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Abstract. The lattice of ordered compactifications of a topological sum of a finite number of
totally ordered spaces is investigated. This investigation proceeds by decomposing the lattice into
equivalence classes determined by the identification of essential pairs of singularities. This lattice of
equivalence classes is isomorphic to a power set lattice. Each of these equivalence classes is further
decomposed into equivalence classes determined by admissible partially ordered partitions of the
ordered StoneSech remainder. The lattice structure within each equivalence class is determined
using an algorithm based on the incidence matrix of the partially ordered partition. As examples, the
ordered compactification lattices for the spaf@sl) ¢ [0,1),[0,1) © [0,1) & [0,1),R® R, and

R\{0} & R\{0} are determined.

1. Introduction

An ordered (topological) spacis a triple (X, t, <) whereX is a set< is a partial
order onX, andz is a topology onX having a base ok-convex sets. A natural
compatibility condition between the topologyand order< of an ordered space
is the T»-ordered property which is satisfied if the graph of is closed in the
product(X, 1) x (X, 7). A compactT>-ordered spaceY, ty, <y) is anordered
compactificationof the ordered spaceX, 7, <) if (X, 1) is (homeomorphic to) a
dense subspace of the compact spdtery) and <y restricted toX is <. The
set of all ordered compactifications ¢X, r, <) is denotedk,(X), and can be
ordered by(Y, 1y, <y) < (Y, 1y, <y) if there exists a continuous increasing
function fy y: Y’ — Y that leaves each point of fixed. This is technically
only a preorder orK,(X), but we will consider it to be a partial order sinEeand
Y’ are homeomorphic and order isomorphic whenéter Y’ andY’ < Y. With
this partial orderk,(X) is a complete/-semilattice with largest elemefi; X, the
Stone€ech ordereder Nachbin- compactificatio(see [4]). For eacli € K,(X),
sinceB, X > Y, it follows thatY induces apartitior{lfﬁ‘o}(,y(x) :x € Y}of B, X\ X.
The blocks of this partition can be given the partial orde¥r 9%, which results in
a “partially ordered partition” or “popartition” o, X\ X.

Ordered compactifications of totally ordered spaces are studied in Blatter [1]
and Kent and Richmond [3]. X is a totally ordered space, the latter paper charac-
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terizes the points g, X\ X as the convex hulls of nonconvergent ultrafiltersxgn
which are calleagsingularities For anyY € K,(X), the blocks of the popartition of
B,X\X induced byY are either singletons or pairs of elementsgpk\X. Two
singularities form aressential pairif the corresponding points, ¢ € B,X\X
appear together as a bloé¢k, ¢} in the popartition of8, X\ X induced by some

Y € K,(X). Any singularity that is not part of an essential pair isimple sin-
gularity. A singularity isunboundedf the corresponding poirti € 8, X\X is the
greatest or least element gf X, and isboundedotherwise. For example, given
the usual topology and order inherited from the real lifgg,l) U [2, 3) has a
simple bounded singularity at 1 and a simple unbounded singularity at 3, while
[0,1) U (1, 2] has an essential pair of singularities at 1. The definitions of this
paragraph are given in terms of filters &nin [3]. There, it is shown that i is

the set of essential pairs of singularities of a totally ordered sfadben K, (X)

is isomorphic to? (E), the power set lattice of .

In this paper, the analysis &f,(X) is extended to spaces which are direct sums
of finitely many totally ordered spaces. Specifically, we will consifig(X) for
spaces of the fornX = @B"_; X;, where eacl¥; is a totally ordered space al
has the topological sum topology and the direct sum order.dlieet sum order
is defined bya < b in X if and only if there exists an € {1, ..., n} such that
a,b € X; anda < b in X;. To handle the increased complexity of this setting,
K, (X) will be partitioned according to how the essential singularities of the sum-
mands are identifiedH-equivalence), and then partitioned further according to
the induced popartitions o8, X\ X (popar equivalence). In Section 2, a matrix
algorithm is developed to analyze the structure of each popar equivalence class.
In Section 3,K,(X) is described for the direct sum of three copied®fl). In
Section 4K,(R® R) is described. Section 5 deals wiEhequivalence classes that
arise from summands with bounded singularities. 5

If X = &', X; is a direct sum of totally ordered spaces, the StQesh or-
dered compactificatiof, X = B8,(D:_, X;) is given by@"_; B,X,. The elements
of K,(X) are obtained by a combination of identifying compactification points
of B, X, imposing additional order between compactification points, and imposing
additional order between compactification points and the points of the base space.

As an illustration of these ideas, considéy = X, = [0, 1), the half open
interval with the usual topology and order. We will denote the direct s

X1 ® X, schematically bj T Now B, X = B,(X1 D X2) = B,(X1) & B,(X2) ~
[0, 1] @ [0, 1] which will be schematically denoted byT . Throughout the
papere; will denote the “top” compactification point of thiéh summand.

The ordered compactifications &f are obtained by identifying the compacti-
fication points ofg,X and/or adding some additional order. The identification of
the compactification points corresponds to a partition of thgwetr,} of com-
pactification points. The additional order can only be between compactification
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points and the base space or between compactification points. The instances of the
latter case give an order relation on the blocks of the partitigf), &\ X, that is, a
popartition of 8, X\ X.

In general, there are not ordered compactifications of a sfasmresponding
to every partially ordered partition ¢f, X\ X; those that do arise from an ordered
compactification will be calle@ddmissible popartition®f g,X\X. For example,
the 1-block partitior{{—o0, +o0}} of B,R\R is hot admissible sincéco and—oo
may not be identified in any ordered compactification of the realRine

We will divide K, (X) into popar equivalence classes by saying that two ordered
compactifications oK are popar equivalent if they correspond to the same patrtially
ordered partition oB, X\ X. The partially ordered partitions of a set form a lattice
when ordered byP < Q if and only if Q is a refinement ofP and the map
[x]p — [x]p is increasing. This lattice is equivalent to the lattice of quasiorders on
the set and to the lattice of principal topologies (topologies closed under arbitrary
intersections) on the set (see [2]).

For a spac& = [0, 1) @[O0, 1), the lattice of popartitions g, X\ X = {1, ap)}
is shown below.

{0‘1} {%}

™~ {0} {o,} /

N/

{al,az}

The popar equivalence class of the ordered StOeeh compactificatioJ T
(ll az

consists of ordered compactifications of the fo??"nt Iau whereg;; is the
largest element of thgth summand such that; > [0, g;;]. The pointa;; must

come from the set—oo} U [0, 1), whereq;; = —oc indicates theth compactifi-

cation pointe; is not related to any points of thagh summand. For two ordered
compactifications with the same underlying topological compactification, as is the
case within any popar equivalence class, we recall that the larger ordered compact-
ification is the one with the smaller order. Thus, the ordered compactifications of
the popar equivalence class of this current example are determined by the points
(a12, azy) € {—oo} U[0, 1) x {—oo} x [0, 1) and are ordered by the (dual) product
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order on this product. This popar equivalence class can be depicted by the diagram
below.

oo 0 1

Similarly one can perform an analysis on the popar equivalence class
o
0y

L)
oy / which contains ordered compactifications of the foim %12
whereai, € {—oo} U [0, 1); hence this equivalence class can be schematically

‘[ o, LK )

represented as The case \' % is analogous. Finally is the only
element in its popar equivalence class. Putting the appropriate equivalence classes
together gives u¥k,([0, 1) & [0, 1)), which, with the dual order, is represented
schematically by

[ ]
°
A similar analysis of the spacE = [0,1) & [0, 1) & [0, 1) quickly becomes
complicated. In this case there are 29 partially ordered partition equivalence classes
to consider (see [2]). For each of these classes, a diagram needs to be considered
and care must be taken not to introduce prohibited order. Spaces with bottom or
middle holes further complicate the situation. Clearly a systematic analysis of the

equivalence class structure is needed. This is the theme of Section 2. Section 3 will
use the results of Section 2 to analyze the sgaee[0,1) & [0, 1) & [0, 1).

or

2. A Matrix Algorithm

In this section, we develop a matrix algorithm for investigating a popar equivalence
class of ordered compactifications determined by a given partially ordered partition
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of the ordered Ston&ech remainder. In this section, we will only consider direct
sums of totally ordered spacesthout essential singularities or simple bounded
singularities. In other words, the summands only have top or bottom holes, but not
holes in the middle. Spaces with holes in the middle (i.e. spaces which have closed
bounded noncompact subsets) will be examined in Section 5.

We will begin with some notation. If = B"_; X;,thenT C {1, ..., n} will be
the set of indices of summands with “top” singularities (i.e. increasing unbounded
singularities) andB C {1,..., n} will be the set of indices of summands with
“bottom” singularities (i.e. decreasing unbounded singularities). We will consider

partitions » of the disjoint unionT U B of form & = (T4, ..., T, By, ..., B/}
whereT; € T foralli € {1,...,k} andB; € Bforall j € {1,...,1}. An
admissible partial order ofP will be one such that 1yi € {1,...,k} andV;j €
{1,...,1}, T; £ B;and 2) IfT;N B; # ¥ when considered as subsetdbf. . ., n},
then7; > B;.

We will denote the top compactification points by the symbolith o, being
the compactification point corresponding to the partition elerier&imilarly, the
symbol o will be used for bottom compactification points. The symbglwill
determine the added order between #thetop compactification point and thgh
summand, i.exr, is greater than or equal tg; and all points beneath; in the jth
summand andy, is greater than no other points of tlith summand. Similarly;;
will denote the least point of thigh summand that is above, . If there is no order
betweenx;, and thejth summand, then we writg; = —oo; if there is no order
betweernwp, and thejth summand then we will writg;; = oo. The symbol—oo
is less than every element in its summand. The symbdk greater than every
element in its summand.

Identifying the equivalence classes of a partially ordered partitiod, &\ X
results in one topological compactification &f The order between the com-
pactification points is determined by the partially ordered partition and thus the
compactification points are ordered with respect to each other in exactly one way.
The many different ordered compactifications are obtained by defining order be-
tween the compactification points and the points of the base space, which is the
same as defining thg;’s and thez;;’s. In principle theq;;’s and thez;;’s could
take any value in thgth summand, but many of their values are either forced by
the partially ordered partition, or restricted by it. Notice that no choice johnd
z;; willadd order to the base space, but some choices will add order to the partially
ordered partition which is illegal since the partially ordered partition was gaven
priori.

Consider two blocks of a partially ordered partitidh nd7;, 7; and B;, or B;
and B;) indexed byi andj, and a summand indexed by There are six possible
order arrangements for the blocks, namey:> B;, T; # B;,T; > T;, T; #

T;, B; > B;,andB; # B; (equality is impossible between top and bottom blocks).
For each of these cases, either the ingléxin one of the two blocks or it is not.
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This presents twelve cases and each implies a set of restrictions, which we list
below.
I. Suppose that is in one of the two blocksT; andT;, T; andB;, or B; andB;)

then
a. T; > B; impliesa;; # —oo andz;; # oo,
b. T; # B; impliesqa;; = —oo andz;; = o0,

ar; if s € T]',

ar ifseT;

d. T; # T; impliesa;; # ar;;

wp; if s € BJ"

wp, ifse B

f. B; £ B; impliesz;; # ws;.

Il. Supposes is not in any of either of the two blockg(and7;, 7; andB;, or B;
andB;) then

a. T; > B; implies no restrictions om;, or z;; except that they cannot be
the top or bottom compactification points if that would change the partially
ordered partition;

b. T; # B; impliesa;s # zjs;

c. T; > T; impliesa;; > ajs;

d. T; # T; implies no restrictions on;; anda;, except that they cannot be the
top compactification point of the summand (if any) if that adds order to
the partially ordered patrtition;

e. B; > B; impliesz;; > zjs;

B; # B; implies no restrictions op;; andz ;; except that they cannot be the
bottom compactification point of thesummand (if any) if that adds order
to the partially ordered partition.

These restrictions are evident. We detail IlIb, but others can be reasoned simi-

larly. Consider the following diagram.

c. T, > T, impliesa;; = {

e. B; < B impliesz;; = {

-

This diagram illustrates that if;, > z;, then order would be introduced be-
tweenay, andwp; that was not already present. Requiring < z;; prevents this
problem.

A matrix is a natural bookkeeping tool to keep track of all thes andz;;’s.

In this section, an algorithm is presented which constructs a matrix whose rows
correspond to the compactification points (or partition blocks), whose columns
correspond to the summands, and whose entries are;theand z;;’s. The al-
gorithm systematically takes care of all of the possible restrictions af;ffeeand

zij's. To justify the algorithm, note that items under the heading | are implied by
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the incidence matrix of the partially ordered partition. In Steps 1 through 4 of
the algorithm below, we start with the incidence matrix (and its dual) and encode
Ib, Ic, and le which force certain choices of #¢'s andz;;’s. Specifically, Step 1
combines the incidence matrix and its dual to create a matrix which has one row and
column for each partition block. Step 2 encodes all restrictions that follow from the
top-to-top, top-to-bottom, bottom-to-top, and bottom-to-bottom patrtition relations.
Step 3 merely switches the columns of the matrix from representing compactifi-
cation points or partition elements to summands. Since both the top and bottom
blocks get converted to summands separately, each summand occurs as two sepa-
rate columns. Step 4 combines summand information from the two columns into a
single column. This gives a matrix of the desired size. Step 5 incorporates of the
rest of the restrictions. Several of the restrictions are restatements of the restrictions
la, 1Ib, lic, and lle; but note that by restricting thg's to {—oo} U B, X \{«;} and
thez;;’s to (B,X; U {oo})\{w;} we incorporate Id and If and the ... no restrictions
except ... " requirements of lla, lld, and.

Throughout this section we will use a running example to illustrate notation and
operations. This example is denoted schematically by

i 2 3 4 5

For this examplel = {1, 2,4} and B = {4, 5}. The disjoint unionT’ U B
is partitioned byl = {1}, T» = {2,4}, B = {4} and B, = {5}. The patrtition
P = {T1, T», B1, By} is partially ordered byB; < T, < T, andB; < B,. This
popartition is admissible.

2.1. STEP1: THE COMBINED INCIDENCE MATRIX

Form the(k + 1) x (k + 1) incidence matrices3/~ and M- for the partial orders-
and< on &. Let M be the(k + 1) x (k + 1) matrix whose togk rows agree with
M- and whose bottom rows agree with//-. We call M the combined incidence
matrix for the partially ordered partition.

In our example

T, T» By B

{1 1 1 0
_n|lo 1 1 o0
M=pl1 1 1 1
B,\0 0 0 1
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Itis convenient to think oM = (m;;) in terms of four submatriceB’ x 7', T’ x
B’, B’ x T', andB’ x B’ corresponding to the order from top-to-top, top-to-bottom,
bottom-to-top, and bottom-to-bottom respectively.

2.2. STEP2: REFINEMENT

As we have seen, the order between top compactification points and that between
bottom compactification points will force sonags to bea’s and some’s to be
w's. Similarly, the order relation (or lack thereof) between top and bottom com-
pactification points will introduce further restriction of the choicesagfs and
z;;'s. Codifying these restrictions requires several steps starting from the combined
incidence matrix\f.

We alterM = (m;;) as follows:

If G, j) € T' x T"andm;; = 1, replacen;; by ar;.

If (i, j) e T" x T" andm;; = 0O, replacen;; by a generic lettes.

If (i, j) € T" x B"andm;; = 1, replacen;; by a generic lettes.

If (i, j) € T" x B"andm;; = 0, replacen;; by —oo.

If (i, j) € B x T" andm;; = 1, replacen;; by a generic lettet.

If (i, j) € B" x T" andm;; = 0, replacen;; by co.

If (i, j) € B’ x B"andm;; = 1, replacen;; by awg, .

If (i, j) € B’ x B"andm;; = 0, replacen;; by a generic lettet.

In our example, we have

arp o, | a —o0
a arp| a —o0
2 T |Wp Wp
0o 00| Z wp,

M =

2.3. STEP3: EXPANSION

Next the(k + 1) x (k + 1) matrix M is expanded to form & + 1) x 2n matrix D.
Take theith column ofD (for 1 < i < n) to be thejth column ofM if i € T;.

If i ¢ T; for any j then fill theith column with generie’s in the topk rows and

genericz’s in the bottom! rows. For 1< i < n, take the(n + i)th column ofD to

be the(k + j)th column ofM if i € B;. If i ¢ B; for any j then fill the (n + i)th

column with generia’s in the topk rows and generig’s in the bottony rows.
For our example, we have

ap A, a o, ajla a a a —oo
p_| @ enaapajaaa a —oo
2 Z Z Z Z|Z2ZZ wp W
00 00 zZ OO0 Z|Z Z Z I Wp
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2.4. STEP4: COLLAPSE

The matrixD has one row for each popartition element (i.e. each compactification
point) and two columns for each summand. Despite this redundancy, we observe
that some information comes only from the top down and other information comes
only from the bottom up.

To include all this information in an efficiertk + /) x » matrix C, we “col-
lapse” D by taking the left half ofD and replacing all generig’s andz’s by the
corresponding entries in the right half. Equivalently,

| d; if d;j4, is NOt anw, w, or £oo,
“U = Vdijn if dijinis ana, w, or +oo.

This step is called “collapsing” or “superimposing”. Observe that there are no
conflicts in this collapsing. The matri® has two columns for each summand. One
of these contains thg; andz;; restrictions imposed by the popartition block that
the top compactification point of the summand (if any) is in. The other column
has restrictions imposed by the popartition block that the bottom compactification
point (if any) is in. Collapsing the matrix combines the restrictions from the top
with the restrictions from the bottom into a single column. Since we had an ad-
missable popartition to begin with, there can be no conflict. Addressing this issue
more concretely, observe that in Step 1 we put ey «’s, and—oo’s in the top
half of M andz’'s, w's, andoo’s in the bottom. Since’s andz's do not conflict
with anything, the only conflicts can les with —oo’s andw’s with oo’s. An «
in a column of D implies there is order between the compactification point and
everything in the summand, while -aco implies there is no order between the
compactification point and the summand. Since these assignments came from an
incidence matrix of an order (and its dual), it is impossible for full order and no
order to be assigned at the same time. Therefore waill never be superimposed
on a—oo. Similarly anw will never be superimposed on an.

For our example, we have

ar o, a o, —00
a ar a o, —00
Z Z I Wpy Wp,
o X T 0 wp,

C =

2.5. STEP5: FINISHING

We consider two submatrices associated withThe topk rows will be denoted

by A, the bottom/ rows will be denoted byZ. We will index the elements ac-
cording to their appropriate submatrix. Thyg will be the (i, j)th element of the
submatrixA of C andz;; will be the (i, j)th element of the submatriX of C. We

see that many of the;; andz;; have already been specified. To create an ordered
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compactification, we can choose the remaining (currently unspecifigs)from
{—oo}UB, X j\{o,} (Wheree; is the top compactification point of thigh summand,
if there is one) subject to the restrictions:

lagj>a;if T, > T,

2.Clji ;é —o0 if T] > Bm wherei (S Bm

After thea;;’s are chosen, all the remaining unspecifigts can be chosen from
(BoX; U {oco})\{w;} subject to:

1-Zsj 2 th |f Bs > Bt,

2-Zji ;é oo if Bj < Tm wherei € Tm,

3-Zsj > atj if Tt } Bs-

Referring to the running example, we have

ar, or, diz dr, —O00

C:(A): a1 ap, Gz3 oy, —O0
VA Z11 212 213 wp, Wp,

oo X0 23 O wp,

wherea3 > apz sinceT; > T,, anda;z € {—oo}U B,X3. Similarly z13 > zozwhere
zi3 € B,X3 U {00}. AlsO z23 > a3 sinceTy # Bz. Thusziz > z23 > a1z > ags.
SinceB; < T, and 2 Ty, we havez;, # oo, and thuszi, € B,X,. Similarly,
711 € B,X1. There are no restrictions en; € {—oo} U BoX 1 \{a1}.

The last part of this section will be concerned with the order structure within
a popar equivalence class and between elements of different popar equivalence
classes.

THEOREM 2.1. If Y and Y’ are two ordered compactifications within a popar
equivalence class with associated matricesnd C’, thenY < Y’ if and only if
every element of the firgtrows of C is greater than or equal to the corresponding
element o’ and every element of the lastows ofC is less than or equal to the
corresponding element @f'.

Proof. The theorem follows immediately from the fact that for topologically
equivalent ordered compactifications, the more order an ordered compactification
has the lower it is in the lattice of ordered compactifications. O

Thus for our example the lattice structure of the popar equivalence class is the
following set with the product order:

[{—oo} U B, X1\{e1}1? x BoX1 x By X2
X{(Ma v, X, y) | u,v e 130X3 U {OO},)C, y € [{—OO} U :BOXS]d
andu > v > x > y},

whereX? represents the pos&twith the dual order.
In general, Theorem 2.1 will not work when comparing ordered compactifica-
tions in different popar equivalence classes because the mafrigedC’ may be
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of different sizes. This can be corrected if the mafrinbtained by the algorithm of
this section is expanded to a 2 n matrix, which will be calledt in Theorem 2.2
below. Theith row of E will be the row of the matrixC which corresponds to the
top partition element containing thith summand. If théth summand is not in any
partition element (i.e. th&h summand has no top hole) then fill the row with.
Similarly the (i 4+ n)th row of E will be the row of the matrixC which corresponds

to the bottom partition element containing thle summand. Again the row will be
filled with x’s if the ith summand is not in any bottom partition element (i.e. the
ith summand has no bottom hole).

The following theorem generalizes Theorem 2.1 to include comparing compact-
ifications in different partially ordered partition equivalence classes. In addition to
making use of the expanded matiix the order structure of the partially ordered
partitions is included.

THEOREM 2.2. LetY andY’ be ordered compactifications &f. Let E and E’
be the associated matrices. Letz anda’ denote the top elemengirst n rows)
andz andz’ denote the bottom elemer{®ndn rows) of E and E’ respectively.
Y < Y’ifand only if
1. The popar class of is smaller than the popar class &f in the popar lattice,
and
2. aj; <ajandz; >z foralll<i <2nandl<j <n.

3. An Example

In this section, we apply the results of the previous section to characterize the lattice
of compactifications of the spag@, 1) [0, 1) [0, 1), represented schematically

byT T T There are 29 partially ordered partitions of the ordered SOBek
remainder points (see [2]). For ai¥y = €;_, X; where eaclX; is [0, 1), each
partially ordered partition is admissable. Popar equivalence classes with isomor-
phic lattice structures generated by the methods of the previous section will be said
to be of the samésomorphic typeThere are nine isomorphic types. The types,
the number of partially ordered partitions in each type, and the lattice structure for
each of the 9 types are given below.

Type 1:T T TThere is only one popartition of this type.
100 01 diz 413
M = 010 C = daz1 02 d23
001 asl azz o3
The sixa;; entries of the matrixC can each be chosen without restriction from
{—o0}UI0, 1), so the dual of the popatrtition equivalence classes of this type will be

[xTx]x[x[x]

[{—o0}U[0, 118, which can be represented schematicallgbye o o o .
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Type Z:T\T There are six popartitions of this type.

110 a1 oz a3
M = 010 C = daz1 02 d23
001 az1 azz o3

All the a;;'s are elements of—oo} U [0, 1). Noting thatay;, az1, andasz, are
unrestricted buti;z > ay3, the dual lattice structure for this equivalence class is
[{—00} U [0, DI® x {(az3, a13) € [{—o0} U [0, D]? : az3 < ai3}, Which can be

xTxTxA

represented by . e o —

Type 3:TT/T There are three popatrtitions of this type.

110 o1 02 ai3
M = 010 C = az1 02 d23
011 a3y 02 O3

Throughout this example, thg;’s are elements of—oo} U [0, 1). Hereaiz > aos

andasz; > ap, SO the resulting dual lattice structure{i@is, ai13) € [{—oo} U

[0, D)]? : az3 < a13} x {(az1, az1) € [{—o0} U [0, 1]? : az1 < az}, schematically
X ]

represented by —= ¢ _ .

Type 4:m There are three popatrtitions of this type.

100 01 diz 413
M = 111 C = o1 O O3
001 azl dzz o3

There are no restrictions on the fauy’s, so the resulting dual lattice structure is

TXTXTXT

[{—oo} U0, 1)]4, represented schematically by o ° e.

Type 5: There are six popartitions of this type.
111 o1 o2 Qa3
M = 011 C = a1 02 O3
001 azl adzz a3
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Here as; is unrestricted, buti;; > az1. The resulting dual lattice structure is

[{—oo} U [0,D)] x {(az1,a21) € [{—o0} U[0, D]? : az1 < api} represented
x

schematically as ¢ —.

Type 6: | | TThere are three popartitions of this type.

M= 10 c— (o on a3
0 1 azr a2 OlT2
There are no restrictions @n1, ay, Or a;3, SO the resulting dual lattice structure is

[« x1

[{—oo} U [0, 1)]3, representing schematically by o .

Type 7: | There are three popatrtitions of this type.

M = 1 1 C _ OlTl O[T1 OlT2
01 a1 az2 or,
Again, there are no restrictions on the two parametgrainda,,, so the resulting

[ x|

dual lattice structure i —oo} U [0, 1)]?, represented schematically &y e.

Type 8: | I There are three popatrtitions of this type.

M= 10 c— (o on a3
11 aon oy ar,
With no restrictions on the parameteys, the resulting dual lattice structure is

T

{—oo} U0, 1), represented

Type 9: I | I There is only popartition of this type.

Since there is only one ordered compactification in this popartition equivalence
class,M = (1) andC = («p,), so the lattice structure consists of a single point.

The Hasse diagram for the lattice of partially ordered partitions on three ele-
ments (i.e. the lattice of topologies on 3 elements) shown in Figure 1 is given in
[2]. Here, the partially ordered partitions are not individually identified, with only
the type of each partially ordered partition given. Filling in the lattice structures
for each type as given above into the corresponding positions indicated in the
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<4 O Type 1

<« O Type 2

O Type 3
0O Type 4

O Type 5
O Type 6

O Type 7
O Type 8

<4 O Type 9

Figure 1.

diagram of Figure 1 would give the lattice féf,([0, 1) & [0, 1) & [0, 1)) where
the order between points of different popar equivalence classes would follow from
Theorem 2.2.

4. K,(R®R)

In this section, the lattice of ordered compactifications of the direct sum of two
copies of the real line is investigated. By comparing this example WitR),
which has only one element, the complexity added to the lattice of ordered com-
pactifications by the topological sum process is evident.

Figure 2 illustrates the 25 admissible partially ordered partitiong,0R @
R)\(R @ R) by displaying the largest representative from each popar equivalence

class. The spack = R @ R is denoted b)i i

Notice that each ordered compactification above has a left-right dualgeuwayd,
h). This contributes to the left-right symmetry &f,(X). The ordered compactifi-
cationsa, d, s, t, andy are self-(left-right) dual. The lattice structure of these 25
admissible partially ordered partitions is shown below.

Each of the 25 entries in the lattice shown in Figure 3 represents a popar equiva-
lence class. Several of these popar equivalence classes are isomorphic subposets of
K,(X). Left-right duals, for example, will be of the same isomorphic type. There
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4-point ordered compactifications:

SERRIR SIS 111

SRS AR NP IR
QDI LN E N

3-point ordered compactifications:
s t u v w X
2-point ordered compactification: o

y
Figure 2.

are only nine non-isomorphic popar equivalence class structures. The popar equiv-
alence class structures corresponding to each of the 25 popar equivalence classes
have been listed in Figure 4. A complete lattice diagrankfpiR @ R) would have

these posets at the corresponding vertices of the partially ordered partition lattice
in Figure 3. Order between popar equivalence classes is determined according to
Theorem 2.2.

5. Summands with Bounded Singularities

In the previous sections, the discussion was limited to topological sums of totally
ordered spaces with only unbounded singularities (holes only at the tops or bot-
toms). Now direct sums of spaces with bounded singularities (holes in the middle)
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Figure 3.

will be investigated. Throughout this sectionwill denote such a space. (For defi-
nitions, refer to Section 1 or [3].) Bounded simple singularities are characterized by
the fact that in any ordered compactification of the space, they can only introduce
a single compactification point that is neither the greatest nor least element of the
space. Since they must always have the same effect in every ordered compactifica-
tion of the space, they have no variability to affect the lattice struckiex) in

any way. Thus, the only middle holes of interest in studying the lattice structure
are the essential singularities, which always occur in pairs. Recall tliatsithe

set of essential pairs of singularities of a totally ordered spacihen the lattice
K,(X) is isomorphic of (E). More generally, for a direct sum of totally ordered
spaces, we will leE denote the union of the sets of essential pairs of singularities
from each of the summands. NG, (X) can be broken int&-equivalence classes
according to which essential singularities fr@frare compactified with two points.
Each of thes& -equivalence classes can be further divided into popar equivalence
classes which can be analyzed using the methods of Section 2.

DEFINITION 5.1. Two ordered compactificationsandY’ of a direct sum of to-
tally ordered spaces are-equivalent if their sets of identified essential singularities
are the same.
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Type | Partially ordered partition | Corresponding poset

1 a,y, 0, q [
2 e, f,u v I
3 i, j, w, x I
4 b,c, m,n, p, r IXI
5 8 IXI
6 t TXI

7 g h lexl
8 K, 1 TxIxI
9 d TxIxIxI

Figure 4.

A complete set ofE-equivalence class representatives will be useful. By the
order relation orK, (X), it is easy to see that eadhrequivalence class has a largest
element.

DEFINITION 5.2. The symbolk/ (X) will be used to denote the lattice of or-
dered compactifications oKX consisting of the largest elements from each
E-equivalence class.

PROPOSITION 5.3.KE(X) ~ P (E).

The proof is an immediate generalization of the case for a single totally ordered
space, as given in Kent and Richmond [3].

In determining K,(X), note that each element df”(X) represents the
E-equivalence class consisting of all the ordered compactificatior’s whose
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middle holes are filled as indicated by a particular subsdf.ofhus, the “middle
behavior” of an element o, (X) is determined by its representative element from
KE(X). With the middle behavior already determined by the position in the lattice
KE(X), each of these positions will correspond to a lattice of ordered compactifica-
tions of a topological sum of totally ordered spawegth no essential singularities
which are the kind of spaces considered in Section 2.

EXAMPLE. ConsiderX = R\{0} & R\{0} with the usual topology and order. The
figure below shows the lattick Z (X) of E-equivalence classes.

2N
I\H/I

The equivalence class associated with the bottom element of this lattice is, of
course, K, (R @ R), which was studied in Section 4. The equivalence class asso-
ciated with the top element of the lattice will be the samekgéR & R) except
that all the intervals appearing in Figure 4 of the previous section will have gaps in
them. The other two equivalence classes can be studied similarly with appropriate
intervals turned into intervals with gaps and, since symmetry is broken, there will
be more isomorphic types.

Using the order provided by the lattice equivalence of the previous proposition,
for ordered compactifications and Y’ of X, we will sayY’ <p Y if the asso-
ciated E-equivalence classes are so related, i.e. if the set of unidentified essential
singularities ofY” is a subset of those af.

] ~ p({1,2})

THEOREM5.4. If Y and Y’ are ordered compactifications &f, thenY’ < Y if

and only ifY’ <z Y and the conditions of Theoreth2 hold, where, in the case

of an identification, the two compactification points corresponding to an essential
singularity inY are considered to be equal to the single compactification point for
that essential singularity iy’, when comparing entries of the matrix.
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