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Abstract

Cardinalities and lattice structures which are attainable by semilattices
of ordered compactifications of completely regular ordered spaces are ex-
amined. Visliseni and Flachsmeyer have shown that every infinite cardinal
is attainable as the cardinality of a semilattice of compactifications of a
Tychonoff space. Among the finite cardinals, however, only the Bell num-
bers are attainable as cardinalities of semilattices of compactifications. It
is shown here that all cardinals, both finite and infinite, are attainable as
the cardinalities of semilattices of ordered compactifications of completely
regular ordered spaces. The last section examines lattice structures which
are realizable as semilattices of ordered compactifications, such as chains
and power sets.
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A partially ordered topological space, or simply an ordered space, is a triple
(X, τ, θ) where X is a set, τ a topology on X, and θ is a partial order on X. If θ
is closed in the product X×X, then (X, τ, θ) is T2-ordered. An ordered compacti-
fication of (X, τ, θ) is a compact T2-ordered space (X*, τ*, θ*) such that (X*, τ*)
is a compactification of (X, τ) and θ* ∩ (X × X) = θ. An ordered space has
an ordered compactification if and only if it is completely regular ordered as de-
fined in [8]. Throughout we will assume that all topological spaces are Tychonoff,
all compactifications are T2, all ordered topological spaces are completely regular
ordered, and all ordered compactifications are T2-ordered. K(X) will denote the
∨-complete semilattice of compactifications of X, and Ko(X) will denote the set of
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ordered compactifications of X. Given the natural order, Ko(X) is a ∨-complete
semilattice with largest element βoX, the Nachbin- (or Stone-Čech ordered) com-
pactification (see [1]). The discrete order on X is ∆X = {(x, x) : x ∈ X}.
Every topological space (X, τ) can be considered to be a discretely ordered space
(X, τ,∆X). If θ is a partial order, we will write x ≤ y for (x, y) ∈ θ.

Ordered compactifications of totally ordered spaces have been studied in [1]
and [6], and will be used frequently here. In the latter paper, a filter approach is
used and it is shown that all compactification points in an ordered compactification
of a totally ordered space (X, τ, θ) correspond to certain nonconvergent filters on X
called singularities. Singularities are of two types: simple singularities introduce
exactly one compactification point each; essential singularities occur in pairs, and
each essential pair introduces either one or two compactification points. Thus, if
E is the set of essential pairs of singularities of a totally ordered space X, Ko(X)
is isomorphic to the power set lattice 2E.

1 Cardinalities

In [3] it is shown that there is a one-to-one correspondence between the ordered
compactifications of an ordered space (X, τ, θ) and the compatible totally bounded
quasi-uniformities on X. Since quasi-uniformities on X are collections of subsets
of X × X, we see that |Ko(X)| ≤ 22|X| for any ordered space X. If (X, τ,∆)
is a discretely ordered space, then |K(X)| ≤ |Ko(X)|. The fact that there are
far more ordered compactifications of a discretely ordered space than topological
compactifications is made clear by the following proposition.

Proposition 1.1 If (X, τ,∆) is a discretely ordered, locally compact, noncompact
topological space, then the number of one-point ordered compactifications of X is
|τ |.

Proof. The Alexandroff one-point compactification of X, X∗ = X ∪{∞}, may be
endowed with any order that is closed in X∗×X∗ and is equality on X. All such
orders are of the form ∆ ∪ {∞} × A or ∆ ∪ A× {∞} where A is a closed subset
of X. �

For an ordered space (X, τ, θ) whose order is not discrete, there is no general
relation between |K(X)| and |Ko(X)|. For example, if X is the ordinal space
ω1 with the usual topology, but with the discrete order, then by Proposition 1.1
|Ko(X)| = |τ |, so |Ko(ω1)| = 2ℵ1 . It follows then that |K(X)| = 1 < 2ℵ1 =
|Ko(X)|. To see that the opposite inequality may also hold, consider X = R, the
real line with its usual topology and order. By a footnote in [10], |βX \X| ≤
|K(X)| whenever |βX \X| is infinite, and thus 2c ≤ |K(R)|. From [6], |Ko(R)| =
1. Thus |Ko(R)| = 1 < 2c ≤ |K(R)|.
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Visliseni and Flachsmeyer [10] have shown that every infinite cardinal is attain-
able as the cardinality of K(X) for some X. The only finite cardinals attainable
are the Bell numbers; the nth Bell number is the number of partitions of an n-
element set (see [2]). From the results on totally ordered spaces, a cardinal α is
attainable as the cardinality of Ko(X) for some totally ordered space X if and
only if α = 2γ for some γ. Below we show that every cardinal is attainable as the
cardinality of Ko(X) for some ordered space X. Interestingly, these cardinals are
all attained with one-point compactifications.

Theorem 1.2 Suppose that α is an infinite cardinal.

(1) For any ρ ≤ α, there exists an ordered space X with |X| = α and
|Ko(X)| = ρ.

(2) There exists an ordered space X with |X| = α and |Ko(X)| = 2α.

(3) There exists an ordered space X with |X| = α and |Ko(X)| = 22α.

Proof. (1) Give A = [0, α) and B = (1, ρ] the usual topology and order as an
ordinal space and a subspace of an ordinal space respectively. Let X be the direct
sum A ⊕ B with the direct sum order: x ≤ y in X if and only if x ≤ y in A or
x ≤ y in B. (Thus, x‖y if x ∈ A, y ∈ B.) Note that |X| = α. The only topological
compactification of X is the one-point compactification X ∪ {α}. Each ordered
compactification of X is obtained by putting α > a for all a ∈ A and α > b for
all b ∈ (1, γ] for some γ ∈ [1, ρ] (here it is understood that (1, 1] = ∅). Since there
are ρ choices for γ, |Ko(X)| = ρ.

Another such example is A×B with the product topology and order.
(2) Let X be the following modification of a long line. Starting with the

ordinal space α, for each γ ∈ α fill the gap from γ to γ + 1 with a copy of the
set C = {1

2
± 1

n
: n ∈ N, n ≥ 2}. Give this set X the natural total order and

interval topology. Equivalently, let X = (α + 1)×C with the lexicographic order
and interval topology. Now |X| = α and X has α essential pairs of singularities,
one for each gap from γ to γ + 1, so |Ko(X)| = 2α.

(3) Let X be a set of α points given the discrete topology and discrete order.
Since X has the discrete topology, |βX \X| = 22α (see [9, 4U]). Since X has the
discrete order, |K(X)| ≤ |Ko(X)|. Now from the inequalities |βX \X| ≤ |K(X)|
and |Ko(X)| ≤ 22|X| , it follows that |Ko(X)| = 22α . �

The double inequality |βX \ X| ≤ |K(X)| ≤ 2|βX\X| whenever |βX \ X|
is infinite is given in a footnote of [10]. The analogous inequalities for ordered
compactifications need not hold. An easy modification of the construction in
the proof of (2) above can be used to produce a totally ordered space X with α
essential pairs of singularities and 22α simple singularities. For such a space X,
|βoX\X| = 22α �≤ 2α = |Ko(X)|. We will delay the proof that |Ko(X)| ≤ 2|βoX\X|
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need not hold until after the proof of Proposition 2.1, since a modification of the
construction there gives an easy counterexample.

It was seen above that |βo(X) \X| is not related to |Ko(X)| in the way that
one might have expected. This section concludes with some additional remarks
concerning |βo(X) \X|. Kost [7] has shown that for any cardinal α there exists a
Tychonoff space X with |βX \X| = α. More generally, it is known (see [2, 4.17])
that for any Tychonoff space Y , there exists a Tychonoff space X with βX \ X
homeomorphic to Y . This result holds in the ordered setting.

Theorem 1.3 For any completely regular ordered space Y , there exists a com-
pletely regular ordered space X and a function f which is both a homeomorphism
and an order isomorphism from βoX \X onto Y.

Proof. Consider the ordinal space ω1 with the usual topology and order. Since
βo(ω1) = ω1 + 1, it follows from Theorems 1 and 4 of [4] that B = β[βoY × ω1] =
βoY × (ω1 + 1). With the product order, this is an ordered compactification of
βoY ×ω1. Indeed, the product order on B is the smallest order on B that extends
the order on βoY × ω1, so with the product order, B = βo[βoY × ω1]. Now let
X = (βoY ×(ω1+1))\(Y ×{ω1}) and observe that βoY ×ω1 ⊆ X ⊆ βoY ×(ω1+1).
Since S ⊆ T ⊆ βoS implies βoT = βoS, it follows that βoX = βoY × (0, ω1], and
thus βoX \ X = Y × {ω1}, which is simultaneously homeomorphic and order
isomorphic to Y . �

If D is a countable discrete topological space, then |βD\D| = 22ℵ0 . Countable
discrete spaces D can be ordered so that |βoD \D| assumes different values. With
the discrete order, βoD is simply βD with the discrete order, so |βoD \D| = 22ℵ0 .
If D is the set of rational numbers with the usual order and discrete topology, βoD
introduces two copies of each real number together with ±∞, so |βoD \D| = 2ℵ0 .
Finally if 1 ≤ α ≤ ω, give D = ω×[1, α) the product order. By the Glicksberg-type
theorem for totally ordered spaces in [5], it follows that βo(D) = βoN × βo[1, α),
and thus |βoD \D| = α.

2 Structures

We now turn our attention to the lattice structures attainable as a semilattice of
ordered compactifications of an ordered space.

For a topological space X, it is easy to see that the following are equivalent:
a) K(X) is a chain; b) |βX \ X| ≤ 2; c) |K(X)| ≤ 2. If X is totally ordered,
it is easy to see that the following are equivalent: a) |Ko(X)| is a chain; b) X
has no more than one essential pair of singularities; c) |Ko(X)| ≤ 2. For partially
ordered spaces X, it is also true that Ko(X) is a chain if |Ko(X)| ≤ 2, but longer
chains may be realized as Ko(X) for appropriate X.
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Proposition 2.1 For every compact totally ordered space A, there exists a par-
tially ordered space X with Ko(X) dually isomorphic to A.

Proof. The proof is constructive. Suppose A is a compact totally ordered space.
Let X = ω1 ⊕ A with the usual ordinal space topology and order on ω1 and the
direct sum topology τ and the direct sum order θ (as described in the proof of
Theorem 1.2(1)) on X. Let a be the least element of A, and let θ∗ = θ∪(ω1×{a}).
Now (X, τ, θ∗) has only one topological compactification, and it may be ordered to
get an ordered compactification by placing the compactification point {ω1} above
any closed (decreasing) segment [a, x] ⊆ A. Now (Ko(X),≤) ∼= (A,≥). �

We will now illustrate, as mentioned in the first section, that the inequality
|Ko(X)| ≤ 2|βoX\X| need not hold. Let Y = [0,∞)\∪{[n, n+ 1

2
) : n ∈ N}, with the

usual topology and order inherited from the real line. Y is totally ordered with
ℵ0 many simple singularities. Suppose A is as in the proof above, and |A| > 2ℵ0 .
Let A′ = A ⊕ Y , with the total order θY ∪ θA ∪ (Y × A). Letting X = ω1 ⊕ A′

with the order θ∗ = θA′ ∪ (ω1× (Y ∪ {a})), it follows as above that (Ko(X),≤) ∼=
(A,≥). In particular, |Ko(X)| = |A| > 2ℵ0 . But since |βoX\X| = ℵ0, we have
2ℵ0 < |Ko(X)| �≤ 2|βoX\X| = 2ℵ0 .

Characterizing the power set lattices that can be realized as the lattice of
ordered compactifications of some ordered space X is easy. Any power set P (E) is
lattice isomorphic to Ko(X) where X is a totally ordered space with |E| essential
pairs of singularities. Clearly such spaces exist; simply take a long line of length |E|
and remove the point 1

2
from each copy of the unit interval. The characterization

of partially ordered spaces X for which Ko(X) is a power set lattice, however,
remains unsolved. The following are examples of two such spaces.

Example 2.2 Suppose A is a finite set with the discrete topology and discrete or-
der, and ω1 has its usual topology and order as an ordinal space. Let X = ω1⊕A,
with the direct sum topology and order. X has only one topological compactifica-
tion, X ∪ {ω1}. The compactification point can be ordered above any subset of A,
and thus (Ko(X),≤) ∼= (P (A),⊇). �

Observe that if, in the above example, A were taken to be compact, infinite,
and discretely ordered, the proof of Proposition 1.1 would imply that Ko(X) ∼= τX .
As another application of Proposition 1.1 to the structure of Ko(X), we note that
if X is almost compact (i.e., |βX \X| ≤ 1), noncompact, and discretely ordered,

then Ko(X) ∼= τ
•∪ τ , the disjoint union of two copies of τ .

Example 2.3 Let X be the subset [0, 1) × {1, . . . , n} of R2, given the usual
topology and order (i.e., the product order). Now βoX = [0, 1] × {1, . . . , n}, so
βoX \ X = {1, . . . , n} is totally ordered. The ordered compactifications of X
correspond to the partitions of {1, 2, . . . , n} into convex sets. There are 2n such
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partitions. (There are twice as many convex partitions of {1, . . . , n} as there are
of {1, . . . , n− 1}. To each convex partition of {1, . . . , n− 1} one may add {n} as
a new partition element, or include it in the partition element containing n− 1.)
Thus, |Ko(X)| = 2n = |P ({1, . . . , n})|. For each subset A of {1, . . . , n}, associate
the convex partition of {1, . . . , n} for which j and j−1 are in distinct partition el-
ements if and only if j ∈ A. With this correspondence, Ko(X) ∼= P ({1, . . . , n}). �

We close this section with a result on the problem of when Ko(X) can be
represented as the product Ko(A)×Ko(B) for subspaces A,B ⊆ X.

The following notation will be used in the proof of the next theorem. If p is a
point of (X, τ, θ) then iX(p) will be used to denote the increasing hull of p in X,
that is iX(p) = {x ∈ X : p ≤ x}. The closed increasing hull of p, denoted by IX(p),
is the intersection of all closed increasing sets containing p. The decreasing hull of
p and the closed decreasing hull of p, denoted by dX(p) and DX(p) respectively,
are defined analogously.

Theorem 2.4 If X is an ordered space and there exists a point p ∈ X such that
iX(p) ∪ dX(p) = X, then Ko(X) ∼= Ko(iX(p))×Ko(dX(p)).

Proof. Suppose there exists such a point p. For any αX ∈ Ko(X), iαX(p) = IαX(p)
and dαX(p) = DαX(p) are compact sets such that iαX(p) ∪ dαX(p) = αX and
iαX(p) ∩ dαX(p) = {p}. Since iX(p) is dense in iαX(p), it follows that iαX(p) ∈
Ko(iX(p)). Similarly dαX(p) ∈ Ko(dX(p)). Thus to each αX ∈ Ko(X), we can
associate iαX(p)× dαX(p) ∈ Ko(iX(p))×Ko(dX(p)).

On the other hand, suppose Y ∈ Ko(iX(p)) and Z ∈ Ko(dX(p)). Every com-
pactification point y ∈ Y \ iX(p) must be greater than p. (For any net (yγ) in Y
converging to y, (p, yγ) is a net in the graph of the closed order on Y , so p ≤ y.)
Similarly, every compactification point z ∈ Z \dX(p) must be less than p. Identify
the two copies of p in the disjoint union of Y and Z to get a compactification αX
of X. Given the closed order θY ∪ θZ ∪ [Z×Y ], where θY and θZ are the orders on
Y and Z respectively, αX is an ordered compactification of X with iαX(p) = Y
and dαX(p) = Z. It follows that Ko(X) ∼= Ko(iX(p))×Ko(dX(p)) where the latter
poset has the product order.�

The utility of the theorem above lies perhaps not so much in finding spaces
with such a segregating point p, but in constructing them. If (Y, τY , θY ) and
(Z, τZ , θZ), are ordered spaces, then the direct sum X = Y ⊕ {p} ⊕ Z given the
order θY ∪ θZ ∪ [(Y ∪ {p}) × (Z ∪ {p})] satisfies the hypotheses of Theorem 2.4.
Furthermore, since {p} is topologically isolated and maximum in Y ∪{p}, it follows
that Ko(dX(p)) = Ko(Y ∪{p}) = Ko(Y ), and similarly, Ko(iX(p)) = Ko(Z). Thus
Theorem 2.4 yields the following corollary.

Corollary 2.5 For any ordered spaces Y and Z, there exists an ordered space X
with Ko(X) ∼= Ko(Y )×Ko(Z).
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Corollary 2.6 For any integer n ≥ 1, there exists an ordered space X with
Ko(X) ∼= [0, 1]n.

Proof. Apply Corollary 2.5 and Proposition 2.1. �
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