X). With the middle behavior already determined by the position in the lattice

KE
o (X), each of these positions will correspond to a lattice of ordered compactifica-

tions of a topological sum of totally ordered spaceswith no essential singularities,
which are the kind of spaces considered in Section 2.

EXAMPLE. ConsiderX = R\{0}⊕R\{0}with the usual topology and order. The
figure below shows the latticeKE

o (X) of E-equivalence classes.

The equivalence class associated with the bottom element of this lattice is, of
course,Ko(R ⊕ R), which was studied in Section 4. The equivalence class asso-
ciated with the top element of the lattice will be the same asKo(R ⊕ R) except
that all the intervals appearing in Figure 4 of the previous section will have gaps in
them. The other two equivalence classes can be studied similarly with appropriate
intervals turned into intervals with gaps and, since symmetry is broken, there will
be more isomorphic types.

Using the order provided by the lattice equivalence of the previous proposition,
for ordered compactificationsY andY ′ of X, we will sayY ′ ≤E Y if the asso-
ciatedE-equivalence classes are so related, i.e. if the set of unidentified essential
singularities ofY ′ is a subset of those ofY .

THEOREM 5.4. If Y andY ′ are ordered compactifications ofX, thenY ′ ≤ Y if
and only ifY ′ ≤E Y and the conditions of Theorem2.2 hold, where, in the case
of an identification, the two compactification points corresponding to an essential
singularity inY are considered to be equal to the single compactification point for
that essential singularity inY ′, when comparing entries of the matrix.
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