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Instant Insanity I1 is a sliding mechanical puzzle developed by Phil Orbanes (see Fig-
ure 1). It involves aligning four rows of colors by sliding the tiles as in the popu-
lar 15 puzzle (Figure 2), and by mechanical rotations reminiscent of Rubik’s Cube.
It resembles the 1967 Parker Brothers puzzle Instant Insanity. Versions of the latter

puzzle appeared over a century ago, and the graph theoretic solution is widely known
[1,2,6,9].

Top ring

Empty slot

Figure 1. Instant Insanity II.
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Figure 2. The 15 puzzle.

Instant Insanity II consists of four linear columns and four circular rows of col-
ored tiles on a cylinder. Above the four rows of tiles, at the top of the cylinder, there
is an extra row, which we call the top ring, with two adjacent empty slots. The bot-
tom row of the cylinder and the top ring, with its two slots for tiles, rotate. Each tile
may slide up or down its column, alone or with other tiles of the column, if the col-
umn contains an empty slot. The 16 tiles are of five colors: four blue tiles, and three
each of red, green, yellow, and white tiles. Instant Insanity II’s classic challenge is
to configure the tiles so that each row and column contains four different colors. The
ultimate challenge involves a further aspect of the puzzle. Following a circular path
around each row, each tile has, at each juncture, a small semicircular “halfmoon” of
color. Positioned with the top ring on top, the halfmoon on the right of each tile has
the same color as the tile, while the left halfmoon has a different color. Among the
tiles of a given color, the nonmatching halfmoons have distinct colors. The ultimate
challenge is to find a classical solution in which the pair of semicircles at the junctures
match.

The Instant Insanity II box proclaims that there are 24 solutions to the ultimate
challenge. We show that the 4! = 24 permutations of the rows of any solution are also
attainable solutions, so the box suggests that all solutions are permutations of a single
solution. We show that there are, in fact, 48 solutions, arising as row permutations of
two fundamentally different ultimate solutions. We also count the number of classical
solutions and give an algorithm for producing them.

Every permutation of the tiles can be obtained

Even a configuration of the tiles obtained by breaking the tiles off and gluing them back
on is actually possible by legal moves of the puzzle. To emphasize the significance of
this, we mention that for another sliding puzzle, the famous 15 puzzle, the obtainable
configurations correspond in a natural way to the even permutations in the symmetric
group Sis5 [5, 8, 10]. Thus, only half the potential configurations of the 15 puzzle are
obtainable.

We first show (i) that any two tiles on the top row may be transposed, and (ii) that
any vertically adjacent tiles in a single column may be transposed.

To show (i), let A and B be any tiles in the top row. Slide A and B to the empty slots
on the top ring, rotating the top ring as necessary so that the empty slots align with A
and B. Then rotate the top ring and drop tiles B and A into transposed positions.

To show (ii), let A and B be vertically adjacent tiles. We first assume that A is in
the first row. We raise A to the top ring and rotate it, then raise B to the top ring.
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Now we rotate the top ring and drop A and then B into their positions. If A is not
in the top row, more work is required. Figures 3 and 4 show sequences of moves to
transpose A and B if A is in the second or third row. In these figures, the rows of the
matrices are the circular rings on the puzzle, and the arrows indicate the appropriate
moves.

Using (i) and (ii), we now show that any tile A in the top row may be transposed
with any other tile B: If B is not in the top row, we repeatedly apply (ii) until B rises
to the top. If A and B are not in the same column, we then apply (i) to transpose A
and B. In either case, A may now be transposed with the tiles below it by applying
(i1) until A descends to the original position of B. Now, if any top row tile A may be
transposed with any other tile B, then any two arbitrary tiles B and C may be trans-
posed by picking any top row tile A and transposing A and B, B and C, and then A
and C.

l
2 2| | 2 6
1[{2]3 1{6]3]4 1]6]3]4 6/3]4 2]10{3 4
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13[14]15]16 13| |15]16] 15[16/13 B|15]16]13 B| |[16]13]
T l )
6 6 6 6 6
2]10[3 2]10[3 4 2(10[3 2]10[3 |4 2]10[3 |4
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Alis[11]12 15/11]12 15]11]12 B|15[11]12 B15[11]12
16]13|B —|A|16]13|B B|A[16]13 All6]13|— Al16[13
l T T
l l
206 2|6 —|2 2
1[10]3 |4 1[10]3]4 16]3]4 1]6]3]4 1[2]3
Bl14|7]8 Bl14]7]8 B|10[7]8 B|10[7]8 Bl6[7]8
Al1511]12 Al15]11]12 Al14]11]12 Al14]11]12 Al1011]12
—| 1613 16[13 —| [15]16]13 13| [15]16 13]14[15]16
Figure 3. Transposing tiles in the second and third rows.
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Figure 4. Transposing tiles in the third and fourth rows.
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Counting classic solutions

Now that we know that every possible permutation of tiles is achievable, let us count
those that are solutions. A solution is a tile configuration with the proper color config-
uration. To count all the solutions, we count the number of proper color configurations,
then count the number of ways the tiles of a given color may be permuted within their
positions in a color configuration. However, we do not distinguish between permu-
tations that are quarter rotations of the cylinder, since these may be realized without
moving tiles.

In a solution, each row and column contains four different colors. For the classic
challenge, ignoring the semicircular halfmoons, we need only know that there are 4
blue, 3 red, 3 green, 3 yellow, and 3 white tiles. Because there are 4 blue tiles, each
of the 4 rows and columns of a solution must contain a blue tile, plus 3 tiles of other
colors. Suppose a row contains, say, blue, red, green, and yellow tiles. No other row
can have these four colors, for then these two rows would account for 2 blue, 2 red, 2
green, and 2 yellow tiles, leaving 2 blue, 1 red, 1 green, 1 yellow, and 3 white tiles for
the remaining two rows. But it is impossible to put 3 white tiles in two rows that have
all distinct colors. By this reasoning, each row and column of a solution includes one
blue tile, and no two rows and no two columns have the same set of colors.

Figure 5(a) shows one classic solution color configuration. To count the number of
such configurations, it helps to think outside the 4 x 4 box. The four rows of a classic
solution uniquely determine a fifth column, which records the excluded color of each
row. This fifth column lists each of the four non-blue colors exactly once. A similar
analysis applies to the columns. The result is shown in Figure 5(b). In Figure 5(c), we
extend the information in Figure 5(b) to a 5 x 5 array by filling the vacant corner with
blue, resulting in a 5 x 5 array in which each row and each column contains each of
the 5 colors exactly once. The result is a 5 x 5 Latin square.

B|R|G|W B|R|G|W|~Y B|R|G|W|Y
W|G|Y|B W|G|Y|B|~R W|G|Y|B|R
G|B|R|Y G|B|R|Y|[~W G|B|R|Y|W
Y|[W|B|[R Y|W|B|R|~G Y|W|B|R|G
~R ~Y ~W ~G R|Y|W|G|B

(a) (b) (c)

Figure 5. The correspondence between classic solutions and Latin squares.

These squares have been widely studied (see [3, 4, 7]), and it is known that there are
161,280 of them. Of this number, one-fifth have B in the lower right corner. Thus, the
number of 4 x 4 rectangular color configurations for classic solutions is 161,280/5 =
32,256.

For each of the 32,256 color configurations, we must also count the number of
ways the four blue, three red, three green, three yellow, and three white tiles may be
permuted within the positions determined for these colors by the Latin square. This
gives 4!31313131(32,256) rectangular solutions. However, because we do not distin-
guish between solutions that differ by a quarter rotation of the cylinder, we divide this
by 4 to get the number of distinct solutions to the classic challenge, namely 3!3!3!3!3!
(32,256) = 250,822,656. For comparison, the 16 tiles may be arranged in a 4 x 4 grid
in 16! ways, but discounting the quarter rotations of the cylinder, there are 16!/4 =
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5,230,697,472,000 possible configurations of tiles. The percentage of these configura-
tions which are classic solutions is
250,822,656 6

= = 0.0000479520.
5,230,697,472,000 125,125 0.0000479520

We note that for any given classic solution, each of the 4! permutations of the rows or
the 4! permutations of the columns, and so each of the 4!*> = 576 permutations of rows
and columns is also a solution. Thus, the 250,822,656 classic solutions may be grouped
into equivalence classes of 576 solutions derived as row- and column-permutations of
a single classic solution.

The ultimate challenge

Figure 6 shows the halfmoon and tile colors for the 16 distinct tiles, arranged in a
solution to the ultimate challenge. Observe that column permutations (other than the
identity) of an ultimate solution are not ultimate solutions, since the matching half-
moons would be separated.

For every tile, the halfmoon on the right side has the same color as the tile, and
the halfmoon on the left tells the color of the tile which must precede that tile in an
ultimate solution. For example, the red tile with a green halfmoon on the left must be
preceded by a green tile. A directed graph G represents the possible adjacencies. The
vertices of G are the five colors, and we include a directed edge from color X to color
Z if there is a halfmoon of color X on a tile of color Z. The 16 tiles provide 16 edges;
the graph is in Figure 7.

Figure 6. The 16 Instant Insanity II tiles.

B
°

e

® R

o———>0

Y G

Figure 7. The halfmoon color — tile color graph G.
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Each row in a solution to the ultimate challenge corresponds to a circuit of G begin-
ning at blue and containing four edges and four distinct vertices. The second row of the
solution shown in Figure 6 corresponds to the circuit BWRG. From the discussion of
color considerations for classic solutions, each of the four rows has a different missing
color. By inspection of G, we find 12 acceptable circuits. These are shown in Table 1,
grouped by the colors used and numbered for convenience.

Table 1. Circuits that may be rows of an ultimate solution.

No Red No Green No Yellow No White

() BWYG 4) BYWR (7) BGWR (10) BYGR
(2) BGWY (5) BWRY (8) BWRG (11) BRYG
(3) BYGW (6) BRYW (9)BRGW (12) BGRY

Observe that circuit (1) BWYG contains the edge GB and thus uses the blue tile with
the green halfmoon on the left. Since there is only one such tile in the puzzle, no other
row of a solution using circuit (1) may use that tile, or equivalently, no other circuit
of a solution may use the edge GB. Thus, circuit (1) is incompatible with circuits
(8) and (11). From the data in Table 1, we compile all incompatible circuits in the
incompatibility graph of Figure 8(a), and taking the graph complement, we obtain the
compatibility graph of Figure 8(b). Because we must pick one circuit from each color
group {(1), (2), 3}, {4), (5), (O}, {(7), (8), (9}, and {(10), (11), (12)}, we know
that any two circuits from the same color group are incompatible even if they do not
share a common tile. To simplify the representation of Figure 8(a), we have not shown
the duplicate-tile incompatibilities between circuits of the same color group.

No Red

X
i
7

U310 ON

No White
[,

U310 ON

No White

/
@)}

9 8 7
No Yellow No Yellow
(@) (b)

Figure 8. (a) The incompatibility graph. (b) The compatibility graph.

Now, an ultimate solution consists of four compatible circuits, one from each color
group. Thus, a solution must contain (1), (2), or (3) from the no-red color group.

If (1) is used, then (12) must be used, since (12) is the only no-white circuit com-
patible with (1). Then (4) is the only no-green circuit compatible with (1) and (12).
Finally, (9) is the only no-yellow circuit compatible with (1), (12), and (4). So, the
circuits (1), (4), (9), and (12) from Table 1 possibly form an ultimate solution.
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Similarly, if (2) is used, then the only circuit of length 4 in the compatibility graph
containing one vertex from each color group is (2), (6), (8), (10).

There are no solutions using (3) from the no-red color group, since (5) and (8) are
the only circuits from their respective color groups compatible with (3); but (5) and (8)
are not compatible with each other.

Now, the circuits (1), (4), (9), and (12) and the circuits (2), (6), (8), and (10) each
correspond to four compatible rows, which might produce an ultimate solution. If we
place circuits (1), (4), (9), and (12) on the first, second, third, and fourth rows, respec-
tively, then there is exactly one alignment of these cycles that gives distinct colors in
each column. Similarly, if circuits (2), (6), (8), and (10) appear in that order from top
to bottom, there is exactly one acceptable alignment. These alignments do correspond
to ultimate solutions, and are shown in Table 2. Recall that the halfmoon on the right
of each tile has the color of the tile, so the halfmoon colors need not be shown in the
solutions below.

Table 2. The two basic solutions to the ultimate

challenge.
() B WYG| @ B G WY
4 W R B Y| (66) Y W B R
® R G W B ® W R G B
(12 Y B G R|(100 R B Y G

While these are essentially the only distinct solutions of the ultimate challenge, the
order of the rows of each may be permuted in 4! = 24 ways, giving rise to 48 solutions.
Again, we do not distinguish between solutions obtained by rotating the puzzle through
quarter turns. We also note that, since the two solutions of Table 2 use different no-red
circuits, their row permutations will be disjoint. Observe that the solution of Figure 6
shows the circuits (6), (8), (2), and (10) from top to bottom.

Seeking uniqueness

If we require 16 unique tiles, four with main color blue and three tiles of each of the
four remaining colors, can an Instant Insanity Il puzzle be produced with a unique
ultimate solution, up to the 24 row permutations? Interestingly, the answer is “No.” In
the graph G of such a puzzle, a solution would use four circuits containing the vertex
B, with each circuit omitting a different non-blue vertex. We may arrange this graph so
that the first circuit is BDEF, omitting C, where CDEF is some permutation of RGYW.
Now there must be a circuit that omits D and does not repeat any edge in BDEF. The
three possibilities for such a circuit are BCFE, BFEC, and BFCE. In each case, we
would need two more circuits, one omitting E and one omitting F, which do not repeat
any existing edges. The resulting possible circuits are shown in Figure 9. (We note that
two of these correspond to the no-D circuit BCFE, and none corresponds to BFEC.)

In Figure 9(a), the only circuits excluding C, D, E, and F, respectively, are those
listed and the same circuits traced in the opposite direction. The only combinations of
these that are compatible are the four given in Figure 9(a), all traced in the order listed,
and the same four all traced in the opposite direction. However, it is easily checked that
these cycles (all in the forward order, or all in the reverse order) cannot be arranged
into a solution.
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BDEF BDEF BDEF
BCFE BCFE BFCE
BFCD BFDC BCFD
BEDC BECD BEDC

(a) (b) ©)

Figure 9. Possible halfmoon color — tile color graphs.

Now, the graphs of Figure 9(b) and 9(c), with (C, D, E, F) = (W, Y, G, R) and (C,
D,E, F) = (R, W, Y, G), respectively, are identical to Figure 7, which we know leads
to two basic solutions. Thus, no such puzzle with 16 distinct tiles, four blue tiles, and
three each of four other colors, has a unique solution.

Summary. Instant Insanity I is a sliding mechanical puzzle whose solution requires the spe-
cial alignment of 16 colored tiles. We count the number of solutions of the puzzle’s classic
challenge and show that the more difficult ultimate challenge has, up to row permutation, ex-
actly two solutions, and further show that no similarly-constructed puzzle can have a unique
ultimate solution.
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