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Suppose you want to find the fastest path between two points at diagonally opposite
corners A(0, 1) and B(1,0) of a square [0, 1] x [0, 1]. Assuming you can run at a
constant speed, the direct path is the fastest. To complicate matters, suppose there is a
swimming pool in the square [0, a] x [0, a] for some a < 1 and your swimming speed
is constant but slower than running. What path will now be fastest? The analogous
problem (for dogs) with the initial point on a straight seashore has been considered
in [5] and the problem with initial and final points on adjacent edges of a rectangular
pool is considered in [3, 4].

If a < 1/2, then the direct path from A to B misses the pool and remains optimal.
Going out of your way to reach the pool, which is traversed at a slower rate, cannot
reduce your time.

Through the pool

The candidates for optimal paths from A in the northwest corner to B in the southeast
corner involve straight line segments through each medium, running from A to a point
C on the north or west edge of the pool, swimming from C to a point D on the south
or east edge of the pool, and running from D to B. Some such paths are shown in
Figure 1.
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Figure 1. Potential optimal paths

We first show that the entry point C into the pool must be on the north edge of
the pool. If C were on the west edge and D on the east edge, as in Figure 1(a), then
consider the path AC'D’'B where C’ = (0, a) and C'D’ is parallel to CD, as shown in
Figure 2(a). Both ACDB and AC'D’B have the same swimming distance. Excluding
the common running distance from A to C’ and noting that C'C = D’'D, path AC'D’'B
has the shorter remaining running distance D’ B, compared to D’'DB for path ACDB.

If C were on the west edge and D on the south edge, as in Figure 1(b), consider
the path AC'D’'B where C’ and D’ are the images of C and D, respectively, reflected
over the southeast diagonal of the pool, as shown in Figure 2(b). Both paths have the
same swimming distance CD = C’D’. The running distance D’'B of path AC'D’B is
shorter than the running distance DB of path ACDB. This can be seen by drawing a
circle of radius BD centered at B. Let D” be the point on the circle due north of B.
Now DD’ lies entirely in the circle, and since D’ lies on DD, it is inside the circle and
thus D'B < DB. Similarly, the running distance AC’ of path AC'D’B is shorter than
the running distance AC of path ACDB. Thus, path ACBD is not optimal if C lies on
the west edge of the pool.

The same argument, reflected over the diagonal y = x, shows that the point D,
where the optimal path leaves the pool, must be on the east side of the pool. Thus, the
optimal path must have the form shown in Figure 1(c).
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Figure 2. Paths to C on the west edge of the pool are not optimal.
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Next, we show that the optimal path must be symmetric about the diagonal y = x.
We argue by contradiction: Suppose ACDB is an optimal path from A to B which is
not symmetric about the diagonal y = x. Reflecting it about the diagonal gives another
optimal asymmetric path AD'C’B from A to B, shown in Figure 3. Let E be the point
where paths ACDB and AD'C’B intersect the diagonal. Now path ACE must be an
optimal path from A to E, for if there were a faster path from A to E, there would be a
faster path from A to E and on to B. Likewise, AD'E is an optimal path from A to E,
and both EDB and EC'B are optimal paths from E to B. Since ACE is the reflection
of EC'B, each of these four paths from A or B to E require the same time to traverse.
In particular, the path ACEC’ B requires the same time as the optimal path ACEDB,
and thus is also optimal. However, the swimming part CEC’ of this path must be the
optimal path from C to C’, that is, must be a straight line. But CEC’ is not a straight
line since ACDB was not symmetric. Thus, an asymmetric path ACDB from A to B
cannot be optimal.
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Figure 3. An asymmetric path and its reflection across the northeast diagonal

Now we may find which symmetric path ACC’B is optimal. Suppose the swimming
speed is s and the running speed is r with » > s. If x is the horizontal component of
AC, as shown in Figure 3, then the time to traverse such a symmetric path is

2./(1 —a)? + x2 N V2(a - x)
r

N

Tx) =

for x € [0, a] and the derivative is

T'(x) =

2x _«/_5
rv/ (1 —a)?+ x2 s

It is easy to check that T'(x) is always negative if r/s > +/2. If 1 < r/s < /2,
then 7'(x) decreases to the left of and increases to the right of the critical point

xe=r(l —a)/2s* —r2.
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Thus, if r/s > /2, then the optimal path involves no swimming, rather running
from A to the pool corner (a, a) and on to B. This is suggested by noting that the
swimming portion of a symmetric path cuts off an isosceles right triangle from the
corner of the pool and comparing the swimming time V2@ —x)/s along the hy-
potenuse to the running time 2(a — x)/r along the legs. This running time along the
legs is smaller when r/s > V2.

If 1 <r/s < +/2, then the optimal path is the symmetric path determined by the
pool entry point C = (r(1 — a)/~/2s> — 1%, a).

Rectangular pools

A natural extension of this question is to consider the case of paths from A to B
where A and B are diagonally opposite corners of a rectangle, with a rectangular pool
obstructing the direct path. Results based on Fermat’s principle and Snell’s law (see
[2, 6]) describe the angles of the running paths with the pool edges, but results in terms
of the coordinates of points seems to be more complicated. The example below shows
that simple transformations of the square solution will not generally yield solutions to
the transformed rectangular case.
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Figure 4. The optimal path for the square case scaled by 1/2 in the x-direction versus the
optimal path for the scaled course.

Consider the square case with @ = 0.9, r = 1.3 feet per second, and s = 1 foot
per second. Then the critical point is x. = r(1 — a)/+/2s%> — r? ~ 0.233487 and the
optimal path goes from A = (0, 1) to C = (x., a) ~ (0.233487,0.9)to D = (a, x.) =~
(0.9, 0.233487) to B = (1, 0), requiring about 7 (0.233487) = 1.33336 seconds. If
we scale this square case by 0.5 in the x-direction to obtain a rectangular problem
where the target point is now (0.5, 0), then the “scaled optimal path” is not the optimal
path for the scaled rectangular problem, as seen in Figure 4. Scaling the optimal path
P1 for the square case gives a path P2 running from (0, 1) to (0.5x., a), swimming
on to (0.5a, x.), and running on to (0.5, 0), which requires about 1.04711 seconds.
With these specific dimensions, a numerical solution shows that the optimal path P3
requires about 1.02445 seconds, going approximately from (0, 1) to (0.152152, a) to
(0.5a, 0.545073) to (0.5, 0).
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The other diagonal

We conclude by considering the problem of the optimal path between the other pair of
diagonally opposite corners. This path will follow segments OC and CP as shown in
Figure 5(a), where C = (a, y) for some y € [0, a] is a point on the eastern edge of the
pool, or will be the reflection of such a path over the line y = x.
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Figure 5. Optimal paths from O to P

The time to traverse such a path is

I(y) =

_¢a2+y2+J<1—a>2+<1—y)2
S r

for y € [0, a]. Setting T’ (y) = 0 leads to a quartic equation in y with parameters a, r,
and s whose solution is lengthy. However, Snell’s law provides the solution in terms
of angles, as in [1]. Snell’s law says that the optimal path from O to P swimming at
speed s for y < a and running at speed r for y > a satisfies

sin o r

sin B8 T

El

where « (respectively, ) is the angle between the running path (respectively, swim-
ming path) and the horizontal. We note that the target point C = (a, y) provided by
Snell’s law in Figure 5(b) has y < a and thus provides a solution to the problem of Fig-
ure 5(a): Otherwise, we would have o < /4 < B < m /2, so sina < sin 8, contrary
to sina = (r/s) sin f and our assumption that r > s.

Summary. Assume a square pool is positioned in a corner of a square courtyard. We find the
fastest path between diagonally opposite corners of the courtyard, assuming that swimming
speed through the pool is less than the running speed through the courtyard. A treatment of
rectangular pools by scaling is shown not to be optimal.
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