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Abstract If a1, a2, a3, . . . are nonnegative real numbers and fj (x) = √
aj + x, then

limn→∞ f1 ◦ f2 ◦ · · · ◦ fn(0) is a continued radical with terms a1, a2, a3, . . .. The set
of real numbers representable as a continued radical whose terms ai are all from a
set S = {a, b} of two natural numbers is a Cantor set. We investigate the thickness,
measure, and sums of such Cantor sets.
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1 Introduction

We consider continued radicals

√
a1, a2, . . . ≡ lim

n→∞

√
a1 +

√
a2 + · · · + √

an

whose terms a1, a2, . . . all belong to a finite set S of nonnegative real numbers. If the
members of S are too widely spaced, the set R(S) of real numbers representable as
a continued radical using terms from S will have recurring gaps. In [14], conditions
are given on S for R(S) to form an interval or to form a Cantor set. We will focus on
Cantor sets C({a, b}) of form R(S) where S = {a, b} is a set of two natural numbers.
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The study of continued radicals may be modeled on the study of continued frac-
tions, another similar iterated function system. In [2, 3, 10], Cantor sets of num-
bers representable as continued fractions with terms from a restricted set are studied
in general, with [4, 5, 7–9, 12] giving particular attention to the question of when
the sum C1 + · · · + Cn = {x1 + · · · + xn : xi ∈ Ci for i = 1, . . . , n} of such Can-
tor sets forms an interval. Here we address similar questions for Cantor sets arising
from continued radicals with restricted terms. In the case of continued fractions, the
well-known recurrence relations for the numerators and denominators of the partial
quotients are fundamental. No such recurrence relations are known for partial ex-
pressions of continued radicals. (Indeed, the partial expressions are seldom rational.)
Thus, other approaches are required for continued radicals.

Sizer [19] and Laugwitz [16] have shown that a continued radical
√

a1, a2, . . .

converges if and only if the set { 2n√
an : n ∈ N} is bounded. Herschfeld [11] gave

earlier results on convergence. Sizer [19] also noted that any real number can be
represented as a0 + √

a1, a2, a3, . . . where a0 ∈ Z and ai ∈ {0,1,2} for i ∈ N. The
continued radical

√
n,n,n, . . . is easily seen to converge to (1 + √

4n + 1)/2 ≡ ϕn

(see [11, 14]). Notice that ϕ1 is the golden ratio.
Ramanujan’s well-known example from 1911 that

√
1 + 2

√
1 + 3

√
1 + 4

√
1 + · · · = 3

can be rewritten in the form
√

a1, a2, . . . by bringing the coefficient of each radical
inside the radical. This yields an = n!2(n − 1)!2(n − 2)!2 . . .3!22!21!2. Further dis-
cussion of this example appears in [6, 11, 20].

By a Cantor set, we mean a compact, perfect, totally disconnected subset of
the real line. Astels [3, 5] says a Cantor set C is derived from the interval I if
C = I \ ⋃

G where I is a compact interval and G is a countable collection of dis-
joint open intervals contained in I . In practice, Cantor sets are typically constructed
iteratively by successively removing a finite number of open intervals. A differ-
ent iterative sequence of removals may produce the same Cantor set. A sequence
of iterative removals producing a Cantor set C is a derivation of C. In all Cantor
sets C considered here, C will be derived from an interval by iteratively removing
2n−1 new gaps at each iteration. The connected intervals remaining at each itera-
tion are called bridges. Specifically, starting with I0 = I , at the nth iteration, we have
In = In−1 \{Gn,1,Gn,2,Gn,3, . . . ,Gn,2n−1} where the gaps Gn,i are mutually disjoint
open intervals contained in In−1. Now In consists of 2n bridges Bn,1,Bn,2, . . . ,Bn,2n ,
and C = ⋂

n∈N
In. As a convention, we label the new gaps Gn,1,Gn,2, . . . ,Gn,2n−1

on level n from left to right. Similarly, the bridges Bn,1, . . . ,Bn,2n on level n are la-
beled from left to right. If Bn,i ∪ Gn,k ∪ Bn,i+1 is an interval, we say the bridges Bn,i

and Bn,i+1 are adjacent to the gap Gn,k .
The thickness of a Cantor set, introduced by Newhouse [17] and used in [13, 15],

is a measure of the relative size of the bridges in relation to the gaps. For a given
derivation D of a Cantor set C, we define the thickness at level n to be

τ(n) = inf

(
min(|Bn,i |, |Bn,i+1|)

|Gn,k|
)
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where Bn,i,Gn,k , and Bn,i+1 are adjacent, |A| represents the length of interval A,
and the infimum is taken over all gaps on level n. The thickness of the derivation D
of C is then taken to be τ(D) = inf{τ(n) : n ∈ N}. The thickness of the Cantor set
C is defined to be τ(C) = inf{τ(D) : D is a derivation of C}. Astels [3] shows that
the thickness τ of a Cantor set C is τ(Do) for any derivation Do with the following
property: For any bridges A and E of Do with A = Bn,i ∪ Gn,k ∪ Bn,i+1 and E =
Bm,j ∪ Gm,r ∪ Bm,j+1, if m ≥ n and E ⊆ A, then |Gn,k| ≥ |Gm,r |. Such a derivation
is called an ordered derivation. If τ(C) is the thickness of a Cantor set C, then the
normalized thickness of C is γ (C) = τ(C)

τ(C)+1 .
In the next section, we will present results which will allow us to apply the fol-

lowing theorem of Astels [3] about when the sum of Cantor sets is an interval. Of
course, if one Cantor set C1 is derived from an interval whose length is shorter than
a gap of another Cantor set C2, then their sum cannot span the gap of C2 to pro-
duce an interval. The following condition prevents this type of situation. If, for each
j ∈ {1, . . . , k}, Cj is a Cantor set derived from Ij and Gj is the longest gap on any
level of Cj , the sequence of intervals (I1, . . . , Ik) is compatible if |Ir+1| ≥ |Gj | and
|I1| + · · · |Ir | ≥ |Gr+1| for r = 1, . . . , k − 1 and j = 1, . . . , r . The Hausdorff dimen-
sion of X is denoted dimH (X).

Theorem 1 (Astels [3]) Let k be a positive integer and for j = 1, . . . , k let Cj

be a Cantor set derived from Ij . Put Sγ = γ (C1) + · · · + γ (Ck) and assume that
(I1, . . . , Ik) is compatible. If Sγ ≥ 1, then C1 + · · · + Ck = I1 + · · · + Ik . Otherwise,

γ (C1 + · · · + Ck) ≥ Sγ and dimH (C1 + · · · + Ck) ≥ log(2)

log(1+ 1
Sγ

)
.

Since the sum of a set of intervals is an interval, this theorem gives sufficient
conditions for the sum of Cantor sets to be an interval.

2 Sums of Cantor sets from continued radicals with two terms

From [14], if S = {a, b} ⊆ N with a < b, then the set R(S) of real numbers repre-
sentable as a continued radical with all terms from S is a Cantor set C({a, b}) derived
from the interval I = [ϕa,ϕb]: Since 0 ≤ xn ≤ yn for all n ∈ N implies

√
x1, x2, . . . ≤√

y1, y2, . . ., the smallest and largest numbers in C({a, b}) are
√

a, a, a, . . . = ϕa and√
b, b, b, . . . = ϕb , respectively. The largest number in C({a, b}) with first term a

is
√

a, b, b, b, . . . = √
a + ϕb =

√
a,ϕ2

b . The smallest number in C({a, b}) with first

term b is
√

b, a, a, a, . . . = √
b + ϕa = √

b,ϕ2
a . Since

√
a + ϕb <

√
b + ϕa , there is

a gap G1,1 in I caused by the jump from a to b in the first terms. Similarly, gaps

(
√

w, a, b, b, b, . . .,
√

w, b, a, a, a, . . .) = (
√

w, a + ϕb,
√

w, b + ϕa)

arise on level n + 1 from the jump from a to b in the n + 1st term, for all 2n choices
of the direction vector w = (w1,w2, . . . ,wn), where each wi ∈ {a, b}. A direction
vector w of length n directs us through the successive iterations Ij , moving to the left
if wj = a and moving to the right if wj = b, to the left endpoint of a bridge on level
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n, which is split on level n + 1 by the gap (
√

w, a + ϕb,
√

w, b + ϕa). The adjacent
bridges are [√w, a + ϕa,

√
w, a + ϕb] and [√w, b + ϕa,

√
w, b + ϕb]. Throughout

this section we will only consider Cantor sets of form C({a, b}) = R({a, b}), which
is the set of real numbers representable as continued radicals, all of whose terms are
a or b (a, b ∈ N, a < b).

If w ≥ 1, and t (x) = √
w + x, then rationalizing the numerator of t (x) − t (y)

shows that t is a contraction on [0,∞) with contraction factor 1/(2
√

w). Iterat-
ing, g(x) = √

w1, . . . ,wn + x =
√

w, x2 is a contraction with contraction factor
1/(2n√w1w2 · · ·wn). Consequently, if two points

√
x1, x2, . . . and

√
y1, y2, . . . in

C({a, b}) agree in the first n terms, then their values differ by less than 2−n(b − a).
This property can be used to show that each point of C({a, b}) is the limit of end-
points of bridges and if x, y, z ∈ C({a, b}) with x < y < z, then the interval (x, z)

contains an endpoint of a gap. Thus, C({a, b}) is perfect and totally disconnected.
Since it is clearly compact, C({a, b}) is indeed a Cantor set.

Theorem 2 If Bn,j and Bn,j+1 are the two bridges adjacent to some gap Gn,k on
level n, then |Bn,j | > |Bn,j+1|. That is, the longer of two bridges adjacent to a gap is
the left bridge.

Proof If Bn,j and Bn,j+1 are adjacent to a gap on level n, then |Bn,j | = √
w, a + ϕb −√

w, a + ϕa and |Bn,j+1| = √
w, b + ϕb − √

w, b + ϕa , where w = (w1, . . . ,wn−1)

is a direction vector of length n − 1. Letting h(x) = √
w, x + ϕb − √

w, x + ϕa , we
have |Bn,j | = h(a) and |Bn,j+1| = h(b), so the desired result will follow if we show
h(x) is a strictly decreasing function. Letting gi,x(y) = √

wi,wi+1, . . . ,wn−1, x + y,
we find that

h′(x) = 1

2n

[
n−1∏
i=1

1

gi,x(ϕb)
−

n−1∏
i=1

1

gi,x(ϕa)

]
.

Now h′(x) < 0 follows since each gi,x(y) is a strictly increasing function of y, 0 <

ϕa < ϕb , and the product of decreasing functions is decreasing. �

Theorem 3

(a) The longest gap on a given level n is the left-most gap Gn,1.
(b) The shortest gap on a given level n is the right-most gap Gn,2n−1 .
(c) The longest bridge on a given level n is the left-most bridge Bn,1.
(d) The shortest bridge on a given level n is the right-most bridge Bn,2n .

Proof (a) If Gn,i is any gap on level n other than the left gap Gn,1, then we have
|Gn,i | = √

w, b + ϕa − √
w, a + ϕb and |Gn,1| = √

a, b + ϕa − √
a, a + ϕb , where

w = (w1,w2, . . . ,wn−1) and a = (a1, a2, . . . , an−1) are direction vectors of length
n − 1, with each ai = a, and ai ≤ wi ∈ {a, b} for each i and a < wi for at least
one i. Defining f (x) = √

a, x, g(x) = √
w, x, α = a + ϕb , and β = b + ϕa , we have

|Gn,1| = f (β) − f (α) and |Gn,i | = g(β) − g(α). Thus, to show |Gn,1| > |Gn,i |, it
suffices to show

|Gn,1|
|Gn,i | = f (β) − f (α)

g(β) − g(α)
> 1.
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By the Cauchy mean value theorem, there exists c ∈ (α,β) with

f (β) − f (α)

g(β) − g(α)
= f ′(c)

g′(c)
.

Now

f ′(c)
g′(c)

=
√

w1, . . . ,wn−1, c
√

w2, . . . ,wn−1, c · · ·√wn−1, c√
a1, . . . , an−1, c

√
a2, . . . , an−1, c · · ·√a, c

,

which is greater than 1 since ai ≤ wi for each i and ai < wi for at least one i. This
completes the proof of (a). Notice that the Cauchy mean value theorem allows us to
consider (quotients of) products of nested radicals rather than (quotients of) differ-
ences of nested radicals. The proofs of the remaining parts are similar. �

While the longest bridge and gap on a level appear on the left and the shortest
bridge and gap appear on the right, the lengths of the bridges and gaps on a level do
not decrease as one moves from left to right, as seen in the example below.

Example 1 Figure 1 shows the lengths of bridges and gaps, rounded to six decimal
places, for the first three iterations I1, I2, and I3 of the Cantor set C({1,23}). (The
segments are not drawn to scale.)

Note that the lengths of the bridges and gaps on a level do not decrease, since
|B3,7| > |B3,6| and |G3,3| > |G3,2|. Further computation would show that |G4,1| ≈
0.047933 > |G3,4| ≈ 0.022299, so in general, it is not true that all gaps on level n+1
are shorter than all gaps on level n.

Recall that the thickness at level n of the Cantor set C is

τ(n) = inf

(
min(|Bn,i |, |Bn,i+1|)

|Gn,k|
)

where Bn,i , Gn,k , and Bn,i+1 are adjacent and the infimum is taken over all gaps on
level n. By Theorem 2, the minimum in the numerator is always obtained by the right
bridge Bn,i+1.

Theorem 4 The thickness τ(n) is realized as the quotient |Bn,2|/|Gn,1|. That is, τ(n)

is attained using the left-most gap Gn,1 on level n and the right bridge Bn,2 adjacent
to that gap.

Proof As in the proof of Theorem 3, let f (x) = √
a, x and g(x) = √

w, x where
a = (a1, a2, . . . , an−1) and w = (w1,w2, . . . ,wn−1) are direction vectors of length
n − 1, with each ai = a, and ai ≤ wi ∈ {a, b} for each i and a < wi for at least one i.
Now

|Bn,2|
|Gn,1| = f (b + ϕb) − f (b + ϕa)

f (b + ϕa) − f (a + ϕb)
(1)
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Fig. 1 Bridge and gap length for the Cantor set C({1,23})

and the ratio of the lengths of any other right-adjacent bridge to its adjacent gap has
form

g(b + ϕb) − g(b + ϕa)

g(b + ϕa) − g(a + ϕb)
. (2)

To show that the positive expression of Eq. (1) is always smaller than that of Eq. (2),
we may consider their quotient and show that

1 >

f (b+ϕb)−f (b+ϕa)
g(b+ϕb)−g(b+ϕa)

f (b+ϕa)−f (a+ϕb)
g(b+ϕa)−g(a+ϕb)

=
f ′(c1)
g′(c1)

f ′(c2)
g′(c2)

, (3)

for some c1 ∈ (b +ϕa, b +ϕb) and some c2 ∈ (a +ϕb, b +ϕa), after two applications
of the Cauchy mean value theorem. Equation (3) is equivalent to

f ′(c1)

g′(c1)
<

f ′(c2)

g′(c2)
,
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and since c2 < c1, it suffices to show that f ′(x)/g′(x) is a strictly decreasing function.
Now

f ′(x)

g′(x)
=

(√
w1, . . . ,wn−1, x√
a1, . . . , an−1, x

)(√
w2, . . . ,wn−1, x√
a2, . . . , an−1, x

)
· · ·

(√
wn−1, x√
an−1, x

)

=
n−1∏
j=1

hj (x), where hj (x) =
√

wj , . . . ,wn−1, x√
aj , . . . , an−1, x

.

Now h′
j (x) = Aj/Bj where

Aj = (aj + √
aj+1, . . . , an−1, x)(

√
aj+1, . . . , an−1, x · · ·√an−1, x)

− (wj + √
wj+1, . . . ,wn−1, x)(

√
wj+1, . . . ,wn−1, x · · ·√wn−1, x)

and

Bj = 2n−j+1(
√

wj , . . . ,wn−1, x · · ·√wn−1, x
√

x)

· (√aj , . . . , an−1, x · · ·√an−1, x)(
√

aj , . . . , an−1, x)2.

Now Bj > 0 and, since aj ≤ wj and aj < wj for at least one j , Aj ≤ 0 and Aj < 0
for at least one j . It follows that each hj (x) is decreasing and one is strictly decreas-
ing, and thus f ′(x)/g′(x) is strictly decreasing, as needed. �

Theorem 5 For n ∈ N, we have τ(n) > τ(n + 1). That is, the thickness on level n

decreases as n increases.

Proof Let a = (a1, . . . , an−1) with ai = a for all i, and f (x) = √
a, x as in the proof

of Theorem 4, and let s(x) = √
a,a, x. Now to show τ(n) > τ(n+1), or equivalently,

1 < τ(n)/τ(n + 1), by Theorem 4 and two applications of the Cauchy mean value
theorem we must show

1 <

f (b+ϕb)−f (b+ϕa)
s(b+ϕb)−s(b+ϕa)

f (b+ϕa)−f (a+ϕb)
s(b+ϕa)−s(a+ϕb)

=
f ′(c1)
s′(c1)

f ′(c2)
s′(c2)

for some c1 ∈ (b + ϕa, b + ϕb) and some c2 ∈ (a + ϕb, b + ϕa). Thus, it suffices to
show that

f ′(c1)

s′(c1)
>

f ′(c2)

s′(c2)
.

Now since each ai = a, we have

f ′(x)

s′(x)
= 2

√
a1, . . . , an, x,

which is a strictly increasing function, and the desired result follows since c1 > c2. �



322 T. Clark, T. Richmond

Theorem 6 Given a bridge Bn−1,j on level n − 1, the gap Gn,k removed from this
bridge is longer than both gaps Gn+1,m,Gn+1,m+1 ⊂ Bn−1,j ‘below it’ on the next
level. Thus, the iterative construction of the Cantor set C({a, b}) is an ordered deriva-
tion of C({a, b}).

Proof First we show that, of the two gaps Gn+1,m and Gn+1,m+1 two levels below
the bridge Bn−1,j , the longer one is on the left, that is, |Gn+1,m| > |Gn+1,m+1|. The
lengths of the gaps two levels below the bridge whose left endpoint is determined
by w are �(x) = √

w, x, b + ϕa −√
w, x, a + ϕb where x is either a (for the left gap)

or b (for the right gap). Now

�′(x)

= [
2n

√
w1, . . . ,wn−1, x, b + ϕa

√
w2, . . . ,wn−1, x, b + ϕa · · ·√x, b + ϕa

]−1

− [
2n

√
w1, . . . ,wn−1, x, a + ϕb

√
w2, . . . ,wn−1, x, a + ϕb · · ·√x, a + ϕb

]−1
.

Now since b + ϕa > a + ϕb , for each j ∈ {1, . . . , n − 1} and any x > 0 we have

[√wj , . . . ,wn−1, x, b + ϕa]−1 < [√wj , . . . ,wn−1, x, a + ϕb]−1.

It follows that �′(x) < 0 for all x > 0, and in particular, �(a) > �(b). This proves our
first claim.

Now to show that a gap Gn,k on level n is longer than either of the two gaps below
it, we need only show that it is longer than the left gap below it. That is, we must show
that for any direction vector w determining the left endpoint of the bridge Bn−1,j , we
have |Gn,k| > |Gn+1,m|. Considering the endpoints of these gaps and dividing, we
wish to show that the ratio

r(w) ≡
√

w, b + ϕa − √
w, a + ϕb√

w, a, b + ϕa − √
w, a, a + ϕb

> 1 (4)

for any direction vector w of length n − 1.
We show that the ratio r(w) is minimized when w = a = (a, a, . . . , a). Letting

f (x) = √
a, x and g(x) = √

w, x as in the proof of Theorem 4, we wish to show

1 >
r(a)

r(w)
=

f (b+ϕa)−f (a+ϕb)
g(b+ϕa)−g(a+ϕb)

f (a+√
b+ϕa)−f (a+√

a+ϕb)

g(a+√
b+ϕa)−g(a+√

a+ϕb)

=
f ′(c1)
g′(c1)

f ′(c2)
g′(c2)

,

where a + √
a + ϕb < c2 < a + √

b + ϕa < a + ϕb < c1 < b + ϕa . Thus it suffices to
show that f ′(x)/g′(x) is a strictly decreasing function. This was shown in the proof
of Theorem 4.

Now since r(w) is minimized at w = a, Eq. (4) will follow if we show r(a) > 1.
With f (x) = √

a, x and s(x) = √
a,a, x as in the proof of Theorem 5, we have

r(a) = f (b + ϕa) − f (a + ϕb)

s(b + ϕa) − s(a + ϕb)
= f ′(c)

s′(c)
= 2

√
a, a, . . . , a, c ≥ 2ϕa > 1,
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where c is some point in (a + ϕb, b + ϕa) guaranteed by the Cauchy mean value
theorem. �

Note that Example 1 showed that all gaps on level n + 1 need not be shorter than
all gaps on level n, but the previous result shows that if we start with a bridge and
consider all gaps below it, then the gap lengths decrease as the level increases.

Now, in view of the previous two theorems, the thickness τ(a, b) of the Cantor set
C({a, b}) of all real numbers representable as a continued radical using terms a and
b is

τ(a, b) = inf
n∈N

τ(n) = lim
n→∞ τ(n) = lim

n→∞
|Bn,2|
|Gn,1| = lim

n→∞

√
an, b + φb − √

an, b + φa√
an, b + φa − √

an, a + φb

,

where an = (a, a, . . . , a) is a vector of length n.
An exact evaluation of this limit would be ideal. The corresponding situation for

continued fractions is tractable using the recurrence relations for partial quotients. No
corresponding techniques have been found and we are only able to present numerical
evidence in particular cases. Before applying Theorem 1, we address the compatibil-
ity conditions needed.

Remark 1 (a) If Cantor sets Cj are derived from intervals Ij (j = 1, . . . , k), then the
sequence of intervals is compatible if the shortest interval is larger than the longest
gap. Furthermore, by Theorem 6, the longest gap in any Cantor set C({a, b}) is G1,1,
the gap on level 1.

(b) If C1 = C2 = · · · = Ck , then I1, I2, . . . , Ik are compatible.

We now present a sampling of numerical data. In Table 1, we give the thickness
τ(C({a, b})) and the normalized thickness γ (C({a, b})) to ten decimal places for
a = 1 and a = 4 and a < b ≤ 21.

Numerical evidence such as that from Table 1 prompts our conjecture that for a
fixed value of a, the function τ(a, x) is decreasing in x.

Table 2 gives the normalized thickness, to six decimal places, of C({a, b})
for 1 ≤ a < b ≤ 7. For example, we see that γ (C({2,5})) ≈ 0.233486. Now
4 · γ (C({2,5})) < 1 but 5 · γ (C({2,5})) > 1, so Theorem 1 tells us that the sum of
five copies of C({2,5}) equals the sum of five copies of the interval [ϕ2, ϕ5], which
is an interval, namely [5ϕ2,5ϕ5].

Table 3 gives the number of copies of C({a, b}) required to guarantee, by Theo-
rem 1, that their sum is an interval. Recall from Remark 1 that when using copies of
the same Cantor set, compatibility is ensured. In our next example, we consider sums
of different Cantor sets.

Example 2 Consider the Cantor sets C({1,4}), C({5,8}), and C({6,10}) derived
from the interval [ϕ1, ϕ4], [ϕ5, ϕ8], and [ϕ6, ϕ10], respectively. The shortest of
these intervals is [φ5, φ8] with length approximately 0.580993. Furthermore, the
longest gap among the three Cantor set is G

1,4
1,1, that is, gap G1,1 of C({1,4}),

with length approximately 0.136643. By Remark 1, any collection of these Can-
tor sets is compatible. The normalized thicknesses of these sets are approximately
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Table 1 Thickness of Cantor sets C({1, b}) and C({4, b})

b τ(C{1, b}) γ (C{1, b}) τ (C{4, b}) γ (C{4, b})

2 0.5563765281 0.3574819576

3 0.4378241825 0.3045046730

4 0.3670028380 0.2684726233

5 0.3191832762 0.2419552173 0.2858162541 0.2222839020

6 0.2843826219 0.2214158126 0.2597708368 0.2062048344

7 0.2577374624 0.2049215119 0.2392003072 0.1930279599

8 0.2365731983 0.1913135418 0.2224487779 0.1819698149

9 0.2192878968 0.1798491540 0.2084826899 0.1725160746

10 0.2048590589 0.1700274048 0.1966197677 0.164312652

11 0.1926010008 0.1614965950 0.1863894396 0.1571064554

12 0.1820353889 0.1540016404 0.1774554799 0.1507109890

13 0.1728175773 0.1473524789 0.1695705608 0.1449853190

14 0.1646924588 0.1414042458 0.1625482542 0.1398206514

15 0.1574668411 0.1360443647 0.1562450868 0.1351314601

16 0.1509915242 0.1311838715 0.1505486485 0.1308494419

17 0.1451493061 0.1267514247 0.1453694833 0.1269192915

18 0.1398467384 0.1226890718 0.1406354194 0.1232956797

19 0.1350083245 0.1189491933 0.1362875184 0.1199410503

20 0.1305723528 0.1154922570 0.1322771242 0.1168239836

21 0.1264878467 0.1122851410 0.1285636769 0.1139179645

γ (C({1,4})) = 0.268473, γ (C({5,8})) = 0.179621, and γ (C({6,10})) = 0.161069.
Now using Theorem 1, we can conclude, for example, that the sum of two copies of
C({1,4}), one copy of C({5,8}), and two copies of C({6,10}) is an interval since the
corresponding sums of the normalized thicknesses for these five compatible Cantor
sets exceeds 1. Similarly the sum of any collection of five of these Cantor sets in-
cluding exactly two or exactly three copies of C({1,4}) is an interval, as is the sum
of any collection of six of these Cantor sets including exactly one copy of C({1,4}).
If no copies of C({1,4}) are used, the sum of any collection of six of the other sets
including at least two copies of C({5,8}) is an interval, or any collection of seven of
the others if fewer than two copies of C({5,8}) are included.

3 Measure

The measure of the familiar Cantor middle-thirds set is widely known to be zero.
By removing gaps which are successively smaller percentages of the bridges from
which they are removed, one may construct Cantor sets of positive measure. (See, for
example, Aliprantis and Birkinshaw [1, pp. 115–116].)

Theorem 7 For any natural numbers a < b, the measure of C({a, b}) is zero.
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Table 2 Normalized thickness γ (C({a, b})) for small a, b

�
�

��
a

b
2 3 4 5 6 7

1 0.357482 0.304505 0.268473 0.241955 0.221416 0.204922

2 0.288237 0.256910 0.233486 0.215116 0.200212

3 0.248781 0.227225 0.210196 0.196298

4 0.222284 0.206205 0.193028

5 0.202864 0.190242

6 0.187824

Table 3 Minimum Number of Cantor sets C({a, b}) required to guarantee their sum is an interval

�
�

�
�

a
b

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 4 4 5 5 5 6 6 6 7 7 7 8 8

2 4 4 5 5 5 6 6 6 7 7 7 8 8

3 5 5 5 6 6 6 7 7 7 7 8 8

4 5 5 6 6 6 7 7 7 7 8 8

5 5 6 6 6 7 7 7 7 8 8

6 6 6 6 7 7 7 7 8 8

7 6 6 7 7 7 8 8 8

8 7 7 7 7 8 8 8

9 7 7 7 8 8 8

10 7 7 8 8 8

11 7 8 8 8

12 8 8 8

13 8 8

14 8

Proof The length of a bridge Bn,j on level n is
√

w, ϕ2
b − √

w, ϕ2
a where w =

(w1, . . . ,wn) is the direction vector of length n (with each wi ∈ {a, b}) which deter-
mines the left endpoint of the bridge. Recalling the contraction factor
2−n(w1w2 · · ·wn)

−1/2 for
√

w1, . . . ,wn + x =
√

w, x2, we have

|Bn,j | =
√

w, ϕ2
b −

√
w, ϕ2

a <
1

2n
√

w1w2 · · ·wn

(ϕb − ϕa).

If a > 1, then recalling that the longest bridge on level n is the left-most bridge Bn,1
arising from the direction vector w = a = (a, a, . . . , a), we see that the measure of
the nth iteration In is

|In| =
2n∑
i=1

|Bn,i | < 2n|Bn,1| < 2n

(
1

2n
√

an

)
(ϕb − ϕa).
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The right hand side of this expression converges to zero as n approaches infinity if
a > 1, so it only remains to consider the case a = 1 < b. Then

|Bn,j | < 1

2n
√

w1w2 · · ·wn

(ϕb − ϕ1) = (ϕb − ϕ1)

2n
√

bk
,

where k is the number of coordinates wi ∈ {1, b} which are equal to b. Of the 2n

direction vectors w of length n determining endpoints of bridges on level n, there are(
n
k

)
of them with exactly k coordinates equal to b. Therefore, the sum of the lengths

of the 2n bridges on level n is less than

n∑
k=0

(
n

k

)
(ϕb − ϕ1)

2n
√

bk
= (ϕb − ϕ1)

n∑
k=0

(
n

k

)
1

2n

1√
bk

. (5)

The last sum in Eq. (5) is, by the binomial theorem, ((1+ c)/2)n for c = 1/
√

b. Since
b ≥ 2, we have c < 3/4 and (1 + c)/2 < 7/8, so the positive expression in Eq. (5) is
bounded above by (ϕb − ϕ1)(7/8)n and thus converges to zero. Thus the Cantor set
C({1, b}) has measure zero. �

We mention that other proofs that the expression in Eq. (5) bounding the measure
of C({1, b}) converges to 0 may be based on Sterling’s approximation (see [18])

lim
n→∞

n!√
2πn(n

e
)n

= 1,

using bridges on levels 2n and the fact that
(2n

k

) ≤ (2n
n

)
, or by viewing the sum in

Eq. (5) as a weighted average of {b−k/2}nk=0.
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