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1 The Wonderful World of 
Statistics.

Not all of It.

IntroductionIntroduction



Introduction

Consider a world without statistics. No way to 
quantify the magnitude of a problem (“It’s a big, 
big problem. Really big. Gigantic even.”) or the ef-
fectiveness of a treatment for the problem (“The 
experimental group had better results than the 
control group. Not a lot better but not nothing ei-
ther. There was an improvement. Some.”). In this 
statistics-free world bad science abounds with 
only the simplest or crudest of ways to identify 
and correct problems. We need statistics.

We also need sound measurement (see a text-
book on measurement theory) and sound research 
designs to go with our statistics if the field is go-
ing to function as a science. The need for the for-
mer should be clear: lousy measurement means 
that nothing of value can be salvaged from the 
study (one of my professors used to say that there 
is no statistical fix for bad measurement). The is-
sue of experimental design is the heart of a re-

search methods class. We’ll leave those topics to 
those classes – after a very brief discussion of re-
search methods. Sorry. Has to be done.

Predictive Versus Explanatory Research 

Statistics are tools we use to analyze data, 
nothing more. Why we analyze these data is an-
other story. Psychological research can serve two 
general purposes: prediction and explanation. Pre-
dictive research is conducted to see how well a 
variable (or set of variables) predicts another vari-
able. If we determine that the relationship be-
tween these variables is strong enough for applied 
purposes, then predictive research is also con-
cerned with establishing the means for making 
these predictions in the future.

Explanatory research is concerned with causal 
issues. “Explanation is probably the ultimate goal 
of scientific inquiry, not only because it satisfies 
the need to understand phenomena, but also be-
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cause it is the key for creating the requisite condi-
tions for the achievement of specific objectives” 
(Pedhazur, 1997, p. 241). Stated differently, under-
standing causality is important because if we un-
derstand how something occurs, we have the 
means to change what occurs. That’s powerful 
stuff.

Thus, with explanatory research we seek to un-
derstand why something is occurring. Why do chil-
dren succeed or fail in school? Why do people feel 
satisfied or dissatisfied with their job? Why do 
some people continually speak in the form of ques-
tions? It should be obvious that explanation is 
more difficult than mere prediction. With predic-
tion we don’t care why something is happening. 
All we want to do is predict it. Understanding why 
something is occurring may help to predict it, but 
it’s not necessary. Explanation requires more than 
simply finding variables related to the dependent 
variable – it requires the identification of the vari-
ables that actually cause the phenomenon. Many 

variables, although not actually causing the phe-
nomenon, will predict simply because they are re-
lated to causal variables. Many variables predict, 
but only a subset of these variables are the actual 
causes.

The Role of Theory

You might ask, how then is predictive research 
different from explanatory research, aside from 
their end goals? The answer is they can involve dif-
ferent analytic tools, but there are some other im-
portant differences. Foremost among these is the 
role of theory. Theory need not play any role at all 
in predictive research. It’s possible to go com-
pletely theory-free and have successful predictive 
research. Just try a bunch of variables and see 
what works. Because it doesn’t matter why some-
thing predicts, we don’t have to possess a good 
reason for trying and using a variable if it predicts. 
That said, predictive research based on a sound 
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theory is more likely to succeed than theory-free 
predictive research.

The situation is completely different for ex-
planatory research. A sound theoretical basis is es-
sential for explanatory research. Because explana-
tory research is all about why different outcomes 
occur, we must include all of the relevant variables 
in our analysis. No throwing a bunch of variables 
in the experiment just to see what works. A set of 
variables, chosen with little regard to any previous 
work, will not likely include the actual cause. 
(Also, including too many irrelevant variables can 
corrupt our analysis in other ways.) Furthermore, 
there is no way to fix explanatory research that 
was incorrectly conceived. “Sound thinking within 
a theoretical frame of reference and a clear under-
standing of the analytic methods used are proba-
bly the best safeguards against drawing unwar-
ranted, illogical, or nonsensical conclusions” (Ped-
hazur, 1997, p. 242). I don’t know about you, but 

I don’t want to draw unwarranted, illogical, or non-
sensical conclusions.

A hypothetical study may help illustrate the 
differences between predictive and explanatory re-
search. In this study, researchers measured the 
number of classical music CDs, books, computers, 
and desks in the houses of parents of newborns. 
Ten years later they measured the mathematical in-
telligence of these children. An analysis revealed 
that the combined number of classical music CDs 
and desks strongly correlated with mathematical 
intelligence.

The first issue to address is: Is this sound pre-
dictive research? Yes, the number of classical CDs 
and desks are strongly related to mathematical in-
telligence and can be used to predict math IQ 
scores with excellent accuracy. (Just a reminder, 
this study is not real. I had a lot of fun making it 
up.)
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A second question is: Is this sound explana-
tory research? No, and it’s not even close. These 
variables were chosen simply because they corre-
lated with the dependent variable, not because 
there was a logical reason for them to affect math 
ability. To think that the possession of these items 
is the cause of mathematical intelligence for these 
children is to make the classic mistake of equating 
a strong relationship with a causal relationship. If 
you’re still not convinced, ask yourself this: Would 
supplying classical music and furniture to house-
holds of newborns that didn’t have those items 
raise the math scores of children living in those 
households? The cause of a given variable is also 
the means for changing the status of people on 
that variable.

Research Designs

No chapter that even mentions causal, or ex-
planatory, research would be complete without a 
short discussion of research design. Statistics are 

fun and all, but it is the research design (and asso-
ciated methodology) that allows us to draw, or pre-
vents us from drawing, clear conclusions about 
causality.

The three basic research designs are: the true 
experiment, the quasi experiment, and the non ex-
periment (also called a correlational study, but 
that’s a terrible name). These three designs differ 
in two aspects: how subjects are assigned to condi-
tions (through a random or non random process) 
and whether the independent variables are ma-
nipulated by the experimenter. Some variables can 
be manipulated, like type of reinforcement sched-
ule, and some can’t, like height or SAT score.

Put these two factors together, and we get our 
three basic types of experimental designs (Chart 
1). The true experiment has random assignment 
to groups and a manipulated independent vari-
able. Due to the random assignment, the groups 
likely begin the study equal on all relevant vari-
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ables, meaning that after the manipulation has oc-
curred the differences observed between the 
groups on the dependent variable are the result of 
the experimenter’s manipulations (i.e., the inde-
pendent variable). The great advantage of this de-
sign is that, if done correctly, causal claims are 
clear and easy to substantiate. There are some dis-
advantages to this design, but let’s not concern 
ourselves with those.

In the quasi experiment, people are not ran-
domly assigned to groups, but there is a manipu-
lated independent variable. Aside from the lack of 
random assignment, the quasi experiment is like 

the true experiment. However, that one difference 
makes all of the difference. The non random as-
signment to groups is a fundamental weakness. 
Only random assignment offers any assurance that 
the groups start out equal. And if the groups start 
out unequal, there is no way to know if the ob-
served differences on the dependent variable are 
due to the manipulated variable or to pre-existing 
differences. To summarize, there are an infinite 
number of possible causes for the differences ob-
served on the dependent variable, of which the in-
dependent variable is but one. At least, however, 
the manipulated variable is a good candidate for 
the cause. So there’s that. You may be asking, “If 
there are so many problems that result from not 
randomly assigning people to groups, why would 
anyone ever fail to randomly assign?” The answer 
is sometimes we are simply unable to randomly as-
sign people to groups. The groups are pre-existing 
(i.e., they were formed before the study) and unal-
terable. An example would be the effect of two dif-
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Quasi Experiment ✘ ✔

Non Experiment ✘ ✘



ferent teaching techniques on classes of introduc-
tory psychology students. The students picked the 
class (including instructor, dates, times and loca-
tions); it is not possible for the researcher to as-
sign them, randomly or otherwise, to one class or 
the other. That’s the real world, and sometimes it 
constrains our research.

In the third design, the non experiment, peo-
ple are not randomly assigned to groups; there is 
also no manipulation. In fact, there are often not 
even groups. A classic example of this type of de-
sign is a study designed to determine what causes 
success in school. The dependent variable is scho-
lastic achievement, and the independent variable 
is any number of things (IQ, SES, various personal-
ity traits). You will note that all of these various in-
dependent variable are continuous variables – 
there are no groups. And of course, nothing is ma-
nipulated; the people in the study bring their own 
IQ status (or SES or what have you) with them. 
As with the quasi experimental design, there are 

an infinite number of possible causes for the differ-
ences observed on the dependent variable. How-
ever, because nothing was manipulated in the non 
experiment, there isn’t even a good candidate for 
causality. Every possible cause must be evaluated 
in light of theory and previous research. It’s an 
enormous chore. So why would anyone use this de-
sign? Well, some variables can’t be manipulated 
for ethical reasons (e.g., the effects of smoking on 
human health) or practical reasons (e.g., height). 
Conducting research on topics where the inde-
pendent variable can’t be eliminated requires re-
searchers to make the best of a bad hand (to use a 
poker metaphor).

Terminology: Variables

I’ve used the term independent variable in the 
previous section without defining it. Independent 
variable has a twofold definition. An independent 
variable is a variable that is manipulated by the re-
searcher; it is also a presumed cause of the depend-
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ent variable. You can now guess what a dependent 
variable is: it’s the variable that is the outcome of 
the study, presumed to be the effect of the inde-
pendent variable.

There is another way to think of variables, this 
time along a fixed-random axis. A fixed variable is 
one whose values are determined by the re-
searcher. This can only apply to an independent 
variable in a true or quasi experiment. In the case 
of a fixed (independent) variable, the researcher 
decides what values the variable will have in the 
study. For example, if the study involves time 
spent studying a new language, the researcher 
might assign one group of subjects to study for 
zero minutes, another group to study for 10 min-
utes, and a third group to study for 20 minutes. 
Why these values and not some other values? Ask 
the experimenters – they’re the ones who chose 
them.

A random variable is a variable whose values 
were not the result of a choice made by the experi-
menter. Aside from cases involving complete scien-
tific fraud (which does happen), all dependent vari-
ables are random variables. This whole fixed-
random variable thing will come up again later in 
an unexpected way. Something to look forward to, 
right? As a final note on random variable in the 
context of experimental design or probability 
analysis, we shouldn’t confuse random variable 
with the general concept of randomness. When we 
discuss a random variable, we are not necessarily 
saying that the variable is comprised of random 
data – we are simply saying that the values of this 
random variable were not chosen by the experi-
menter.

Terminology: Samples vs Populations

Population. Everyone relevant to a study. If 
your study is about people in general, then your 
population consists of every person on the planet. 
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If your study is about students in an art history 
class being taught a certain way at a certain place, 
then your population is everyone in that class. 
Aside from studies with narrowly defined popula-
tions, we never measure the entire population. 
Sometimes researchers like to pretend that they 
have measured a population just because their 
sample is big, but they’re just pretending.

Sample: A subset of the population. If there 
are ten million in the population, and you meas-
ure all but one, you’ve measured a sample. Sam-
ples can be small (N = 23) or large (N = 10,823). 
(I was once involved in a study in which the popu-
lation was 27 people. That’s it. Only 27 people on 
the planet were relevant to the study. The study 
concerned attitudes about a proposed change in de-
partmental policy, something not relevant to any-
one outside of this department. So the population 
for that study was 27. We received data from 26 
people – one person did not respond to the ques-

tionnaire. Did we measure a sample or a popula-
tion?)

If you want to know the characteristics of eve-
ryone in the population, then you have to measure 
everyone in the population. That sounds like 
work. For many types of studies, it’s an impossible 
task. So we measure samples because we are ei-
ther lazy or are dealing with a population so big 
that it’s a practical impossibility to measure it all.

Sampling Error. Now for the bad news. Be-
cause we measure samples instead of the popula-
tion, there will be error in our results, a type of er-
ror called sampling error. That is, because we 
measured a part of the group and not the whole 
group, the results we get for the part will not 
equal the results for the whole. This is true for 
every type of statistic in the known universe.

Sampling error is unavoidable when you meas-
ure samples. The vast majority of what we cover 
in statistics (in particular, most of the topics cov-
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ered in this book) involves methods for addressing 
sampling error. Understanding sampling error is 
one of the keys to understanding statistics. Deal-
ing with the error that comes from measuring sam-
ples instead of populations is the single biggest 
problem facing social scientists.

One Last Thing Before We Proceed

I didn’t invent any of this stuff. In this book I 
am merely explaining concepts and principles that 
long ago entered into the body of foundational sta-
tistics knowledge.
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2 Just a few basic principles 
and concepts. Nothing too 
big to deal with.

Probability



Overview

So much of what we will do in statistics in-
volves probability analyses. I should rephrase that 
and say probability analysis (singular, not plural) 
because it’s the same type of analysis repeated un-
til the end of time. That’s actually good news as it 
simplifies our task considerably. Before we get to 
that part, let’s take some time to discuss the gen-
eral nature of probability. Fun fact: probability 
analyses began as a way to understand the likeli-
hood of various gambling outcomes.

We need a definition of probability. How 
about this: probability describes the likelihood 
that a certain outcome (or range of outcomes) will 
occur. If it is impossible for a certain outcome to 
occur (e.g., rolling a 2.3 on a six-sided die), then 
the probability of that outcome is zero. If it is cer-
tain that a certain outcome will occur (e.g., rolling 
a number greater than zero and less than seven on 

a six-sided die), then the probability is one. All 
other probabilities fall between zero and one.

Discrete vs. Continuous Variables

We mentioned random variables in the previ-
ous chapter, where random is defined as a vari-
ables whose value is not chosen or determined by 
the experimenter. There are actually two types of 
random variables: discrete and continuous. And, 
you guessed it, they have different probability 
models. So we need to define them both.

Discrete Random Variable. A discrete ran-
dom variable is a random variable with discrete val-
ues. Sorry about that definition. I’ll try to improve 
it. It’s a random variable whose values are not con-
tinuous. Neither of these definitions are as good 
as an example: the roll of a six-sided die. There are 
only six possible values for this variable. There is 
not an infinite number of values; no chance of roll-
ing a 2.3 or a 5.4. There are just six discrete possi-
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ble scores. That’s a discrete random variable. (By 
the way, the real definition is: a variable with 
countably infinite, but usually finite, number of 
values. Helpful, right?)

Continuous Random Variable. A continuous 
random variable is a random variable with an infi-
nite number of possible values. How many possi-
ble heights are there for humans? How many pos-
sible heights are there between 6 feet even and 6 
feet, one inch? An infinite number.

Now, we don’t measure variables like height 
or time in their full, continuous glory, but that 
doesn’t mean they are not continuous variables. 
Even if we measured time in milliseconds, there 
are still an infinite number of possible time values 
in between 9.580 and 9.581 seconds.

Probability: Discrete Case

Probability is definitely easier to understand 
for the discrete case. We will refer to this probabil-
ity as pr(X ), the probability of a certain value of X, 
a variable with discreet (i.e., non-continuous) val-
ues. If we use our six-sided die example, the prob-
ability of rolling a five, pr(5), is 1/6.

Let’s discuss a few probability concepts for dis-
crete variables. First, as mentioned, the probabil-
ity of a certain value of X, a discrete random vari-
able, ranges from 0 to 1. No negative probabilities 
and no probabilities greater than 1 are allowed.

0 ≤ pr(X ) ≤ 1

Second, the total probability across of possible val-
ues of X = 1. Once again, think of the roll of a six-
sided (fair) die. The probability of rolling a 1 or a 
2 or 3 or a 4 or a 5 or a 6 are all 1/6. The sum of all 
of those probabilities equals 1.
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∑
all X

pr(X ) = 1

Finally, if the outcome is known (because the 
event has occurred or the opportunity for the 
event to occur has passed), then pr(X ) = 0 or 1. 
So before I flip a (fair) coin, the probability of a 
heads, pr(H ), is .5. After the coin has been flipped, 
with a the result being a tail, the probability of hav-
ing tossed a heads is zero. It may seem rather 
pointless to discuss probabilities for events that 
have already occurred, but, believe me, there’s a 
place for this (e.g., maximum likelihood score esti-
mation in Item Response Theory).

Now it’s time to introduce a statistics term 
with a special meaning: expectation, which has the 
symbol E followed by some parentheses indicating 
the statistic for which you want the expected 
value. If you want the expected value of variable X, 
then it’s E(X ). There are a number of ways to de-
fine expectation – we’ll limit ourselves to just two 

of them. There’s the statistical interpretation in 
which expectation refers to long run average. As 
in really long run. As in an infinite number of 
times. And no fair limiting the data in question to 
a subset of possible values and computing the aver-
age of that subset – that’s not expectation (I actu-
ally had to refute this attempted end-run around 
the definition once). Second, and far less impor-
tant to us (but worth mentioning anyway), is the 
probability definition of expectation in which ex-
pectation means all possible outcomes weighted 
by their probabilities. For the expected value of X, 
this probability definition looks like this:

E(X ) = Σ(Xpr(X ))

That said, let’s just remember expectation as 
long run average value – add up all of the scores 
and divide by N. Two final notes on the expected 
value of X. First, the expected value may not be an 
observable value. For example, the expected value 
for the roll of a six-sided die is 3.5 (i.e., if all 
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scores are equally likely and the value of X can 
only be 1, 2, 3, 4, 5, or 6, then the long run aver-
age is 3.5). So 3.5 is the expected value but try roll-
ing a 3.5 – it’s not easy. The second point on the 
expected value of X is that it equals the population 
mean, μ.

E(X ) = μ

And finally, how about a graphical representa-
tion of scores for a discrete random variable? This 
graph is the Probability Mass Function (PMF). 
The PMF shows the probability for various out-
comes of a discrete random variable. Let’s con-
sider a PMF for the roll of two six-sided dice 
(think Monopoly dice rolls).

Notice a few things in this PMF displayed in 
Figure 1. The height of the bars indicates probabil-
ity, higher bar = greater probability. No surprise 
that it’s far more probable that a person will roll a 
seven than a two. Second, we see that in this case, 
the PMF is symmetrical – one half is a mirror im-

age of the other half. Third, the total equals 1.0 
(add ‘em up!).
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FIGURE 1 Probability Mass Function for Dice Roll
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Probability: Continuous Case

The rules for probability for a continuous ran-
dom variable are familiar, yet different enough to 
be annoying. Probably the strangest thing to under-
stand is that for a continuous variable the probabil-
ity that X will equal any specific value is zero. For 
example, height is a continuous variable. What is 
the probability that a person’s height will equal 
six feet exactly? The answer is zero. Why? Be-
cause with measurement of sufficient precision 
and enough decimal places, no one is exactly six 
feet tall. Remember the nature of a continuous 
variable: there are an infinite number of possible 
values between any two values (e.g., an infinite 
number of possible heights between five feet 
eleven inches and six feet one inch). So that’s one 
reason. There is also the calculus reason. We’ll 
come to that in due time.

So if the probability that X equals any specific 
value is zero, what probability analysis can we do 

with a continuous variable? The answer is rather 
than define probability of a single value (i.e., 
pr(X )), we must define a probability function that 
covers a range of X values. This function, called a 
Probability Density Function (PDF), has the fol-
lowing characteristics. First the function will be 
non-negative for all values of X.

f (x) ≥ 0 for all X

Second, the total probability across the range of 
values of X equals one.

∫
∞

−∞
f (x)d x = 1

This is where calculus enters. Notice that to com-
pute probability of a continuous function, we 
must integrate over a range of values. In the above 
case we are integrating across all possible values 
of X, resulting is a probability of 1.0. This calls 
back to the discrete variable case where we said 
the total probability equals one.
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To compute the probability for a certain range 
of values of a continuous variable we perform the 
same operation with the beginning and end points 
being those particular values instead of the total 
range of values.

pr(a < X < b) = ∫
b

a
f (x)d x

As I’m sure you remember from your days as a cal-
culus student, we integrate to find the area under 
the curve defined by f (x) for a range of scores (in 
this case ranging from a to b) Thus, whereas the 
discrete probability case was determined by the 
height of the density function for a given score on 
X, the continuous case is defined by the area un-
der the curve defined by f (x) for a range of scores 
on X. Thus, the graphical representation of the 
PDF is some curve defined by f (x). Figure 2 dis-
plays a rather common PDF.

(And now the calculus reason for why the 
probability for a specific value of X is zero. Integrat-

ing in calculus is a way to find the area under the 
function for a range of values of X. Well, what hap-
pens if the range of values is from a to a? The area 
is zero.Think of computing the area of a rectangle 
– it’s length times width. And what is that area if 
the width is zero? That’s what you’re doing when 
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you say integrate at this one point, having a range 
of zero.)

The expected value of X for a continuous vari-
able takes the same general form as before: X 
times its probability across the entire range of val-
ues for X. Of  course, this being a continuous vari-
able, we have to calculus it up a bit.

E(X ) = ∫
∞

−∞
xf (x)d x

Thus, expectation is a weighted average of scores 
on X, where scores on X are weighted by the likeli-
hood (i.e., probability as defined by f (x)) of occur-
rence.

Finally, as with the discrete case, the expected 
value of X for a continuous variable equals the 
population mean.

E(X ) = μ

And as long we’re discussing expectation, we 
should introduce the concept of variance (symbol-
ized as σ2 for the population value), which we’ll de-
fine as the expected value of the squared differ-
ence between X and the population mean, μ.

σ2 = E(X −μ)2

And since μ is the expected value of X, we could re-
write this as:

σ2 = E(X −E(X ))2

There is so much more to say about variance (and 
we will in the next chapter). For now just think of 
variance as an index of differences in scores (calcu-
lated as the average squared difference between 
scores on X and the mean of X). Also note that 
variance can’t be negative (σ2 ≥ 0) because the 
scores are either different from each other or 
they’re not; there can’t be negative differences.
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One last statistic for now is standard devia-
tion. Standard deviation is the square root of vari-
ance and has the symbol σ for the population 
value.

σ = σ2

It’s nice that the symbols make sense. That sel-
dom happens in statistics.

The Normal Distribution

The normal distribution is a theoretical con-
cept not found in real data (the dataset would 
have to be fully continuous – literally no two 
scores the same – with N = ∞). So no one has ever 
had a normally distributed set of data. But real 
data often approximate the normal distribution, 
hence its usefulness.

The PDF for a normal distribution having a 
mean of μ and a variance of σ2 is defined by the fol-
lowing function.

f (x) = 1
e(X−μ)2/2σ2 2πσ2

As before, area under curve equates to probability.

The normal distribution is symmetrical and 
unimodal (one peak) in which μ equals the center 
of distribution and σ2 (or σ) equals the spread of 
distribution. The normal distribution is actually a 
family of distributions having the same shape but 
varying on mean and variability. That said, we are 
going to make our lives easier by designating one 
type of normal distribution as the official stan-
dard. This standard version is called the standard 
normal distribution, and it has a mean of zero and 
a standard deviation of one. As nice as that is, the 
even better news is that when μ = 0 and σ = 1, 
then the above equation simplifies to the follow-
ing slightly less intimidating equation.

f (x) = 1
e.5(X2) 2π
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We’ll be referring to the normal distribution 
quite often in the coming chapters. So there’s 
something to which you can look forward. For 
now, let’s just do a bit of basic navigation of the 
normal distribution.

Because normally distributed data always have 
the same shape, the normal distribution has many 
desirable properties. First, because the normal dis-
tribution is symmetrical, we can describe a score’s 
relative position to the mean. That is, is a score 
above the mean or below the mean? How far 
above or below? Both questions are important and 
both have quantifiable answers that have the same 
meaning for all normally distributed data. (What 
if the data are not normally distributed? Well 
then, life’s not so simple. We have the good for-
tune that most variables are approximately nor-
mally distributed.)

Here’s what you’ll find if you examine a set of 
normally distributed data. A certain percentage of 

scores will always be the same distance from the 
mean. For example, let’s say you have a set of nor-
mally distributed data from a sample of 100 peo-
ple. Let’s also say the mean of this data is 0 and 
the standard deviation is 1. If you count how 
many people have scores between the mean and 
one standard deviation above the mean, you will 
find 34. If you count the number of people with 
scores between one and two standard deviations 
above the mean, you’ll find 14. Finally, if you 
count the number of people with scores between 
two and three standard deviations above the 
mean, you find just two people. And because the 
distribution is symmetrical, things are the same 
for scores below the mean.

A few words about the preceding numbers. 
First, because I used a sample of 100 people, the 
numbers are rounded. Second, the previous para-
graph also makes it appear that the normal distri-
bution goes no further than three standard devia-
tions above or below the mean. The truth is that 
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the normal distribution is without bounds; in the-
ory, you could find someone with a score so high 
that they are seven standard deviations above the 
mean (or nine below the mean or whatever). 
These are scores so rare that we will not concern 
ourselves with them; we’ll just focus on the world 
that is three standard deviations above and below 

the mean. It is this area that contains 99.7% of all 
scores. One last note, if a person’s score is at the 
mean, their score is at the 50th percentile, mean-
ing that it is higher than 50% of the scores. Figure 
3 is a diagram of the normal distribution, divided 
into sections by standard deviation, showing the 
percentages in each section.

Now, what does all of this buy us? It allows us 
to quickly and easily attach meaning to a score. All 
you have to do is remember three numbers: 34, 
14, and 2. If I told you that my score on a test was 
one standard deviation below the mean, what do 
we know about it? Obviously, it’s below average. 
Using the 34/14/2 rule, we can estimate my per-
centile rank (the percent of people at or below a 
given score – we’ll discuss percentile ranks in 
greater detail later). Now how do we figure this 
out? The only people with scores worse than mine 
are those with scores even lower than one stan-
dard deviation below the mean. A quick calcula-
tion shows that my score is greater than 2% + 
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FIGURE 3 Areas of the Normal Distribution
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14% of the scores. Thus, my percentile rank is 
16%. This example is shown in Figure 4. So know-
ing the properties of the normal distribution helps 
us interpret test scores without much work. And 
it’s all because normally distributed data always 
has the same shape.

I should stress one point that with this 34/14/
2 rule for normal distributions: these percentile 
ranks are only crude estimates. If any precision is 
needed, consult a z table. Also, if the number of 
standard deviations above or below the mean for 
the score in question isn’t a nice round number 
(e.g., 1.7 standard deviations above the mean), 
we’ll need to consult a z table. And if the dataset 
isn’t normally distributed, then forget 34/14/2 
rule. And forget the z table. The z table is descrip-
tive of the normal distribution only.

The only lingering question is this one: How 
do we know the number of standard deviations 
above or below the mean a score lies? As an exam-

ple, if someone’s score on a test is a 23, how do 
we know the number of standard deviations above 
or below the mean? We’ll have to compare that 
score to the mean score and use the standard de-
viation of the test to compute something. 
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It’s greater than...

If a score is...

FIGURE 4 Using the 34/14/2 Rule to Estimate Percen-
tile Ranks for a Normally Distributed Set of Data
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Standard Scores: Linear z Scores

There are many types of standard scores, but 
the most popular is the linear z score (often re-
ferred to as just z score). Whether you are comput-
ing z scores for population data

zX = (X −μX)
σX

or for sample data

zX = (X −X̄ )
SX

the equations are fundamentally the same: a given 
score minus the mean of the scores divided by the 
standard deviation of the scores.

How about an example? Let’s say that I took 
the SAT, and my verbal score (SAT-V) is a 400. 
The mean of the SAT-V section is 500, and the 
standard deviation is 100. Now we’re ready to go. 
Plugging in these values into the z score equation, 

we find that my 400 on the SAT-Verbal becomes a 
z score of -1.0. 

Let’s take a closer look at my z score of -1.0. 
My z score is negative. The negative sign tells you 
something – my score is below average. If my 
score were above the mean, my z score would 
have been positive. If my score had been exactly 
the same as the mean, my z score would have 
been 0.0. The difference between my score of 400 
and the mean is 100 points. The standard devia-
tion is 100 points. Thus, my score of 400 is ex-
actly one standard deviation below the mean. The 
z score is -1.0. Do you see where this is going? I’m 
not this redundant on accident. Here it comes: A z 
score is literally the number of standard deviations 
a score deviates from the mean. In case that's not 
clear, I'll restate the definition in the form of a 
question: How far (in terms of number of stan-
dard deviations) from the mean (above or below) 
is this score? If the z score is -2.0, then the per-
son’s score is two standard deviations below the 
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mean. If the z score is 1.5, then the person’s score 
is one and a half standard deviations above the 
mean. If the z score is 0.0, then the person’s score 
is zero standard deviations above the mean – it is 
right on the mean. So when we discuss the num-
ber of standard deviations a score is from the 
mean, we are using z scores. Very convenient. The 
last thing to mention is that if our data are nor-
mally distributed, then we can quickly and easily 
attach meaning to the score with the 34/14/2 rule 
we learned earlier. Take my score of 400. In z score 
terms it is -1.0. If the data are normally distrib-
uted, that means my score is better than only 16% 
of the test takers (see Figure 4 again). More pre-
cise estimates require a z table.

How to Read a z Table

One problem with z tables is that there is a re-
markable lack of uniformity to their structure. It’s 
quite annoying. If you understand their design, 
you can always read the correct value, but some of 

them seem (much like this sentence) to have a de-
sign that can be fairly described as intentionally ob-
fuscatory.

The abbreviated z table given in Table 1 has 
the structure shown in Figure 5. That is, each en-
try in the table indicates the proportion of scores 
(visually: area under the curve) that are less than 
the given z score. In the case of Figure 5, a z score 
of -1.00 is greater than .1587 (or 15.87%) of the 
scores in a normal distribution. Due to space limi-
tations, only selected values from a z table are 
shown in Table 1.

Let’s read a few values from Table 1. If you 
want the z score that is greater than 95% of the 
scores, then find the one with a probability (the pr 
< z column) that is closest to .95. In this case, 
that’s 1.645. Only 5% of the scores in a normal dis-
tribution are greater than 1.645. We could say that 
the z score that separates the top five percent of 
scores from the bottom 95% is 1.645. This num-
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ber will turn out to be moderately important later. 
It also works in the reverse: -1.645 is greater than 
only 5% of the scores; so it separates the bottom 

five percent from the top 95%. In both the positive 
and negative cases, we are identifying this extreme 
five percent of the distribution – it’s in one tail of 
the distribution or the other (but not both). This 
is referred to as a one-tailed situation (except we 
don’t say situation; we say one-tailed test when 
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TABLE 1 Selected z Table Values

z pr < z z pr < z

-3.00 0.0013 0.50 0.6915
-2.00 0.0228 1.00 0.8413
-1.96 0.025 1.50 0.9332
-1.645 0.0500 1.645 0.9500
-1.50 0.0668 1.96 0.975
-1.00 0.1587 2.00 0.9772
-0.50 0.3085 3.00 0.9987
0.0 0.5

Values in z table indicate proportion of scores below z value. In the dia-
gram, a z of -1.00 is a score that is greater than .1587 (i.e., 15.87%) of 
the scores in a normal distribution.

FIGURE 5 Reference Guide for z Table Structure



it’s done as part of hypothesis testing). Figure 6
displays this one-tailed region of the normal for 

which +1.645 z separates the top 5% of scores 
from the bottom 95% of scores.

One other z score worth mentioning is 1.96. A 
z score of 1.96 is greater than 97.5% of the scores. 
That doesn’t sound important yet. Once again, be-
cause of the symmetrical nature of the normal dis-
tribution, -1.96 is greater than 2.5% of the scores. 
Put these two together and you have this: 95% of 
the scores in a normal distribution are between 
-1.96 and +1.96 (because 2.5% are less than -1.96 
and 2.5% are greater than +1.96). This region is 
shown in Figure 7. Because we are splitting the 
five percent into both tails, you can probably guess 
that this will be called a two-tailed something or 
other (two-tailed test for hypothesis testing pur-
poses).

The point of this is that 5% will be a big deal 
in much of what we do in statistics (i.e., if a result 
would occur less often than 5% of the time if our 
hypothesis were incorrect, then we will conclude 
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95% of scores distributed normally are between -1.96 and +1.96 z. 
This two tailed region of a symmetrical distribution is commonly used 
in hypothesis testing.

FIGURE 6 Upper 5% of Normal Distribution (i.e., One-
Tailed Region)
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that our hypothesis is not incorrect – this will be 
explained at length in Chapter 4). Because we so 
often use this 5% standard, there are really only 

two values from a z table that really matter: 1.645 
and 1.96 (in both the positive and negative 
forms).

95% of scores distributed normally are between -1.96 and +1.96 z. 
This two tailed region of a symmetrical distribution is commonly used 
in hypothesis testing.

FIGURE 7 Upper 2.5% and Lower 2.5% of Normal Dis-
tribution (i.e., Two-Tailed Region)
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3 If only we knew...

Then we wouldn’t have to 
estimate.

Estimation



The Need for Estimation

Why are we discussing something called esti-
mation? Estimation is what you do when you 
don’t know something. We do experiments. We 
gather data. We have the information. We com-
pute the statistics. We don’t need to estimate any-
thing. We know the thing.

Right?

Well, no. The reason is that the results from 
our experiments are intended to generalize be-
yond the specific group of people in our study. For 
example, let’s say you do a medical study involv-
ing 200 people from a coastal city in America and 
you find that 58% possess antibodies for a certain 
virus. You know the percentage for that group of 
200 people. You don’t have to estimate it – you 
have the data, and you know it. But the purpose of 
the study is to use the information from that 
group and generalize to the rest of the city. What’s 
true of those 200 people is only moderately inter-

esting in itself – what’s true of the people of the 
city as a whole is far more important. The 200 are 
just a sample from the population of the city, and 
we use sample statistics as estimates of popula-
tion statistics.

As we mentioned in the first chapter, none of 
this would be a problem if we just measured the 
entire population. We would know the population 
values and we wouldn’t have to estimate anything. 
But that is work. Way more than we want to do. 
And most of the time we don’t have the resources 
to measure an entire population even if we wanted 
to. Which we don’t.

To summarize, we will be using statistics com-
puted from samples of data to estimate values for 
unmeasured populations.

This, of course, leads to no end of problems.
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Point Estimation: Means

You know how to compute the mean of a set 
of data; add up the scores and divide by the num-
ber of scores. As mentioned in the previous chap-
ter, the population mean has the symbol μ. So 
what about the mean of a sample? Once again, 
add ‘em up and divide by N.

But how well does this sample mean equation 
work as an estimator of the population mean? It 
would be bad news if it were biased in some way. 
The good news is that the sample mean is an unbi-
ased estimator of the population mean. Now, unbi-
ased doesn’t mean accurate. There will be sam-
pling error. It just means that the error won’t con-
sistently favor one direction – the positive errors 
(where the population mean is greater than the 
sample mean) will equal the negative errors 
(where the population mean is less than the sam-
ple mean).

The sample estimator of population mean has 
two symbols. The formal symbol, which we will 
never mention again, is ̂μ, which indicates that it 
is an estimate of μ. (One imagines that the formal 
symbol is reserved for state dinners and other 
fancy affairs.) The common symbol is X̄. This sam-
ple (estimator of the population) mean is com-
puted just like every other mean.

X̄ = ΣX
N

In summary, μ is the symbol for population 
mean, X̄ is the symbol for sample mean, and they 
are both calculated the same way (like every mean 
you’ve ever calculated in your life). Finally, the 
sample mean is an unbiased estimator of the popu-
lation mean, which is good news. But there will al-
ways be sampling error (the inevitable bad news 
that comes with every sample). Sampling error re-
sults in sample means that are greater than or less 
than the population value by some unknown 
amount.
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A Brief Discussion of Variance

Distributions for two different datasets are dis-
played in Figure 1 and Figure 2. What’s the differ-
ence between the two distributions? When they 
are shown on separate graphs they appear to be 
the same. They have the same mean score. Notice 
how the midpoint of each is zero. They have the 
same sample size (trust me on this). If you’ve read 
the title of this section, then you’ve guessed that 
the difference is variance. In the Figure 1 distribu-
tion (in black), most (approximately two-thirds) 
of the scores are within one point of the mean 
(the mean plus or minus one point), whereas in 
the Figure 2 distribution (in blue), very few of the 
scores are within one point of the mean. You have 
to move out to five points away from the mean 
(the mean plus or minus five points) in order cap-
ture most of the scores. If we place both datasets 
on the same scale (Figure 3), it’s clear that the 
scores are not spread out in the same way (if Fig-
ure 3 seems like a massive cheat, pay careful atten-

tion to the scale on the x- and y- axes on the three 
graphs).

Variance is greater for the blue distribution 
than for the black distribution. Variance is all 
about the differences between the scores
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FIGURE 1 Variability Comparison: Low Variance
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Variance (along with its twin cousin, standard 
deviation) is our preferred index of variability 
(symbolized for populations as σ2). Listed below is 
the equation to compute variance for a population 
of data.

σ2
X = ∑ (X −μ)2

N

This equation isn’t that bad. In fact, it is really 
similar to the equation for a mean. To see that, 
take all the parenthetical stuff and call it Q (just to 

give it a name). The equation is now 
∑ Q

N
. Essen-

tially, it is the mean of this Q variable. So variance 
is the mean of something. Now let’s look at the 
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parenthetical component. It’s (X −μ)2. Forget the 
squared part, focus on (X −μ). This is called a 
mean-deviation score and it is the difference be-
tween a score on X and the mean score. If X equals 
the mean score, then the mean-deviation score is 
zero. If X is greater than the mean score, then the 
mean-deviation score is positive. You get the idea. 
We’ll be computing mean-deviation scores for all 
people in our dataset. An example is presented be-
low. The mean of X is 6.

Person X (X - Mean)

Bennett 3 -3
Tommy 9 3
Todd 4 -2
Matt 8 2

Now to deal with the squared part, we’ll simply 
square those mean-deviation scores.

Person X (X - Mean) (X - Mean)2

Bennett 3 -3 9
Tommy 9 3 9
Todd 4 -2 4
Matt 8 2 4

Remember that Q thing we made up? That’s the 
last column, the squared mean-deviation scores. 
As we said, variance is just the mean of this thing.

So variance is the mean of the squared mean-
deviation scores. In this case, it’s (9+9+4+4)/4 
= 6.5. Another way to describe it: variance repre-
sents the average squared difference between each 
score and the mean. Here’s another example.
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Person X (X - Mean) (X - Mean)2

Julianna 9 0 0
Paul 9 0 0
Jennifer 9 0 0
Anthony 9 0 0
Brenden 9 0 0

Variance is – you guessed it – zero. Why? Every 
score is the same. Thus, the average distance be-
tween each score and the mean is zero. Just for 
fun, diagram the frequency distribution of this da-
taset.

Point Estimation: Variance

A quick review of the sample estimator for 
means. To estimate the population mean from sam-
ple data, we took the same formula that we used 
to compute population means and applied that for-
mula to sample data. We can’t exactly do that for 
variance because the population variance equation 

requires the population mean (Σ(X −μ)2 /N). And 
because we’re stuck in sample-land we don’t know 
the population mean – the sample mean is all we 
have. Not to worry, we’ll just use the sample mean 
(which we already said is an unbiased estimator of 
the population mean) in its place. So to estimate 
the population variance from sample data you 
would think a simple modification to population 
variance equation to incorporate sample mean 
(i.e., turning this: Σ(X −μ)2 /N into this: 
Σ(X −X̄ )2 /N) would get the job done. This ap-
proach seems logical and all, but such an approach 
would underestimate the population variance (if 
we only knew the population mean, this would 
not be a problem).

To obtain an unbiased estimate of the popula-
tion variance (which has the formal symbol ̂σ2 and 
will never be mentioned again) we must make an 
adjustment to the equation for sample data. That 
adjustment is a very simple change to the denomi-
nator of the equation so that N becomes N −1. 
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Thus, the sample (estimator of the population) 
variance takes the following form.

S2
X = Σ(X −X̄ )2

N −1
The above equation, popularly called the sample 
variance equation (with the symbol S2

X), is what 
we use to obtain an unbiased estimate of the popu-
lation variance from sample data.

Even though these are samples, standard devia-
tion is still the square root of variance. Thus, the 
sample estimator of population standard deviation 
(with this never to be repeated symbol ̂σ) is the 
square root of the sample estimator of variance.

SX = S2
X

And of course nothing changes just because 
we are dealing with measures of variability (vari-
ance, standard deviation) instead of central ten-
dency (mean); the probability that these (unbi-

ased) sample-based estimators will equal the popu-
lation parameters is still zero. Sampling error af-
fects all sample-based statistics.

Interval Estimation: Overview

Yes, X̄ is an unbiased estimator of μ, but X̄ will 
never equal μ. (As mentioned, the probability that 
X̄ = μ is zero; see discussion of continuous data for 
why.) Thus, our estimate of the population mean 
will always be incorrect. Always incorrect. Think 
about that.

(By the way, one counter argument to the 
above paragraph that I’ve heard is this: The sam-
ple statistic, or point estimate, is the best estimate 
of the population parameter. Best estimate? Best 
compared to what? Random guesses? Throwing 
darts? Is anyone arguing for those? As far as I can 
tell, the sample statistic is our only estimate, so 
it’s best by default. If I’m the only one who shows 
up at the Olympics to run the 100 meter sprint, I 
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am officially the fastest runner. I finished first in a 
field of one. Big win for me. So this best estimate 
claim is a hollow one and is a bit of a distraction 
from the real issue: Just how much error is likely 
inherent to this estimate?)

To have a probability greater than zero of locat-
ing a population parameter, we must create an in-
terval around the sample statistic. This interval 
will have an upper and lower boundary that indi-
cates the likely location of the population parame-
ter. We don’t know what the population parameter 
is, and we can’t be 100% certain that it’s in this in-
terval. All we can say is that it is likely (how likely 
is up to us, but 95% is common) between these 
two boundaries. So instead of saying, “Here’s my 
sample mean which has a zero percent chance of 
equaling the population mean,” we say, “Here’s 
my sample statistic and lower and upper values 
around it which give the likely location of the 
population mean.”

We call these intervals confidence intervals. To 
form these intervals, we have to take a brief side 
trip to the standard error of the mean.

The Standard Error of the Mean

As you may have guessed by now, assuming 
the sample was collected in the right fashion (this 
is such a big issue, we’ll wait to discuss it later), 
there is a relationship between sample size and 
the likely extent to which sampling error affects a 
mean. Greater sample sizes should lead to less 
sampling error (again, assuming that the sample 
was collected in the correct manner).

The statistic that describes how much error is 
likely associated with a given sample mean is 
called the standard error of the mean (and yes, if 
you’re doing this for variance, there’s a standard 
error for variance as well). The equation for the 
standard error of the mean (when the population 
standard deviation, σ, is known) is as follows.
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Standard Error of Mean = σX

N

That’s it, just the standard deviation over the 
square root of the sample size. Definitely one of 
the simplest equations you’ll see.

Interval Estimation: Confidence Intervals

So that answers the question of how much er-
ror we can expect with our sample estimate of the 
population mean. Now let’s take that information 
and turn it into the answer to a better question: 
Given our sample mean (and the standard error of 
the mean), what is the likely population mean? To 
answer this question, we’ll create an interval 
around the sample mean called a confidence inter-
val (and now you can see why this section is called 
interval estimation).

How does the standard error of the mean help 
us form this confidence interval? Imagine that you 
drew a sample from a population and computed 

the mean on some variable. That’s pretty easy to 
imagine since it describes a pile of studies. Now re-
peat this study over and over with the same sam-
ple size. Sampling error will affect every one of 
these sample means. Sometimes they will be less 
than the population mean; other times they will 
be greater. Do it enough times and these means 
will form a distribution of their own, called a sam-
pling distribution. These sample means will be 
normally distributed with a certain mean and stan-
dard deviation. Here’s the kicker: the mean of this 
distribution will equal the population mean and 
the standard deviation of these sample means will 
equal the standard error of the mean (not really, 
but go with this concept).

Now that we know that these sample means 
are normally distributed with a mean equal to the 
population mean and a standard deviation equal to 
the standard error of the mean, we can use some 
basic normal distribution principles and state that 
95% of the sample means are less than 1.96 stan-
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dard errors of the mean (i.e., ± 1.96 × SEM) away 
from the population mean (see Chapter 2 for a dis-
cussion of the normal distribution). Somehow 
(and I have never worked this out) this operation 
is reversible and we can say that for a given sam-
ple mean a bi-directional interval with a width 
that is 1.96 times the standard error of the mean 
(on each side) will contain the population mean 
95% of the time.

The confidence interval for a mean when popu-
lation standard deviation (σ) is known is com-
puted as follows for the bi-directional or 2-tailed 
interval.

CI = X̄ ± (z1−α
2 ) σX

N

The last part of the equation (σX / N) is just the 
standard error of the mean. No problem there. 
That other thing next to it (z1−α

2
) is likely confus-

ing. Not to worry, that’s just statistician language 
for “find the value on a z table (i.e., normal distri-

bution table of values) that demarcates the upper 
α /2 percentile from the top.” So if α is .05 (our nor-
mal value for α; more on α in the next chapter), 
you would look for the z value that separates the 
top .025 (or 2.5%) of the distribution; that is, the 
value at the 1-.025 percentile, .975. The z score at 
the .975 percentile happens to be 1.96. (Note: If 
this interval were one-tailed, then just do the top 
α. That is, don’t divide α by 2. The z score you 
want in that case is 1.65). The truth is that as long 
as α = .05, the only two values you need to know 
from a z table are 1.96 and 1.65.

Because we are almost always computing a bi-
directional 95% confidence interval, we can sim-
plify the previous equation to this:

CI95 = X̄ ± 1.96 × SEM

Let’s compute an example. We did a study 
where we collected data from 100 people ran-
domly sampled from the relevant population. The 
mean score in our sample was 109. Finally, the 
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population standard deviation is known to be 15. 
To compute the 95% confidence interval (bi-
directional), simply plug in the values into the 
above equation.

CI95 = 109 ± 1.96 × 15
100

Which works out to...

CI95 = 109 ± 2.94

So that’s 106.6 on the low end and 111.94 on the 
high end.

Now let’s make sure that we interpret this con-
fidence interval properly. It would be a mistake to 
say that we are 95% confident that the sample 
mean is between 106.6 and 111.94. It’s a mistake 
because we know the sample mean – we can be 
100% confident that it’s 109. There was never any 
doubt about the sample mean. We’re trying to de-
termine the population mean. Thus, the point of 
the interval is this: we are 95% confident that the 

population mean is between 106.6 and 111.94. (Al-
though you never hear it put this way, the text-
book accurate version of the statement is that the 
population mean will be between 106.6 and 
111.94 95% of the time.)

So that’s interval estimation. We make confi-
dence intervals around sample statistics so that 
we can have a non-zero probability of locating the 
relevant population parameter. This is your regu-
lar reminder that we wouldn’t have this problem if 
we just measured populations instead of samples. 
We don’t do that of course, because it’s far more 
convenient to measure samples. But that conven-
ience comes at a price, sampling error. Finally, al-
though we limited our discussion to the confi-
dence interval for the mean, confidence intervals 
constructed for the purpose of identifying the 
likely value of the population parameter can be cal-
culated for pretty much every statistic (e.g., vari-
ance, correlations, regression coefficients).
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Independent and Identically Distributed

There is a concept in statistics that is rather 
difficult to explain. It refers to data being inde-
pendent and identically distributed (shorthand iid 
– yes, lowercase, italicized, and without punctua-
tion).

This iid thing a statistical term of art with a 
complicated meaning. For our purposes it is suffi-
cient to say this when data are randomly sampled 
from a single population, the scores are iid. The in-
dependent part deserves special attention. Scores 
are said to be independent when one observation 
is not related to another. The simplest way to un-
derstand this is that each case of data comes from 
independent subjects. This means that if there are 
30 scores averaged to compute a mean or what-
ever, there are 30 separate subjects providing one 
score each. There are not 15 subjects who are pro-
viding two scores each – those scores would not 
be fully independent (but you could average each 

subjects two scores into one score and have 15 in-
dependent cases...).

This iid concept is important because it’s an as-
sumption for just about every statistical test that 
we have. As mentioned, the good news is that 
when a very basic condition (data are randomly 
sampled from a single population) is met, we can 
rest assured that our data is iid.

A few other iid points of note. For a sample of 
iid data, the mean is X̄, the expected value of X̄ is 

μ, the variance of X̄ is 
σ2

X

N
, and the standard devia-

tion of X̄ is 
σX

N
. Nothing in that previous sen-

tence is new to us. That’s what we get with iid 
data.

Central Limit Theorem

The central limit theorem states that for iid 
data the distribution of sample means approaches 
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normality as N increases regardless of original dis-
tribution of X. This is quite big, so let’s break it 
down. The central limit theorem is addressing the 
sampling distribution of sample means (i.e., X̄), 
and it is saying that the distribution of these sam-
ple means will approach normality even if the dis-
tribution from which these samples are drawn is 
not normally distributed.

The reason why this is such a big deal is that 
you would think that if scores on X in the popula-
tion are distributed in a serious non-normal fash-
ion, then any sample means computed from those 
scores would also be non-normal. But that’s not 
the case. The sample means will be normally dis-
tributed even for means based on small sample 
sizes. Studies have demonstrated that N ≥ 30 is 
sufficient to make distribution of X̄ approximately 
normal for any distribution of X. The central limit 
theorem is quite important as many statistical pro-
cedures assume normality. It’s also quite power-
ful, as we will see in the next section.

The Central Limit Theory in Action

Here’s a quick demonstration of the power of 
the central limit theory. Lottery numbers have an 
equal chance of being selected. (At least they had 
better have an equal chance or someone has some 
serious explaining to do.) Thus, the resulting dis-
tribution of the numbers chosen should have a rec-
tangular shape, which is about as far from nor-
mally distributed as you can get with real data.

I pulled a record of the selected lottery num-
bers from a lottery database for an unnamed state 
lottery. These dataset includes all of the numbers 
drawn over a seven year stretch when the lottery 
had a simple 50-6 format (randomly pick six balls 
from 50). All told, 745 draws of 6 balls each re-
sulted in 4,470 lottery balls picked. Figure 4 is the 
distribution of the numbers chosen. That’s pretty 
close to a rectangular distribution. Nothing nor-
mal about it.
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Now watch what happens when I compute the 
mean value of the six numbers chosen in each 
drawing (Figure 5). We now have 745 sample 
means, each based on an N of 6 (a very small sam-
ple size). (This is analogous to a sampling distribu-
tion in which a study with N = 6 has been re-
peated 745 times.) The distribution shown in Fig-
ure 5 is not normal, but it’s not bad. It’s a world 

closer to normal than was the distribution of indi-
vidual scores on X. And remember, these means 
were based on an N of only 6.
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Sampling Distributions and You

The concept of sampling distributions de-
serves more attention. Here’s what we said earlier 
(about two pages earlier).

Imagine that you drew a sample from a popula-
tion and computed the mean on some vari-
able... Now repeat this study over and over 
with the same sample size. Sampling error 
will affect every one of these sample means. 
Sometimes they will be less than the popula-
tion mean; other times they will be greater. 
Do it enough times and these means will form 
a distribution of their own, called a sampling 
distribution. These sample means will be nor-
mally distributed with a certain mean and stan-
dard deviation. Here’s the kicker: the mean of 
this distribution will equal the population 
mean and the standard deviation of these sam-
ple means will equal the standard error of the 
mean (σX / N).

The summary of that paragraph is a sampling 
distribution is a distribution of sample statistics 
computed on repeated samples of size N. You can 
make one yourself right now via a coin-flipping 
study. Here’s how: a fair coin will result in a heads 
50% (or .5) of the time. This implies that we ex-
pect 50 heads in 100 tosses. So think of our sam-
ple size as 100 and our sample mean as #heads/
100 (it’s also worth noting that σ = .5 for a fair 
coin). So if you do that study (flip a coin 100 
times), the expected mean is .5 (i.e., 50 heads out 
of 100 tosses). But do you think you’ll get exactly 
50 heads if you do this experiment one time? It’s 
possible, but it’s far more likely that you’ll some 
other value close 50 (e.g., 48, 53, 51, etc.) because 
of sampling error. This is probably familiar to you 
already – you know about sampling error. (By the 
way, what is the size of the population for our 
coin-flipping study?)

So flip a coin 100 times and compute the 
mean (or proportion) of heads; there’s your study 
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done once. Now repeat that study, I don’t know, 
1,000 times. Plot those means. That’s a sampling 
distribution. The mean of this sampling distribu-
tion (a mean of sample means) is μ, the popula-
tion and the standard deviation of the sampling 
distribution is the population standard deviation 
divided by the sample size (i.e., σX / N), some-
thing we know as the standard error of the mean.

That last part has some major implications. In 
the version of the study we just described, σ was 
.5 and N was 100. Thus, the standard deviation of 
our sampling distribution is .5/ 100 = .05. If this 
sampling distribution is normally distributed, 
then we expect to see 95% of the sample means to 
be no more than 1.96 × .05 units away from the 
population mean in either direction. All well and 
good. Now do the study where the sample size for 
each experiment is 400 flips. Larger sample sizes 
mean less sampling error. So now the sampling dis-
tribution has a standard deviation of 
.5/ 400 = .025, effectively cutting the width of the 

sampling distribution in half. See Figure 6 and Fig-
ure 7 where the sampling distributions for this ex-
periment are plotted with the same scale on the x-
axis.

The range of values for the x-axis is .3 to .7. The y-axis indicates fre-
quency and ranges from 0 to 150.

FIGURE 6 Sampling Distribution for Hypothetical Coin-
Flipping Study with N = 100
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Now here’s the kicker; when you do a study 
one time, that’s just one result in a sampling distri-
bution. Your mean is probably in the thick part of 
the distribution, making it moderately representa-

tive of the population mean. Probably. But it could 
be anywhere (see Figure 8).

This worst part of all of this sampling error/
sampling distribution stuff is that short of repeat-

The range of values for the x-axis is .3 to .7. The y-axis indicates fre-
quency and ranges from 0 to 150.

FIGURE 7 Sampling Distribution for Hypothetical Coin-
Flipping Study with N = 400
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study

FIGURE 8 One Last Sampling Distribution Point

The population mean may be .5, but sampling error causes results for 
individual sample-based studies to be higher or lower than the popula-
tion mean (with a zero probability that any one result will exactly equal 
the population mean).
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ing your study many, many times, you’ll never 
know how well a sample statistic represents the 
population parameter. Depressing, right? There is 
at least one bit of good news we can take away 
from this: as N increases, the spread of this distri-
bution decreases, which increases the probability 
that a sample mean is close (in an absolute sense) 
to the population value.
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4 Not having it would be 
worse than having it

Null Hypothesis 
Significance Testing



Why Is This Necessary in Life?

You do a study. You get a result. The treat-
ment mean is greater than the control mean. Case 
closed, right? The treatment works.

Not so fast, you say. There are about a thou-
sand threats to internal validity (see Cook & 
Campbell, 1979, for an exploration of these many 
threats). Any one of these could cause the treat-
ment mean to be greater than (or less than or sim-
ply different from) the control group mean. But 
even if the study were magically free from all of 
these confounds, the fact remains that we didn’t 
measure the entire population and the difference 
between the two means could be simply due to 
sampling error. That is, in reality the treatment 
has no effect at all, but the treatment mean is 
greater than the control mean due to purely ran-
dom effects of sampling error. (Remember this 
common example of sampling error: Flip a fair 
coin ten times. Ten is the sample size; infinity is 

the population size. More often that not, you will 
observe some result other than the expected value 
of five heads in ten tosses.)

OK, fine. We’ll need a way to deal with sam-
pling error. We need a way to determine just how 
big our observed differences in mean scores needs 
to be in order to conclude, yeah, these results are 
probably not due to sampling error. Something 
like: if there were no effect for our treatment, a re-
sult the size of the one we observed would occur 
very rarely simply due to sampling error.

Hypothesis Testing Logic

Null Hypothesis Significance Testing (NHST), 
the logic of which is known as the Fisher Inferen-
tial Model (inference: a conclusion drawn based 
on some idea, evidence, reason,… something), is 
our preferred method for dealing with sampling er-
ror. It’s far from perfect, but NHST (or something 
like it) needs to be conducted to help us deter-
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mine when sampling error is versus is not a likely 
cause of our results. Even the proposed alterna-
tives to NHST (e.g., confidence intervals) end up 
looking like the NHST model (and yield the same 
conclusions).

Before getting into the model, we need to de-
fine two terms. First, there is the null hypothesis 
(symbol: H0). The null hypothesis is effectively the 
opposite of our study hypothesis. We should al-
ways hypothesize that there will be an effect (e.g., 
treatment mean is greater than control mean). 
The null hypothesis states that there is no effect 
(e.g., the treatment mean is not greater than the 
control mean – it may be equal to it or lower than 
it, but it’s not greater). The second important 
term is the null distribution. The null distribution 
is a sampling distribution that has the characteris-
tics of the null hypothesis; it’s the sampling distri-
bution that would be observed if the null were 
true.

The Model:

A. Data (D) from experiment is observed. 
This is easy enough to follow. Do an experi-
ment. Get data.

B. Assume that there is no effect and deter-
mine the sampling distribution reflecting this 
lack of an effect. That is, assume that the null 
hypothesis is true and define the null distribu-
tion. Answer question: How unusual would 
this result (the one that I found) be in a null 
distribution?

C. If the answer is, “The result would be very 
rare” (i.e., results like this occur less than 5% 
of the time in a null distribution), then infer 
that the observed data did not arise from a 
null distribution and reject the null hypothe-
sis. Accept the alternative hypothesis (H1), 
which is (I know this sounds messed up) our 
actual hypothesis.
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You might wonder if there is no effect, then 
wouldn’t all of the results be the same? How 
could a result be considered rare in a null distribu-
tion? The answer is sampling error. Even if the 
null is true, some results are common and some 
are unusual due to sampling error.

One final note before we proceed concerns the 
how rare in a null distribution is rare enough? issue. 
This standard for unusual enough in a null distribution 
that we can reject the null is called α (i.e., alpha) and 
is chosen by the researcher. Sort of. Much like 
Henry Ford’s line about paint colors on the Model 
T (“You can have any color you want as long as it’s 
black.”), you can choose any value for α that you 
want as along as it’s not greater than .05. An α of 
.05 became industry standard on a long time ago 
and despite the occasional volley of journal arti-
cles arguing for less stringent alphas (it’s easier to 
reject the null hypothesis for an α of .10 than .05), 
the consensus hasn’t changed. You can choose to 
have a more stringent standard than .05 (.01 is 

somewhat common), but you can’t relax the stan-
dard beyond a 5% chance of obtaining a given re-
sult in a null distribution.

NHST Example: Fisher’s “Tea” Test

Perhaps one of the early examples of this 
NHST logic will help. The format is a bit strange 
compared to our experiments, but the logic is the 
same. It’s something called Fisher’s “Tea” test.

Research question: Can a person identify 
whether milk was added to a cup before or af-
ter the tea? (This was the contentious issue of 
the day.)

Experiment: Eight cups of tea, four with milk 
added first, four with milk added last. Subject 
tastes all eight cups and identifies the order of 
the milk/tea in each.

Hypothesis Testing Logic: If a person is unable 
to tell the order of milk/tea (i.e., the null hy-
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pothesis), then our subject’s choices are indis-
tinguishable from random choices. In this ex-
periment there is only a 1/70 chance of identi-
fying all four cups correctly if picked at ran-
dom. Thus, if we test a person, and this per-
son does correctly identify all eight cups, and 
we compare this result to a null distribution 
of data, this result would be very rare. In this 
event, we would infer that our subject was not 
picking cups at random. The alternative that 
we would accept is that our subject is capable 
of tasting the difference.

Stated in terms of the NHST structure:

A. Observed data: All cups identified correctly.

B. If cups picked at random, 100% correct is 
an unusual result.

C. Inference: Cups were not picked at random.

NHST Example: One Group Experiment

The study discussed here is a simple one 
group experiment in which there probably isn’t a 
manipulation. It might be conducted simply to 
find the mean value of some variable for a defined 
population. For example, a researcher might want 
to know if the mean intelligence for students at a 
certain type of school is greater than the mean for 
all students of that age. Or it could be about 
whether students at a certain university have 
higher placement test scores than the national av-
erage. Or a thousand other questions.

The study (we’ll do the university study) is 
conducted as follows. A single sample of place-
ment test scores are collected (with a probability 
sampling technique) for students at Enormous 
State University and are compared to some known 
population mean (many standardized tests have 
their mean scores set to a certain value). The 
study hypothesis can be directional (i.e., one-
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tailed) or non-directional (i.e., two-tailed). We’ll 
go with one-tailed for this example, making our hy-
pothesis: Placement test scores for students at 
ESU are greater than the national average (
μESU > μnational). We could have hypothesized it the 
other way, but we think the ESU kids are above 
the national value.

Null Hypothesis: Placement test scores for stu-
dents at ESU are not greater than the national av-
erage (μESU ≤ μnational). In other words, the ESU 
mean is equal to or less than the national average. 
Either way, they aren’t greater.

Note that the null and alternative hypotheses 
are stated in terms of population parameters (the 
population means in this case). We use what is 
known (sample data) to draw inferences about 
what is unknown (population parameters). It 
would be silly to formulate our hypotheses around 
sample data (i.e., the sample mean for this group 
is greater than some other value); there’s no need 

to test that with an inferential test – we know 
what the sample mean is (there’s not really much 
of an inference there).

In NHST structure:

A. A difference between the means (the univer-
sity sample vs the national data) is observed.

B. In a null distribution, differences of this 
magnitude are very rare (or not, but in this ex-
ample we’re saying that they are).

C. Inference: These data did not come from a 
null distribution in which there are no differ-
ences between the groups. Reject null hypothe-
sis (university mean is not greater than na-
tional average) and accept alternative hypothe-
sis (the university mean is greater than the na-
tional average).
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NHST Example: True Experiment

The classic setup is as follows: two groups, 
treatment and control, with random assignment to 
groups. The study hypothesis can be directional 
(i.e., one-tailed) or non-directional (i.e., two-
tailed). We’ll go with two-tailed for this example, 
making our hypothesis: the treatment group’s 
mean score on the dependent variable does not 
equal the control group’s mean score (μ1 ≠ μ2). We 
don’t know if the treatment mean will be greater 
than or less than the control mean; we are just hy-
pothesizing that the two means won’t be the 
same.

Null Hypothesis: Treatment mean equals con-
trol mean (μ1 = μ2); in other words, there is no dif-
ference. (Still yet another way of stating this: 
μ1 −μ2 = 0.)

In NHST structure:

A. A difference between the means is ob-
served.

B. In a null distribution, differences of this 
magnitude are very rare (or not, but in this ex-
ample we’re saying that they are).

C. Inference: These data did not come from a 
null distribution in which there are no differ-
ences between the groups. Reject null hypothe-
sis (no differences between groups in popula-
tion) and accept alternative hypothesis (yes, 
there are differences in the population).

Once again, the null and alternative hypothe-
ses are stated in terms of population parameters 
(the population mean in this case). 

What It Means When We Reject the Null

When we reject the null hypothesis (because 
the results of our study are unusual in a null distri-
bution), we are doing a probability analysis. This 
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“occurs less than 5% of the time” doesn’t tell us 
the probability that the null is true (or false) – 
rather, it tells us that a result like the one that we 
have would be improbable (less than 5%) if the 
null were true.

NHST-Speak

There are many different ways to say the same 
thing in NHST-land. Significance test results are 
often reported in the form of a p-value, where p is 
the probability that a result would be found in a 
null distribution. Assuming that α = .05, then ob-
taining a p-value of less than .05 from a signifi-
cance test means we reject the null hypothesis. So, 
reject the null = significant result (yet another 
way to say this) = p < .05. To the converse, failing 
to reject the null = non significant result = p > 
.05.

To complicate matters, statistics programs like 
SAS and SPSS don’t report significance tests re-

sults in any of the preceding forms. Rather, they re-
port an exact p-value. For example, in addition to 
the test statistic, stats programs will say p = .03. 
It’s up to you, the user of the program, to trans-
late that into a conclusion: Because .03 is less 
than .05, I reject the null. Use caution though; 
blindly following p-values can lead to incorrect con-
clusions. Stat programs default to performing two-
tailed (i.e., non-directional) tests. Furthermore, 
when there is a one-tailed option, the program 
doesn’t know which direction you hypothesized 
and assumes that it’s whatever direction the re-
sults show. Caveat lector indeed.

Sampling Theory, Techniques, and Issues

Before we discuss sampling techniques, first 
consider the type of research that we conduct. 
Quite a bit of our research can be placed into one 
of just two categories: random sampling experi-
ments and random assignment experiments. 
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These are not formal names, just descriptions of 
how these experiments should operate.

Random sampling experiments. The main 
issue in a random sampling experiment concerns 
measuring the characteristics of the population as 
it exists. In this type of study there isn’t a treat-
ment being tested; we are simply trying to learn 
about characteristics of the population via sam-
ples. Here are two examples, a medical example 
and a social science example. What percent of peo-
ple in a geographic region possess antibodies for a 
certain virus? What are college student attitudes 
toward university administration? In this type of 
study, everything depends on how the sample was 
collected. (Fun note: the single biggest research 
fraud of the 20th century concerned a failure to 
collect samples the right way for what should have 
been a simple random sampling study.)

Random assignment experiments. The main 
issue in a random assignment experiment con-

cerns whether a given manipulation has an effect. 
Two more examples follow. Does this vaccine re-
duce the rate of spread of a certain virus? The so-
cial science version is very familiar: Are dependent 
variable scores higher for the treatment group 
than for the control group? (e.g., Does a training 
program improve employee performance?) For 
this type of research a failure to randomly sample 
from the relevant population isn’t a threat to the 
internal validity of random assignment experi-
ments (or to NHST), but it does limit their gener-
alization. The key issue with this type of study is, 
as the name states, random assignment to groups.

As to how we collect our samples (i.e. sam-
pling techniques), there are many types, but we 
can categorize them as being a probability sam-
pling technique or a non-probability sampling tech-
nique.

Non-probability sampling. A non-probability 
sample is one that was not collected via a probabil-
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ity sampling technique. These are samples of con-
venience as well as volunteer samples. Such sam-
ples are wholly inappropriate to a random sam-
pling experiment. Everything in those experi-
ments depends on the sample representing the 
population, and there is no amount of statistical 
jujitsu that can fix this. Pedhazur and Schmelkin 
(1991, p. 321) said it best: “The incontrovertible 
fact is that, in non-probability sampling, it is not 
possible to estimate sampling errors. Therefore, va-
lidity of inferences to a population cannot be ascer-
tained.” In addition, the problems that arise from 
using non-probability samples cannot be fixed via 
sample size. Larger samples are no more likely to 
be representative of the population than are 
smaller samples when the sample is a volunteer 
sample. What is true of the sample of volunteers 
cannot be validly inferred to be true of the popula-
tion.

Probability sampling. There are a number of 
ways to collect a probability sample. The easiest to 

understand is simple random sampling in which 
each member of population has an equal likeli-
hood of being sampled. Pedhazur and Schmelkin 
again (1991, p. 321): “With probability sampling, 
the various sample outcomes occur with known 
probabilities.” Thus, because each person in the 
population has the chance of being a member of 
the sample, we can estimate the probability that 
the sample characteristics represent the popula-
tion characteristics.

Problems with NHST

1. NHST assumes that data were collected via 
a probability sampling technique. This means that 
for certain types of studies (studies where the en-
tire point of the study is to understand population 
characteristics), significance testing is just a cha-
rade, and NHST is an empty process performed 
out of a belief that the process confers some pro-
tective power. A meaningless ritual. I know I’m 
sugarcoating it here, so I’ll be direct: If a re-
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searcher is doing the sort of research that can be 
fairly categorized as a random sampling study and 
this researcher fails to collect data via a probability 
sampling technique, then there is no way to know 
how well the sample represents the population. 
Significance testing is just a sham, and the results 
are no different than anecdotal data.

2. The probability that a result (D) is found in 
a null distribution does not equal the probability 
that the null is false/true: Pr(D|H0) ≠ Pr(H0|D); 
see Cohen (1994). In other words, the unlikeli-
ness of finding a given result in a null distribution 
does not mean that the null distribution is un-
likely. Believe me, if we could estimate it the other 
way, we would. Let me state this a few ways to 
clarify. I’ll make pairs of statements; the first one 
is correct, and the second is the all-too-common 
incorrect version.

What the p-value in NHST actually means 
(Pr(D|H0)): The probability that a given result 

is observed given the that the null is true (i.e., 
probability it will be observed in a null distri-
bution).

What we hear/think it means/want it to mean 
(Pr(D|H0)): The probability that the null is 
true given our result.

When p < .05, NHST actually indicates: There 
is less than a five percent chance that a result 
like mine would be found in a null distribu-
tion (i.e., found if the null is actually true).

When p < .05, we hear/think/wish NHST indi-
cates: There is less than a five percent chance 
that the null is true given my result.

Like I said, the second (and incorrect) version 
is far better, and if we could do it that way, we 
would. We can’t because estimating that probabil-
ity requires information which we do not have.
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3. The point-null hypothesis is always false. 
There are two types of null hypotheses:

Point-null: there is no difference between the 
groups (μ1 = μ2), the population correlation is 
zero (ρ = 0), etc. Tested with two-tailed signifi-
cance test.

Directional null: the experimental group will 
not have a higher score than the control group 
(μ1 ≤ μ2), the population correlation is not 
greater than zero (ρ ≤ 0), etc. Tested with one-
tailed significance test.

So why is the point-null always false? Because 
of what we know about continuous variables (the 
probability that a continuous variable equals a spe-
cific value is zero), the probability that two con-
tinuous variables will equal each other (i.e., 
μ1 ≤ μ2) is also zero. In other words, there will al-
ways be some (probably small) real difference be-
tween the groups, but that doesn’t mean that the 
difference is due to our hypothesized cause.

As if that’s not bad enough, the directional 
null fares only slightly better. If the direction is 
chosen at random, given a large enough sample 
size, the directional null will be rejected 50% of 
the time.

There is good news here though – there are 
slight adjustments to the process that we can 
make to eliminate this problem. These adjust-
ments are a bit beyond the scope of this book, but 
they do exist (although they are hardly ever used 
form some reason).

NHST Silliness

Remember, this is the Fisher Inferential Model 
– we are using the data and the null distribution 
to draw an inference about the null hypothesis 
(we either reject it or we do not reject). When we 
have a result so unusual in a null distribution that 
we infer the result did not come from a null distri-
bution (i.e., we have a significant result) we reject 
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the null hypothesis. There can be no degree of re-
jection – it’s a dichotomous decision: reject null or 
fail to reject null. Therefore, it’s the height of idi-
ocy to talk about degrees of significance: if we re-
ject when p < .05, then we can’t reject it even 
more (“I strenuously reject”) when p < .01 (an 
even rarer result).

Final Thought on NHST

Significance tests exist to address sampling er-
ror – and nothing else. Rejecting the null hypothe-
sis means that we are saying that the results we 
obtained are probably not due to sampling error.

That’s all they do. Ruling out sampling error 
as a probable cause of our results is a big deal, but 
there are many other types of errors that could 
have caused our results. So don’t invest too much 
significance (sorry) in the favorable result of a sig-
nificance test.

59



5 Actual significance tests

One Sample Tests



One Sample Tests on a Mean

One sample tests are for experiments in which 
we collect data from a single sample; we then com-
pare the sample mean to some reference popula-
tion mean. These are not true experiments, in 
which there are two samples (commonly, a treat-
ment and control). There is just one sample of 
data, and we make inferences from characteristics 
of this sample to a relevant population.

Formal Testing Procedure

In this section, we outline the official set of 
steps we will take when conducting our signifi-
cance tests. These steps will be repeated in upcom-
ing chapters as we learn new tests. At some point, 
we’ll stop listing them because they are well 
known to us.

i .  State H0 and H1

ii .  Determine rejection region and critical 
value

iii .  Compute test statistic

iv .  State conclusion 

The details of each of these steps will be given in 
an example in the next section.

One Sample, σ Known

This significance test is often referred to as a z 
test because the test statistic that it produces is a 
z value and it employs a z table (see Chapter 2 for 
more on the z tables) to determine significance.

Characteristics: z test; can be one- or two-
tailed; designed to use information from a sample 
mean to draw inference about population mean; 
population standard deviation must be known. 
Test statistic:

61

figure:85AB23A4-D03E-4ADC-A9C1-D64B4E1F4E05
figure:85AB23A4-D03E-4ADC-A9C1-D64B4E1F4E05


zobs = X̄ −μc

σ/ N

(Does that denominator look familiar? I’m sure 
I’ve seen it somewhere before.)

The transformation of the sample mean into 
this test statistic (z) allows us to enjoy the bene-
fits of a common, simple null distribution of 
scores as this particular test statistic is distributed 
as z(0,1), the standard normal distribution. This is 
a big deal as it saves us a great deal of trouble.

Example: Test the hypothesis that scores for a 
given school are greater than the national average 
(μc = 500, σ = 100). Data: a sample of 25 students 
at the school had a sample mean (X̄) of 505. (Nota-
tion issue: Most presentations of this test refer to 
all of the populations means with the same sym-
bol, μ. But there is often a difference between the 
population of interest to our study and the popula-
tion to which we compare ours. We’ll denote the 
former as μs and the latter as μc.)

i .  List null and alternative hypotheses

H0 = The school mean is not greater than the 
national average (μs ≤ 500).

H1 = The school mean is greater than the na-
tional average (μs > 500).

Note: I find it easier to list the alternative hy-
pothesis first as it is the same as our actual study 
hypothesis. Once you have H1 listed, then turn it 
into the “not” version to obtain H0.

ii .  Determine rejection region and critical 
value

I think the toughest part of this process is de-
termining the rejection region. So let’s spend 
some time on that. The rejection region refers to 
the part of the null distribution that is the “un-
usual result if the null is true” area.

To determine the rejection region, ask your-
self: If the null hypothesis is true, where would 
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the unusual result be found in a null distribution? 
Because our null hypothesis states that the mean 
will be less than or equal to 500, then an unusual 
result if this null hypothesis were true would be 
the opposite of that, a very high mean. Thus, our 
rejection region will be the top 5% (for the α =.05 
case) of the null distribution. We will explore 
other rejection regions in future examples (not to 
spoil things, but there are really only three possi-
bilities: the upper tail of the distribution, the 
lower tail, or both tails).

To demonstrate where the rejection region ac-
tually starts, called the critical value, I created a 
population dataset (N = 1,000, 000) having a mean 
of 500 and a standard deviation of 100. I then gen-
erated a sampling distribution by randomly sam-
pling 25 cases from this population, computing 
the mean of these 25 cases, repeating until I had 
10,000 sample means. (This is what I do in my 
spare time.) The distribution of these means (i.e., 
the sampling distribution) is shown in Figure 1.

Inspection of Figure 1 indicates that some of 
the sample means are as low as 450 and other are 
as high as 550. Bear in mind that all of these sam-
ples come from a population where the population 
mean is 500. Samples come with sampling error. 
It’s unavoidable. Back the distribution; the value 
at the 95th percentile (bold line) is 532.97. Thus, 
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FIGURE 1 Sampling Distribution for 10,000 Sample 
Means (N = 25) from Population with μ = 500, σ = 100
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based on this sampling distribution a sample 
mean must be greater than 532.97 to be in the top 
five percent of sample means (which doesn’t look 
good for our data). To summarize, Figure 1, a sam-
pling distribution, is our null distribution. The re-
jection region is the top 5% of sample means, and 
this region starts at 532.97. Our critical value is 
532.97, meaning that we will reject the null if our 
actual sample mean is greater than 532.97. Why? 
Because such a mean would be very unusual (oc-
curring less than 5% of the time) if the null hy-
pothesis is true, and standard NHST logic (Chap-
ter 4) says that when a result is unusual in the 
null distribution, then we reject the null hypothe-
sis.

At this point you are probably thinking that 
this seems like an impossible amount of work 
every time we conduct a significance test. And 
you’d be right to think that. We don’t do it this 
way. Due to the magic of the CLT (and some other 
principles) we can use various pre-existing distri-

butions (e.g., the normal distribution) for signifi-
cance testing. It’s no accident that the test statistic 
is structured to give us a z value. This structure 
produces a sampling distribution that is normally 
distributed with a mean of zero and a standard de-
viation of one (i.e., the standard normal distribu-
tion). The upshot is that we get to simply consult 
a z table to find the critical value. So if you want 
to diagram the rejection region for this test, just 
use a normal distribution, as shown in Figure 2. 
For the rejection region, find the z table value at 
the .95 level (z = 1.645 in this case).

So now we have it, a rejection region (Figure 
2) and a critical value (1.645). Let’s state it for the 
record.

We will reject the null hypothesis if zobs is 
greater than 1.645.

iii .  Compute test statistic
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zobs = X̄ −μc

σ/ N
 

zobs =   505 − 500
100/ 25

 =   5
100/5  =   5

20

zobs =   + . 25

iv .  State conclusion

Given that our obtained z of +.25 is not 
greater than our critical z of +1.65, we are un-
able to reject the null hypothesis. (Side note: 
people often say this as “we failed to reject the 
null.” Like it was our fault because we didn’t 
try hard enough or something.)

Why can’t we reject the null? A quick check of 
a full z table indicates that a z score of +.25 is at 
the 60th percentile (pr(z > .25) = .60); samples 
with means as low as that occur 40% of the time 
when the null is true meaning these results are 
not unusual at all. In other words, if we draw a 
sample of 25 people from a population with a 
mean of 500 and a standard deviation of 100, we 
would observe means at that level or higher 40% 
of the time.
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Let’s do another example of the same type. 
Everything is the same as before (sample size = 
25, population standard deviation is 100, the popu-
lation mean to which we compare our sample 
mean is 500). The differences are in our sample 
mean, which is now 552, and our hypothesis. Our 
new hypothesis is the two-tailed variety: This 
school’s test scores are different from national av-
erage.

i .  List null and alternative hypotheses

H0 = The school mean is not different than 
the national average (μs = 500).

H1 = The school mean is different than the na-
tional average (μs ≠ 500).

ii .  Determine rejection region and critical 
value

The null hypothesis says that the school mean 
equals the national average of 500. So if we ob-

serve a sample mean that is exactly 500, then 
that’s perfectly consistent with the null. What’s 
unusual if the null is true? The unusual values are 
extremely high or extremely low. And since α = 
.05, we’ll divide that 5% equally between the up-
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per and lower tails of the distribution, giving us 
the rejection region shown in Figure 3.

As for critical values, a check of the z table 
shows us that the upper and lower 2.5% of a nor-
mal distribution begin at +1.96 and -1.96. Thus, 
...

We will reject the null if our test statistic is 
greater than 1.96 or less than -1.96 (it really 
helps to think of the diagram for this).

iii .  Compute test statistic

This is the easy part. Just plug in and solve.

zobs = X̄ −μc

σ/ N

zobs = 552 −500
100/ 25

  = 52
100/5  = 52

20

zobs = + 2.6

iv .  State conclusion

Because our zobs is greater than the critical 
value (2.6 > 1.96), we reject the null hypothe-
sis and accept the alternative hypothesis that 
the school’s mean score is different from the 
national average of 500.

Thoughts on Null Hypothesis Significance Testing

As stated, we are using sample data to make 
inferences about unmeasured population data. 
NHST exists to address sampling error only. If we 
measured the entire population, we wouldn’t need 
to do this strange procedure called NHST.

We are using sample data to choose between 
H0 and H1. We are not computing which one is 
more likely. Rather, we start with H0, and, if we 
judge it to be unlikely, we reject it and conclude H1 
is correct. It’s not an H0 versus H1 death match – 
it’s a survival game where H1 simply waits for H0 
to fall in order to be crowned champion.
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Student’s t Distribution

For no reason whatsoever, let’s take a break 
from this significance testing to discuss a new dis-
tribution of data. We already know (and love) the 
z and the normal distribution. There is a test sta-
tistic that we will encounter soon called a t statis-
tic. The sampling distribution for this t statistic is 
a family of distributions called Student’s t, which 
we’ll call the t distribution for short. (By the way, 
there is an interesting story involving a brewery 
behind the use of the pseudonym “Student”.) The 
easiest way to understand the difference between 
a normal distribution and a t distribution is to ex-
amine the tails. Both distributions are unimodal 
and symmetric (i.e., bell shaped), but the t has 
more scores in the tails (less in the middle) as 
compared to the normal. See Figure 4 for a com-
parison of the two distributions.

I mentioned that the t distribution is a family 
of distributions. This is true; it’s not just one dis-

tribution but a set of distributions that vary on a 
single parameter called degrees of freedom (df). 
Degrees of freedom is related to N size (equations 
will be given in due time but bigger N means big-
ger df). Furthermore, as degrees of freedom in-
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The blue curve is the standard normal distribution, and the gray curve 
is Student’s t distribution with 10 degrees of freedom. Note the 
greater probability that a score will be found in the tails of the t distri-
bution as compared to the normal.

FIGURE 4 Normal Distribution vs Student’s t Distribu-
tion
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crease, the t distribution begins to resemble the 
normal distribution. They equal each other when 

d f = ∞ and are almost indistinguishable when 
d f > 200. An abbreviated t table is given in Table 
1.

One Sample, σ Unknown

Now that we’ve concluded our discussion of 
the t distribution, back to significance testing. We 
have covered a test on a mean where the popula-
tion standard deviation is known. Let’s move to a 
more realistic situation, one in which the popula-
tion standard deviation is unknown. The setup for 
the test is otherwise the same as before: one sam-
ple in which we use the sample mean to make in-
ferences about an unknown population mean: Is 
this population mean greater than, less than, or 
simply not equal to some reference value (a com-
parison population mean)? Because we don’t 
know the population standard deviation (σ), we 
will have to use the sample standard deviation 
(SX) in its place. This one change in the test statis-
tic causes a new problem (this sort of thing always 
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TABLE 1 Student’s t Table for α = .05

df t (1-tail) t (2-tail)

5 2.015 2.571
6 1.943 2.447
7 1.895 2.365
8 1.86 2.306
9 1.833 2.262
10 1.812 2.228
20 1.725 2.086
30 1.697 2.042
40 1.684 2.021
50 1.676 2.009
100 1.66 1.984
200 1.653 1.972
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occurs in statistics): the sampling distribution of 
the test statistic is no longer normal. This means 
that we can’t use a z table to determine the critical 
value. You guessed it, we will have to use the t dis-
tribution.

Characteristics: t test; can be one- or two-
tailed; designed to use information from a sample 
mean to draw an inference about population 
mean; population standard deviation is unknown. 
Test statistic:

tobs =   X̄ − μc

SX / N

Distributed as t(N−1)

What is this t(N−1) business? That’s saying that the 
test statistic we compute is distributed as a t with 
N-1 degrees of freedom.

I think it’s clear that aside from sample stan-
dard deviation in the denominator and the t distri-

bution instead of the normal distribution, every-
thing is the same as before. Same test. A little less 
known about the population.

Example: Test the hypothesis that a certain alu-
minum recovery facility achieves recovery rates 
less than the industry target of 890 pounds for 
every half ton of scrap aluminum (i.e., μc = 890)? 
Data: 16 runs of aluminum resulted in a mean re-
covery of 830 pounds (per half ton) with a stan-
dard deviation of 96 pounds.

i .  State null and alternative hypotheses.

H0 = The mean rate is not less than the indus-
try standard (μs ≥ 890).

H1 = The mean rate is less than the industry 
standard (μs < 890).

ii .  Determine rejection region and critical 
value
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The hypothesis had a direction (lower recovery 
rate), so this is a one-tailed test. But which tail? 
The null says greater than or equal to 890, so any-
thing equal to the mean or greater than the mean 
is perfectly consistent with the null. The unusual 
result if the null is true is the lower tail (see Fig-
ure 5). That’s our rejection region. What about 

the critical value? N is 16, so d f = 15. A check of a 
proper t table (α = .05, 1-tailed, lower tail) yields 
a value of -1.753 (the tables offer only positive val-
ues; make them negative for the lower tail).

Let’s state it formally: the rejection region is 
the lower tail; we will reject the null if the tobs 
is less than the tcrit of -1.753.

iii .  Compute test statistic

tobs =   X̄ − μc

SX / N
 = 830 −890

96/ 16
 = −60

24

tobs = -2.5

iv .  State conclusion

Because tobs (-2.5) is less than tcrit (-1.753), we 
reject the null hypothesis and conclude that 
this aluminum recovery facility achieves a re-
covery rate lower than the industry average of 
890. Sounds like they need new management.
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FIGURE 5 Rejection Region, Lower Tail
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Confidence Intervals for a Mean, Population Stan-
dard Deviation (σ) Known

Good news: we already covered this in Chap-
ter 3. The equation is listed below.

CI = X̄ ± (z1−α
2 ) σX

N

No need to dwell on it. Let’s get to something 
new.

Confidence Interval for Mean, Population Stan-
dard Deviation (σ) Unknown

Has it occurred to you that it’s odd that we 
don’t know the population mean yet we do know 
the population standard deviation? I mean, how 
did we learn the population standard deviation but 
not the mean? Was someone in the process of tell-
ing us both statistics but was interrupted before 
they could get the mean out? (I’m picturing a spy 
movie exchange on a foggy, cobblestone street 

somewhere in Europe. “The population standard 
deviation is 15 and the mean is...” -poison dart 
hits person, stopping him in mid-sentence. Yes, 
my mind goes to strange places.)

The truth is that there are standardized tests 
that have a set population mean and standard de-
viation; however, we may wish to know the mean 
for a differently defined population (i.e., not all 
test takers, but all test takers from a geographic re-
gion). In such a situation, it is reasonable to think 
that the mean of this particular population will be 
different from the national average, whereas the 
standard is likely the same. It’s reasonable to 
think that, but it may not be true.

We need to have a way to compute this confi-
dence interval for situations in which we don’t 
know the population standard deviation, either be-
cause there is no national set standard or it is un-
wise to conclude that this set value holds in our 
particular population. Given that we just dis-
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cussed a significance test for this exact situation, 
you can probably guess what changes we’ll make 
the the confidence interval equation that we al-
ready have. That’s right, swap out the population 
standard deviation with the sample standard devia-
tion and the normal distribution with the t distri-
bution (with N −1 degrees of freedom).

CI = X̄  ± (t(N−1),1−  α
2 )  SX

N

Everything else is the same as before. Same inter-
pretation too (we are 95% confident that the popu-
lation mean is in the interval of...).

Assumptions of Both Tests and CI

Our significance tests are only as solid as the 
assumptions supporting them. If the assumptions 
are not supported, then the results of the tests 
may be meaningless. To be clear, you can do the 
test and get a result. You’ll always get a result. 

Maybe it will be significant, maybe not. But that re-
sult will not necessary match reality if the assump-
tions of the test are not supported. So it’s fairly im-
portant that we discuss assumptions for our tests.

The two tests that we have covered in this 
chapter (as well as the confidence intervals) have 
the following assumptions. First, data are iid (see 
Chapter 3 more on iid). The big issue with iid con-
cerns sampling method. We discussed sampling 
theory in Chapter 4. For the tests described in this 
chapter everything (and I mean everything) de-
pends on how the data were sampled. Use a prob-
ability sampling technique, and it’s possible to jus-
tify inferences about a population made with these 
tests. Fail to use one, and you have forfeited your 
ability to claim that the results are representative 
of the population from which they were sampled – 
which is the entire point of these two types of 
tests.
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Another assumption of these tests is that the 
distribution of scores on the dependent variable 
(i.e., X) is normal in the population. There is some 
flexibility on this issue, meaning that slight depar-
tures from normality are not likely to affect the re-
sults of these tests.

Finally, t tests also require that a transforma-

tion of the variance ((N −1)S2

σ2 ) is distributed as a 

chi-square (the chi-square distribution is an en-
tirely different distribution and will be covered 
later), which may not be the case if the distribu-
tion of the dependent variable is not normal. How-
ever, as long as the distribution is unimodal and 
symmetric, then the t test is likely on solid 
ground.
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6 Sometimes a two sample 
tests is really just a one 
sample test in disguise

Other One Sample Tests



Other One Sample Tests

The previous chapter covered two types (σ 
known and σ unknown) of one sample tests on a 
mean. This chapter offers two more one sample 
tests, but they differ from the previous ones in im-
portant ways. One of them looks like a two sample 
test even. But it’s really a one sample test in dis-
guise. First up is how we handle a standard one 
sample test on a mean where the dependent vari-
able isn’t a continuous variable.

One Sample Tests on a Proportion

In the previous chapter, the dependent vari-
able for our one sample tests on a mean was a con-
tinuous variable. As mentioned, a continuous vari-
able is one with an infinite number of possible 
scores between any two points. There is, however, 
another very common type of dependent variable 
that is not continuous but rather is dichotomous. 
The only two possible scores on this variable are 1 

and 0. Think of dependent variables which meas-
ure outcomes with only two possible states: 
success/failure, yes/no, has the disease/doesn’t 
have the disease, graduates/does not graduate, 
pass/fail, and other unpleasant examples that ex-
ist in medical research. These are common depend-
ent variables, and they require an adjustment to 
the equations used for significance testing.

The mean of a dichotomous variable coded as 
1 or 0 is a proportion. Proportions range from 0 to 
1. If the mean of a dichotomous variable is .30, 
then we know that 30% have a score of one and 
70% have a score of zero. A study with this type of 
dependent variable is called a binomial experiment 
and the hypothesis concerns the proportion of peo-
ple who are a 1 on the dependent variable.

As for terminology, we will use p (in various 
forms) to stand for proportion. There will be sam-
ple versions of p ( ̂p = sample proportion, com-
puted as ̂p = r/N, where r indicates success) and 
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populations versions of p. As with continuous de-
pendent variables, we’ll make a distinction be-
tween the study-relevant population (ps = study-
relevant population proportion) and the popula-
tion value against which we compare it (pc = com-
parison population proportion value). Just think of 

̂p as analogous to X̄, ps as analogous to μs, and pc as 
analogous to μc. If that’s still confusing, an exam-
ple will clear it up.

Characteristics: z test; can be one- or two-
tailed; designed to use information from a sample 
proportion to draw inference about the relevant 
population proportion. Due to the magical proper-
ties of dichotomous data, we don’t have to worry 
about whether the population standard deviation 
is known; if we have hypothesized population pro-
portion, then we know the population standard de-
viation. Can make all of the usual tests: Is the 
population proportion greater than some value (
ps >  pc), less than some value (ps <  pc), or not 
equal to some value (ps ≠  pc).

Test statistic: 

zobs = ̂p −pc −.5/N
pc(1 −pc)/N

Note: the . 5/N part is called a continuity cor-
rection and is necessary. For some reason it is over-
looked (i.e., not included) in many published ver-
sions of this test. It’s important and is required for 
accuracy. Unimportant but mentioning because 
it’s interesting: Remember how I said that if we 
have a hypothesized population proportion, then 
we know the population standard deviation? For a 
dichotomous variable, variance is p(1 −p), the 
square root of that gives you the standard devia-
tion; and you know what p is, the mean of a di-
chotomous variable. Thus, there is a direct rela-
tionship between the mean and variance (and stan-
dard deviation too, of course) for dichotomous 
data. If you check the denominator of the test sta-
tistic, you’ll see the square root of p(1 −p) where 
the standard deviation goes.
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Example: Test the hypothesis that the majority 
of college students use a tablet computer. (You 
have no idea how many times I have seen this “ma-
jority” type of hypothesis for a dichotomous data. 
I haven’t counted, but it’s a lot.) Data: Of 51 stu-
dents surveyed, 31 use a tablet computer.

i. State null and alternative hypotheses.

The word majority in this hypothesis indicates 
greater than 50%. So we know that this is a one-
tailed test. We also know that the hypothesized 
population value (pc) is .50.

H0 = The proportion of students who use a 
tablet computer is not greater than .50 (
ps ≤ .50).

H1 = The proportion of students who use a 
tablet computer is greater than .50 (ps > .50).

ii . Determine rejection region and critical 
value

This is a one-tailed test, and we know from 
the test statistic that this will be distributed nor-
mally. And given our null that states the propor-
tion will be less than or equal to .50, the unusual 
result is a really high proportion (as mentioned, a 
proportion equal to .50 or less than .50 is com-
pletely consistent with the null – not unusual at 
all). So we want the top 5% of the normal distribu-
tion. As we all know by now, the z scores that 
starts the top 5% of a normal distribution is 
1.645.

We will reject the null if the zobs is greater than 
1.645.

iii .  Compute test statistic

As always, this is easy part. First calculate the 
sample proportion, ̂p.

̂p = r
N

 = 31
51  = .608
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Worth noting that the sample proportion is 
great than .50. So the results are in the right direc-
tion. But are they unusual enough for us to reject 
the null? On to the test statistic.

zobs = ̂p −pc −.5/N
pc(1 −pc)/N

zobs = .608 −.5 −.5/51
.5(1 −.5)/51

 = .098
.07

zobs = 1.4

iv .  State conclusion 

Because the zobs (1.4) is not greater than the 
zcrit (1.645), we are unable to reject the null hy-
pothesis.

This one sample test on the mean of a dichoto-
mous variable (i.e., a proportion) is underused in 
research. Too often, novice statisticians use the 
standard one sample test on a mean of a continu-
ous variable when their dependent variables are di-

chotomous. Don’t make that mistake. Side note: 
You should learn this test as I am not aware of its 
inclusion in any computer stats program.

Dependent Samples Tests on a Mean (i.e., Depend-
ent Samples t Tests)

There is a two sample test that is really a one 
sample test in disguise. It’s a special situation 
where there are two groups of subjects (more accu-
rately, two sets of dependent variable scores) that 
are not independent. You could even say that they 
are dependent. There are two ways for that to hap-
pen.

One way is to measure the same group of sub-
jects twice. This design is common in a pre-test/
post-test design in which subjects are tested be-
fore a treatment (e.g., training program) and then 
tested again after the treatment. The hypothesis 
concerns whether the scores changed after the 
treatment. It should be clear that if you measure 
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the same set of people twice, they are not inde-
pendent.

The second version of this study actually uses 
two separate groups of subjects. These subjects 
are carefully chosen so that they are matched on 
some variable (e.g., matching on age, for every per-
son in Group 1 with a 28 on the matching vari-
able, there is a person in Group 2 with a 28). Typi-
cally, a treatment is given to one group with the 
matched group serving as a control. Scores on the 
dependent variable are then compared to see if the 
means differ by group. This matching is a form of 
statistical control and is vastly inferior to ran-
domly assigning people to groups. But sometimes 
our hands are tied by circumstance, and we are un-
able to randomly assign. Make lemonade out of 
lemons, right?

In both versions of this study, rather than hav-
ing two independent groups of subjects (with dis-
tinct sample sizes) we have N paired observations 

(where the observations are iid; that is, they are 
iid within groups, but dependent between 
groups).

The hypotheses that we test are familiar. Us-
ing the pre-test/post-test version for our exam-
ples, the population mean from what is typically 
the pre-test (μ1) vs. the post-test (μ2) is greater (
μ1 > μ2), lesser (μ1 < μ2), or just different (μ1 ≠ μ2). 

Now, here’s the clever part: Because the obser-
vations are paired, and because we are interested 
in whether there is a difference between the 
scores from the two groups, we can define a new 
dependent variable:

Di = X1i −X2i

Going with the pre- post-test scenario, we sub-
tract the pre-test score from the post-test score, 
giving us a difference score for each person. Thus, 
a difference score of zero means that there was no 
change; positive difference scores mean that the 
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post-test scores are greater than pre-test scores; 
negative difference scores imply the opposite.

So why is this clever? Instead of having two de-
pendent variables (a pre- and post-test score), we 
now have just one dependent variable, the differ-
ence score, making our analysis a one-sample test. 
We simply test whether the difference score is 
greater than zero (μD > 0), less than zero (μD < 0), 
or different from zero (μD ≠ 0).

Characteristics: t test; can be one- or two-
tailed; designed to use information from two de-
pendent samples (which are combined to form a 
single difference score for each observation, thus, 
becoming a single variable) to draw inferences 
about the relevant population mean; population 
standard deviation is unknown. Given that the 
null hypothesis will always involve some variation 
of μD = 0, the numerator of the test statistic simpli-
fies somewhat.

Test statistic:

tobs = D̄
SD N

With d f = N −1

Example: At the start of the semester, five stu-
dents were timed in the mile run. After a two-
week training session, these same five students 
were timed in the mile again. Test the hypothesis 
that the training session improved (i.e., lowered) 
their times. Data for the experiment are listed in 
Table 1. For the difference (D = Pre −Post) scores, 
the mean and standard deviation are as follows: D̄ 
= 23.4, SD = 22.

i. State null and alternative hypotheses.

H0 = The difference in times (pre minus post) 
will not be greater than zero (μDiff ≤ 0).

H1 = The difference in times (pre minus post) 
will be greater than zero (μDiff > 0).
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ii .  Determine rejection region and critical 
value.

If the mean difference score is zero, that’s per-
fectly consistent with the null being true. So is a 
negative difference scores. Only a very high mean 
difference score is inconsistent with the null. 
Thus, our rejection region will be the top 5% of 
the distribution. Because this is a t test with N −1 
degrees of freedom, the critical value is 2.132.

We will reject the null hypothesis if the tobs is 
greater than 2.132.

iii .  Test statistic:

tobs = D̄
SD N

  = 23.4
22 5

  = 2.38

iv .  Because tobs (2.38) is greater than tcrit 
(2.132), we reject the null hypothesis and con-
clude that the training course did improve times 
(i.e., the mean difference score is greater than zero 
in the population; μDiff > 0).

Problems with Difference Scores as a Variable

Difference scores, although interesting as a de-
pendent variable, have a few issues. First, under 
certain conditions, difference scores can be unreli-
able variables even if both the pre- and post-test 
scores are themselves highly reliable variables. 
Classical Test Theory reliability is beyond the 
score of this book (there’s probably another book 
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TABLE 1 Pre-Test, Post-Test and Difference Score 
Times (in Seconds) for Running Experiment

Subject Pre Post Difference 
(Pre-Post)

1 512 497 15
2 697 692 5
3 811 758 53
4 723 683 40
5 603 599 4

https://itunes.apple.com/us/book/fundamentals-psychological/id562804281
https://itunes.apple.com/us/book/fundamentals-psychological/id562804281


for that), but it is sufficient to say that an unreli-
able variable is not desirable.

Another problem with difference scores is that 
they have a nasty habit of being negatively corre-
lated with pre-test scores. Think about what that 
means for our running study. People who have 
great times in the pre-test have little room for im-
provement (their difference score is likely to be 
low), whereas people with poor times on the pre-
test have massive room for improvement (al-
though not all will show big changes). This issue 
complicates results and may influence how you set 
up the experiment.
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7 We have arrived

Independent Samples 
Tests on a Mean



Two Independent Samples

We have reached the point where we are dis-
cussing the sort of significance tests that are asso-
ciated with true experiments (which have, at the 
very least, a treatment group and a control group 
with random assignment to groups). This chapter 
introduces the simplest version of this research de-
sign. The rest of this book will expand on this tiny 
kernel of an idea with a series of increasingly com-
plicated twists. So there’s something to look for-
ward to.

Tests on a Mean: Two Independent Samples

We are no longer comparing a mean from a 
group to a real or hypothetical population mean 
(e.g., the known national average); we are compar-
ing the means of two independent groups to each 
other. We have two sample means and want to 
compare them to infer something about their re-
spective population means.

We have data from two iid samples, often a 
treatment and a control. If you want this experi-
ment to have any internal validity, people should 
be randomly assigned to groups. We wish to test 
whether the population means are greater 
(μ1 > μ2), lesser (μ1 < μ2), or just different 
(μ1 ≠ μ2).

(With this research design, you begin to see 
how our notion of a population starts to become 
more hypothetical than real. If I have a treatment 
and control group, I want to generalize from their 
sample means to an unmeasured population. But 
how can the entire population be in both the treat-
ment, in which they experience some sort of treat-
ment, and the control, in which they don’t? You 
might attempt to thread this particular needle by 
saying that we are generalizing to half of the popu-
lation having the treatment and the other half not. 
But half of the population isn’t a population – it’s 
a very large sample. See the dilemma? The gener-
alization is more hypothetical now. It’s best under-
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stood as follows. If the entire population were in 
the treatment, this is their mean, and if the entire 
population were in the control, this is their mean. 
The one sample tests could actually happen. We 
could actually measure the entire population. Not 
so here.)

As for how we test the difference between in-
dependent samples, there are three versions of 
this test, all varying on the population standard de-
viation issue. Population standard deviations are: 
known, unknown but assumed equal, and un-
known not assumed equal.

Two Samples, σ Known

Characteristics: z test; can be one- or two-
tailed; designed to use information from two sam-
ple means to draw inference about relevant popula-
tion means; population standard deviations must 
be known.

Test statistic:

zobs = X̄1 −X̄2

σ2
1

n1
+ σ2

2
n2

Example: No example for reasons that will fol-
low.

The big question with this test is: How is that 
we know the population standard deviations, but 
we don’t know the population means? This is not 
like the one sample z test days where the popula-
tion means and standard deviations could be hypo-
thetical values (“the national average is…”) – 
these are real groups in our experiment. The best 
answer I can offer here is that maybe our depend-
ent variable is a standardized test with a set stan-
dard deviation. The problem is that value may 
hold for the control group, but if our treatment 
has some crazy strong effect, I lack confidence that 
it holds for the treatment group. Long story short, 
you’ll never use this test. So we won’t either.
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Two Samples, σ Unknown But Assumed Equal 
(i.e., “Pooled” t test; Independent Samples t test)

This is the test. This is the one that you are 
likely to encounter many times in your research. 
When people say that you should conduct an inde-
pendent samples t test, this is the one they mean.

In this test, we don’t know the population 
standard deviations for each group, so we use a 
weighted average of the sample standard devia-
tions as an estimate of the population value (and 
if you’ve been paying attention, that makes this a t 
test). We assume that the population standard de-
viations are the same for both groups, which may 
or may not be a good idea.

Characteristics: t test; can be one- or two-
tailed; designed to use information from two sam-
ple means to draw inference about relevant popula-
tion means; population standard deviations are un-
known but are assumed to be equal. Test statistic:

tobs = X̄1 −X̄2

S2p ( 1
n1

+ 1
n2 )

Where:

S2
p = (n1 −1)S2

1 + (n2 −1)S2
2

n1 + n2 −2

Note: S2
p  is called the pooled variance esti-

mate; S2
1  and S2

2  are the sample variances for each 
group. Also note that we are now making a distinc-
tion between the total sample size (N) and the 
number of people per group (n1 and n2).

Finally:

d f = n1 + n2 −2

Example. Test the hypothesis that dependent 
variable scores are greater for the treatment group 
than for the control group (shorter version: treat-
ment mean is greater than control mean). Data: 
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treatment: X̄1 =  38, S2
1  = 14, n1 = 25; control: 

X̄2 =  31, S2
2  = 12, n2 = 20.

i .  List null and alternative hypotheses

H0 = The treatment mean is not greater than 
the control mean (μ1 ≤ μ2).

H1 = The treatment mean is greater than the 
control mean (μ1 > μ2).

ii .  Determine rejection region and critical 
value

To understand the rejection region for this, 
you first must picture the null distribution. What 
does it look like here? There are two population 
means – are there two null distributions? No, we 
can make this into the same type of null that we 
know and love by rewriting our null hypothesis. 
Currently it’s H0 : μ1 ≤ μ2. But what if did a little al-
gebra and wrote it like this H0 : μ1 −μ2 ≤ 0? That 
seems like a legit algebra move. And now we can 

see the null as a mean difference. If the control 
population mean is greater than the treatment 
mean, then the difference between them (treat-
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means (treatment minus control) in which H0 is μ1 −μ2 ≤ 0

FIGURE 1 Null Distribution and Rejection Region for In-
dependent Samples t Test Example



ment minus control) will be negative. If they are 
equal, then the difference between them will be 
zero. And if the treatment mean is greater than 
the control mean, then the difference will be posi-
tive. That last case describes the unusual outcome 
if the null is true. Figure 1 displays the sampling 
distribution and rejection region for the example.

As for the independent samples t test critical 
value, d f = n1 + n2 −2. This example has d f = 25 + 
20 - 2 = 43. A check of a full t table shows that 
the critical value (α = .05, 1-tailed) for 43 degrees 
of freedom is 1.681.

We will reject the null if tobs is greater than  
1.681.

iii .  Compute test statistic.

Okay, now it gets annoying. But at least it’s 
rather straightforward. Just make sure you put 
variance into the S2

p  equation, because that’s what 

it calls for. If you insert standard deviations, 
you’re in trouble.

S2
p = (n1 −1)S2

1 + (n2 −1)S2
2

n1 + n2 −2

S2
p = (25 −1)14 + (20 −1)12

25 + 20 −2   = 564
43  

S2
p  = 13.12

We said that S2
p  is a weighted average of the sam-

ple variances. Thus it is no surprise that S2
p  is 

13.12, a value in between S2
1  (14) and S2

2  (12). You 
can use this principle as a check on your math, 
should you ever do this by hand.

On to the actual test statistic.

tobs = X̄1 −X̄2

S2p ( 1
n1

+ 1
n2 )

  = 
38 −31

13.12 ( 1
25 + 1

20 )
tobs = 7

1.09    = 6.44
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iv .  State conclusion.

Because tobs (6.44) is greater than tcrit (1.681), 
we reject the null hypothesis and conclude 
that the treatment mean is greater than the 
control mean in the population (μ1 > μ2).

Assumptions of Pooled t Test

A quick discussion of the assumptions of the 
pooled t test is in order. Many of these will be fa-
miliar. First, as the name independent samples t test 
implies, the two samples must be independent ran-
dom samples. Thus, you cannot use the same sub-
jects in both samples (i.e., a within-subjects de-
sign). You already know what test to use for that.

Second, dependent variable scores for each 
sample should be normally distributed. As before, 
it is sufficient for the distributions to be merely 
unimodal and symmetric.

Finally, this pooled t test assumes that popula-
tions standard deviations, although unknown, are 
equal. This condition is called homogeneity of vari-
ance: σ2

1 = σ2
2 . Obviously, people can assume any-

thing like they like. But when is it safe to make 
this assumption? The answer is that it is safe to 
make this assumption when (a) the sample vari-
ances are approximately equal (yes, there is a sig-
nificance test of the variances that you can use for 
this) or (b) the sample sizes are approximately 
equal. If neither of those conditions are met, then 
you should use the next test.

Two Samples, σ Unknown and Unequal (Welch 
Approximate t test)

Characteristics: t test; can be one- or two-
tailed; designed to use information from two sam-
ple means to draw inference about relevant popula-
tion means; population standard deviations are un-
known and are not assumed to be equal. This, like 
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the “pooled” t test, is also an independent samples 
t test. Test statistic:

tobs =   X̄1 −X̄2

( S2
1

n1
+ S2

2
n2 )

That wasn’t so bad. In fact, it looks a lot like the z 
test from earlier. But wait until you see the de-
grees of freedom equation:

d f = (S2
1 /n1 + S2

2 /n2)2

(S2
1 /n1)2

n1 −1 + (S2
2 /n2)2

n2 −1

The degrees of freedom is not likely to turn out to 
be an integer. In that case round down to nearest 
integer (i.e., 43.2 becomes 43).

The assumptions for the Welch approximate t 
test are the same as the pooled t test (other than 
not having the homogeneity of variance assump-
tion). At least one researcher has argued that the 

Welch test should be used as the default version 
of the independent samples t test. However, it is 
worth noting that the Welch approximate t test 
isn’t as sensitive as the pooled t test. In other 
words, you are less likely to obtain a significant re-
sult with the Welch test.

Tests on a Proportion (Two Samples)

We introduced a one sample test on a propor-
tion in the previous chapter. It was analogous to 
our one sample tests on a mean, but set up for a 
dichotomous dependent variable. You can guess 
what’s coming, a two sample test for the dichoto-
mous dependent variable. This test allows us to 
compare two proportions from independent sam-
ples.

Characteristics: z test; can be one- or two-
tailed; designed to use information from two sam-
ple proportions to draw an inference about the 
relevant population proportions. Due to the magi-
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cal properties of dichotomous data, we don’t have 
to worry about whether the population standard 
deviation is known. Can make all of the usual 
tests: Is one population proportion greater than 
the other (p1 > p2), less than the other (p1 < p2), or 
not equal (p1 ≠ p2).

Test statistic:

zobs = ̂p1 − ̂p2

̂p(1 − ̂p)( 1
n1

+ 1
n2 )

Where: 

̂p1 = r1/n1

̂p2 = r2 /n2

̂p = r1 + r2
n1 + n2

The symbols should be familiar. p1 is the popu-
lation proportion for Group 1. ̂p1 is the sample pro-
portion for Group 1 (where r1 is the number of suc-

cesses in the group and n1 is the total number of 
people in the group). Finally, ̂p is the combined 
sample proportion.

Example. Does a new student advisory pro-
gram improve 4-year graduation rates? Data: 24 of 
the 60 students were assigned to the new program 
graduated in four years; 19 of the 50 students in 
the control group graduated in four years.

i .  List null and alternative hypotheses

H0 = The graduation rate is not higher for pro-
gram students than for control group students 
(p1 ≤ p2).

H1 = The graduation rate is higher for pro-
gram students than for control group students 
(p1 > p2).

ii .  Determine rejection region and critical 
value
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It should be clear by now that when null says 
less than or equal, the unusual result will be at 
the high end (i.e., upper tail). As this test statistic 
is distributed normally, the critical z is the familiar 
1.645.

We will reject the null if zobs is greater than 
1.645.

iii .  Compute test statistic.

Start with the sample proportions.

̂p1 = r1/n1  = 24/60 = .40

̂p2 = r2 /n2 = 19/50  =  .38

(Side note: This does not look good for our 
program. Yes, .40 is greater than .38, but it’s 
not much better. Likely well within the range 
of what we would expect to see simply due to 
sampling error if the null is true.)

̂p = r1 + r2
n1 + n2

  =  24 + 19
60 + 50   = 43

110   = .39

zobs = ̂p1 − ̂p2

̂p(1 − ̂p)( 1
n1

+ 1
n2 )

zobs = .40 −.38

.39(1 −.39)( 1
60 + 1

50 )
 = 

.02
.0934

zobs = .214

iv .  State conclusion.

Because zobs (.214) is not greater than zcrit 
(1.645), we are unable to reject the null hy-
pothesis.

As with the one sample for tests on a propor-
tion, statistics programs do not compute this two 
sample test. It’s on you to do it.

Final Thoughts on Independent Samples Tests

We have now covered four different tests 
(three that you would actually use) for testing for 
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differences from independent samples. That’s two 
samples, often a treatment and a control. But what 
if your study has two treatment groups plus a con-
trol group? What do you do then? Run three of 
these tests in which you compare two groups at a 
time (Treatment 1 vs Treatment 2, Treatment 1 vs 
Control, Treatment 2 vs Control)? If you did that, 
how do you interpret the results if only one or two 
of them are significant?

Of course that’s not the way to handle three 
independent groups. We need a comprehensive sig-
nificance test that tests for differences among 
three or more groups with a single test. Maybe 
next chapter.
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8 The start of something big

One Way ANOVA



Introduction

Many of our studies have three or more inde-
pendent groups, and we need a way to conduct a 
single test for differences among these group 
means. This procedure, known as analysis of vari-
ance (ANOVA from now on), allows us to achieve 
that goal. In this chapter we will introduce the sim-
plest form of ANOVA (one-way, fixed effects 
model). Future chapters will build on this founda-
tion to introduce increasingly complex designs.

The ANOVA Model

We know how to test whether the means from 
two groups are different from each other 
(H0 : μ1 = μ2). How are we going to handle three or 
more groups (H0 : μ1 = μ2 = μ3 = . . . = μa; where a 
= number of groups)? To answer that, we need to 
examine the ANOVA model.

A score on the dependent variable (Yij) for a 
given observation (j) within a given group (i) can 
be broken into three components: an overall mean 
or grand mean (μ), an effect for group i (αi), and a 
random component (eij). The use of Greek letters 
tells you that this is a population-level model.

Yij =  μ + αi + eij

The grand mean (μ), the mean across all obser-
vations (or across all group means) is a scaling 
constant and is fundamentally uninteresting. The 
effect for group i (αi) is defined as the difference 
between the mean of that group and the grand 
mean: αi = μi −μ. This term describes the differ-
ence between groups in the population. If all 
groups have the same mean (meaning that there is 
no effect for the independent variables), then all of 
the group means will equal the grand mean, mak-
ing αi = 0 for all groups. Bigger differences be-
tween the group means result in bigger differences 
between the group means and the grand mean. So 
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αi is an index of the magnitude of the effect of the 
independent variable in the population.

The random component (eij) is distributed 
with a mean of zero and a variance of σ2. This eij 
term describes differences in dependent variable 
scores within a given group. If all members of the 
control group have the same score, then eij = 0. 
Bigger differences within groups result in larger 
values for eij.

The fundamental principle of ANOVA is to 
evaluate the magnitude of between-group differ-
ences(αi), which we hypothesize, against the mag-
nitude of within-group differences (eij), which 
we’re pretty much not a fan of. It’s not a coinci-
dence that the eij term is given the letter e for er-
ror as within-group differences are seen as a type 
of error. They may not be actual errors, just the re-
sult of real differences among people in a group. 
Because these differences are unrelated to our 
treatments, we find them annoying at best.

Null Hypotheses Revisited

ANOVA is used to test whether means differ 
among independent groups. There is no longer the 
possibility of testing for directional differences. 
(Imagine that you had eight groups – are you go-
ing specify all of the different ways in which the 
means could go?) In ANOVA-land there is only 
one issue to be tested: The means are either all 
the same, or they are not all all the same (i.e., at 
least one group’s mean is different from the rest). 
Because we always hypothesize differences (hy-
pothesizing sameness is a thread to validity; see 
Cook and Campbell again), our study hypothesis 
will always be the same: differences. The null will 
always be the same: no differences. Thus, the null 
hypothesis can be written as

H0 : μ1 = μ2 = μ3 = . . . = μa.

We can revise it to be in terms of the model. If H0 
is true, then μi = μ for every group, which can be 
re-written as: μi −μ = 0 for every group. Given 

97



that μi −μ = αi, we can restate as: αi = 0 for all a 
groups. Thus, saying H0:αi = 0 for all a groups is 
equivalent to saying that all group means will be 
the same: μ1 = μ2 = μ3 = … = μa.

The alternative hypothesis will be H1:αi ≠ 0 for 
at least one group. As we said earlier, the means 
are either all the same or not all the same. Just 
one group mean different from the rest is enough. 
(As far how many group means are different, and 
which groups they happen to be, that’s a question 
that ANOVA in its basic form can’t answer. There 
are ways to address this issue. We’ll get there.)

Partition of Variance: Sums of Squares

The key to understanding what ANOVA does 
rests in understanding how variance is partitioned 
(i.e., divided up). Because the business end of 
ANOVA involves manipulating sample data, we’ll 
write things in sample terms (using Y to represent 
the dependent variable). A score on the dependent 

variable for subject j in group i is Yij. Where we 
had the grand mean of dependent variable scores, 
μ, we will have the grand mean of dependent vari-
able scores, Ȳ. Group mean in the population 
model, μi, becomes group mean in our sample, Ȳi. 
That’s just three terms that we need to get the job 
done. Not bad.

For any Yij we can view things as:

(Yij −Ȳ ) = (Ȳi −Ȳ ) + (Yij −Ȳi)

(Algebra fans can simplify the above equation 
to Yij = Yij. Not that you need to.)

The above equation means the difference between 
a given score on Y (Yij) and the grand mean of Y 
(Ȳ) = the difference between the group mean of Y 
(Ȳi) and the grand mean of Y (Ȳ) + the difference 
between that score on Y (Yij) and the group mean 
of Y (Ȳi).
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Squaring and summing across observations 
gives us:

a

∑
i= 1

ni

∑
j= 1

(Yij −Ȳ )2 =
a

∑
i= 1

ni

∑
j= 1

(Ȳi −Ȳ )2 +
a

∑
i= 1

ni

∑
j= 1

(Yij −Ȳi)2

The subscripts are just saying: sum across all ob-
servations in a given group (Σni

j= 1) for all of the 
groups (Σa

i= 1). This is simply the reverent statisti-
cian’s way of saying: sum across everything.

That’s the textbook version of the equation. 
We can simplify it a bit. Let’s get rid of all of the 
subscripts – do we really need to refer to a score 
on Y as Yij? Let’s just call it Y. And let’s use just 
one sigma symbol (Σ) to indicate that these calcu-
lations should be done for all N observations and 
summed. This version is a little cleaner.

∑ (Y −Ȳ )2 = ∑ (Ȳi −Ȳ )2 + ∑ (Y −Ȳi)2

For no reason whatsoever, I’m going to list the 
sample variance equation from Chapter 3.

S2
X = Σ(X −X̄ )2

N −1
Why don’t we rewrite this equation so that it’s set 
up to compute the variance of Y instead of X. 
Again, for no reason at all.

S2
Y = Σ(Y −Ȳ )2

N −1
Now compare that variance equation with the 
ANOVA model. Every one of the terms in the 
ANOVA model looks like a version of the numera-
tor of the sample variance equation: Σ(Y −Ȳ )2. In 
fact, the first term in the ANOVA model is that 
very numerator. Which means that all three parts 
are just chronicling the amount of differences in 
scores of various types. The first term in the 
model is the total squared differences in scores 
(i.e., total squared differences between each score 
and the overall mean). The second term is the to-
tal squared differences between each group mean 
and the overall mean (differences between 
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groups). The final term is the total squared differ-
ences between each score and the group mean (dif-
ferences within groups). These terms, which are 
the sum of the squared differences between some-
thing and the mean of something, are called sums 
of squares.

Using this terminology, we can re-write this 
equation to be:

SST = SSB + SSW

(sum of squares total) = (sum of squares between 
groups) + (sum of squares within groups).

Sum of Squares Total

SST = ∑ (Y −Ȳ )2

Addresses the question: How different are the 
scores? Identical to the numerator of the variance 
equation because that’s what it is: the sum of 

squared differences between each score and the 
overall mean score.

Sum of Squares Between

SSB = ∑ (Ȳi −Ȳ )2

Addresses the question: How different are the 
group means? Imagine computing the means for 
the a groups (i.e., Ȳ1,  Ȳ2,  …,  Ȳa) and then comput-
ing the variance of just these a scores. The numera-
tor of that variance calculation would be the sum 
of the squared difference between each group 
mean (Ȳi) and the overall mean (Y). SSB is that, 
only the squared difference computation 
((Ȳi −Ȳ)2) is repeated for each observation within 
a given group (which is as redundant as it 
sounds).

Sum of Squares Within

SSW = ∑ (Y −Ȳi)2
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Addresses the question: How different are the 
scores within a group? Imagine computing the 
variance of just the observations within a given 
group. The numerator of that would be the sum of 
the squared differences between each score in that 
group and the mean of that group. Repeat for all a 
groups and sum to obtain SSW.

Thus, ANOVA is an analysis of variance (re-
dundant wording: minus two points) where the to-

tal variability is assigned to a between-groups com-
ponent and a within-groups component (Figure 
1).

Computing Sums of Squares

First, I understand that we use computers to 
do this sort of thing. It is likely that you will never 
be forced to compute an ANOVA by hand as a 
practicing researcher. Second, the process we will 
use to compute this ANOVA is not the most effi-
cient way to do this (the more efficient methods 
are called computational forms of the equations be-
cause they have been optimized for easy computa-
tion; computational optimization has the unfortu-
nate side effect of producing equations that don’t 
make any intuitive sense). We are doing these 
hand calculations this way to help you understand 
the inner workings of ANOVA. Plus, I made exam-
ples to keep the math simple.
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In the ANOVA model total differences between scores (SST) are divided 
into between group differences (SSB) and within-group differences 
(SSW).

FIGURE 1 Variance Partitioning in ANOVA
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An inspection of Table 1 shows that there are 
three independent groups of subjects with three 
subjects in each group. The independent variable, 
X, identifies the group. Feel free to think that 

Groups 1 and 2 are alternate versions of the treat-
ment and Group 3 is the control. To compute 
sums of squares, we need to know a few means: 
the grand mean and the mean of each group. The 
grand mean is 6.0, and the means of Groups 1-3 
are 5.0, 6.0, and 7.0, respectively.

The column labeled “between” is where we 
compute the sum of squares between: Σ(Ȳi −Ȳ )2. 
Each entry in that column is the squared differ-
ence between the mean of that group and the 
grand mean. And yes, it’s the same for everyone in 
that group because (yes, this is obvious) the group 
mean is the same for everyone in a group. The last 
entry is the sum of these values, the sum of 
squares between.

The column labeled “within” is for the sum of 
squares within: Σ(Y −Ȳi)2. Each entry in that col-
umn is the squared difference between the actual 
score on Y and the group mean. The final entry is 
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TABLE 1 Sum of Squares Computation

X Y Between Within

1 4 (5-6)2 = 1 (4-5)2 = 1

1 5 (5-6)2 = 1 (5-5)2 = 0

1 6 (5-6)2 = 1 (6-5)2 = 1

2 5 (6-6)2 = 0 (5-6)2 = 1

2 6 (6-6)2 = 0 (6-6)2 = 0

2 7 (6-6)2 = 0 (7-6)2 = 1

3 6 (7-6)2 = 1 (6-7)2 = 1

3 7 (7-6)2 = 1 (7-7)2 = 0

3 8 (7-6)2 = 1 (8-7)2 = 1

SSB = 6 SSW = 6

figure:8060ADDE-4DA6-4597-8C49-6BF9F906D6D9
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the sum of these values, the sum of squares 
within.

Partition of Variance: Mean Squares

Recall how the sample variance equation was 
a sum of squared differences divided by N −1. We 
will be dividing our ANOVA sums of squares by 
something minus something to get what are called 
mean squares. The general form of any mean 
square equation is the sum of squares divided by 
its degrees of freedom.

MS = SS
d f

The necessity of this step should be clear: we can 
inflate SSB simply by having a large number of 
groups (assuming even trivial differences between 
means). Thus, we must divide by the number of 
groups to correct for this possible inflation.

Let’s define the degrees of freedom for each of 
the three components of the model.

d fTotal = N −1

d fBetween = a −1

d fWith in = N −a

Where:

N is the total sample size (reminder that ni is 
number of observations in a given group)

a is the number of groups (i.e., number of lev-
els or treatments on the independent variable)

Yes, the equations are strange. No, I don’t know 
why. (But if you sum them in the 
Total = Between+ With in fashion, you find that the 
math works out: d fTotal = d fBetween + d fWith in.)

The mean square equations all follow the 
SS/d f structure. First, mean square total:
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MST = SST

N −1
Thus, MST is the same as the sample variance 
across all scores.

MSB = SSB

a −1
Thus, MSB is the SSB divided by the 
nu mber of g rou ps −1.

MSW = SSW

N −a

Thus, MSW is the SSW divided by the 
total N −nu mber of g rou ps.

Finally, The Test Statistic

The test statistic for ANOVA isn’t distributed 
normally or as a t. The distribution is an F distribu-
tion, and once again, it’s a family of distributions 
that vary on degrees of freedom. The new twist is 
that there are two degrees of freedom, called 

d fnu merator and d fdenominator. The F distribution has 
the general shape shown in Figure 2. Notice that 
it is a skewed distribution with only one recogniz-
able tail. Thus, the unusual scores are always the 
high scores. As mentioned there isn’t an option to 
pick a direction with ANOVA.

Fobs = MSB

MSW
 

With degrees of freedom: a −1, N −a

Degrees of freedom in F tests (or F distribu-
tions) are referred to by their origin: 
d fnu merator, d fdenominator. The degrees of freedom in 
the numerator of the F test (MSB) is a −1. And in 
the denominator of the F test (MSW), the degrees 
of freedom is N −a.

So the F test is a ratio of between-group vari-
ability to within-group variability. Let’s play 
“What if?” using these equations.
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What if there are no between-group differ-
ences in our sample data (i.e., all groups have 
the same mean)?

SSB and MSB are both zero, making the F 
test 0/MSW, which any mathematician can 

tell you works out to zero (assuming 
some within-group differences exist).

What if there are no within-group differences 
in our sample data (i.e., all members within a 
group have the same score)?

Well, you get a division-by-zero error as 
SSW and MSW are both zero. So let’s revise 
the question a bit: What happens to the F 
test as within-group differences approach 
zero? As within-group differences ap-
proach zero, the denominator of the F test 
shrinks, causing the F value to increase 
(as long as there are some between group 
differences). So bigger F value is the an-
swer.

What if the between-group differences are the 
same magnitude as the within-group differ-
ences in our sample data?
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If MSB and MSW are of the same magni-
tude, then the F ratio works out to 1.0.

What if the between group differences are 
much bigger than the within group differences 
in our sample data?

You get a MSB that is bigger than MSW 
which means you get a big F ratio.

The takeaway from the above Q&A is that 
when average between-group differences are big-
ger than average within-group differences, the re-
sult is large F values. Thus, the rejection region 
for all F tests is in the right tail of the distribution; 
the right tail is where the extreme (or unusual) 
values are found.

Expected Mean Squares

Let’s introduce a concept that starts so small 
with one-way ANOVA that it’s barely noticeable 

but becomes massively important later: expected 
mean squares.

Chapter 2 introduced the statistical concept of 
expectation (or the expected value of a variable). 
Expectation is defined as long run average. For our 
newfound F test, what is the expected value of 
each component (numerator and denominator)? 
These are the expected mean squares. The good 
news is that they are rather simple. For now.

E(MSB) = σ2 + 1
a −1

a

∑
i= 1

niα2
i

E(MSW) = σ2

As terrible as those equations look, they can be re-
duced to something understandable in two moves. 
First, the σ2 term is the pooled variance estimate, 
which is just another way of saying that it’s 
within-group variance. The only thing in either 

equation is this ugly thing: 
a

∑
i= 1

niα2
i . That terrible 
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equation simply describes between-group differ-
ences. So with these two pieces of information we 
can re-write the expected mean squares as this.

E(MSB) = within-group differences + 
between-group differences

E(MSW) = within-group differences

Or using W and B as shorthand for within- and 
between-group differences:

E(MSB) = W + B

E(MSW) = W

So those are the expected mean squares for one-
way ANOVA (fixed effects). Now think about the 
F test.

F = MSB

MSW

Substituting the expected mean squares, we now 
see an expected value for F.

F = W + B
W

Now let’s use this to address our what-if ques-
tions in terms of expectation. What if there are no 
between-group differences in the population (i.e., 
the null hypothesis is true)? The between compo-
nent (B) of the numerator is zero, and the only 
MSB differences are due to sampling error and will 
be of the same magnitude as within-group varia-
tion. The expected value of the F test is 1.0. Ex-
pected values for F will only be greater than 1.0 
when the null is false (i.e., there are actual differ-
ences between groups in the population).

The point of studying expected mean squares 
is to understand that the F test in ANOVA is de-
signed to yield an expected value of 1.0 when the 
null is true and to yield an expected value greater 
than 1.0 when the null is false. Later, when the 
concept of expected mean squares takes an un-
pleasant turn, we will use this concept to con-
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struct the proper F test given the conditions of the 
study.

Back to Our Example

In our example we computed a SSB of 6 and a 
SSW of 6. Let’s turn those into mean squares and 
finish this. Let’s see, to compute mean squares we 
need to know degrees of freedom. We had nine to-
tal subjects, so N = 9. And we had three treat-
ments, or groups, so a = 3. That means:

d fBetween = a −1   = 3 −1 = 2

d fWith in = N −a   = 9 −3 = 6

As for mean squares, we simply divide the sums 
of squares by their respective degrees of freedom.

MSB = SSB

a −1    =  6
2    = 3

MSW = SSW

N −a
   =  6

6    = 1

And, finally, our Fobs:

Fobs = MSB

MSW
    =  31    = 3.0

We need to consult an F table (Table 2) to deter-
mine the critical value. We already calculated the 
degrees of freedom as 2 for the numerator and 6 
for the denominator. So need α = .05 value for 
F(2,6). According to the table, F(2,6) = 5.14. Because 
Fobs (3.0) is not greater than Fcrit (5.14), we are un-
able to reject the null that all of the means are the 
same in the population.

Comments

Remember: A significant F test means that at 
least one of the group means is different from the 
rest (we are rejecting null: μ1 = μ2 = μ3 = … = μa). 
It does not mean that all of the group means are 
different from each other. It also doesn’t tell us 
how many or which group means are different. 
There are follow-up tests (call post hoc tests) that 
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we can use to determine that. These post hoc tests 
are structured differently from the ANOVA F test 
and thus, are not testing the same hypothesis.

In addition, there is no directionality to the 
ANOVA F test. Differences are differences and the 
F test doesn’t know or care what direction the dif-
ferences go. If you want to test a directional hy-
pothesis, you need to do an independent samples t 
test (wherein only two groups are compared) or a 
planned comparison post hoc-type test (which, in 
an ironic note, technically isn’t post hoc because it 
was planned).

The ANOVA F Test Is an Enhanced Version of 
the Independent Samples (Pooled) t Test

The ANOVA F test is really a super version of 
the pooled t test. Why do I say this? First, con-
sider MSW. In the days of independent samples t 
test, part of the denominator of the t statistic was 
a pooled variance estimate (i.e., S2

p). Pooled vari-
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TABLE 2 Selected F Table Values (α = .05)

dfbdfbdfbdfbdfb

dfw 1 2 3 4 5

5 6.61 5.79 5.41 5.19 5.05

6 5.99 5.14 4.76 4.53 4.39

7 5.59 4.74 4.35 4.12 3.97

8 5.32 4.46 4.07 3.84 3.69

9 5.12 4.26 3.86 3.63 3.48

10 4.96 4.10 3.71 3.48 3.33

15 4.54 3.68 3.29 3.06 2.90

20 4.35 3.49 3.10 2.87 2.71

25 4.24 3.39 2.99 2.76 2.60

40 4.08 3.23 2.84 2.61 2.45

50 4.03 3.18 2.79 2.56 2.40

100 3.94 3.09 2.70 2.46 2.31



ance is just an average variance of the two groups 
(look at the equation – it’s an actual weighted aver-
age). Well, MSW is a pooled variance for any num-
ber of groups (like an average of the SSW for each 
group). If you’re not convinced, set up a two-
group study and compute both; MSW will equal the 
pooled variance estimate (S2

p).

Second, for the test statistic itself, F = t2 when 
there are only two groups (and n1 = n2). A study of 
the equations for each would reveal this, but due 
to the arrangement of the independent samples t 
equation, this takes a fair bit of algebraic manipula-
tion to see. And I don’t think anyone wants that. 
Suffice to say that upon re-arrangement of the 
squared independent samples t statistic, the nu-
merator (when squared) equals the MSB of the F 
statistic and the denominator (when squared) 
equals the MSW.

Long story short, the F test is a fancy version 
of the t test modified to handle any number of 

groups. Because the F test is a squared version of 
the t test (F = t2), the squaredness of the F of the 
test precludes any possibility of negative values, 
meaning that there can’t be a directional hypothe-
sis with the F test (i.e., in other words, all F tests 
are similar to two-tailed t tests – there is no one-
tailed possibility with the F test).

Assumptions

The assumptions for the F test in ANOVA are 
the same as with pooled t test for independent 
samples: independent random samples, normality, 
and homogeneity of variance 
(σ2

1 = σ2
2 = σ2

3 = . . . = σ2
a).

As before, the normality assumption is satis-
fied as long as the distribution is unimodal and 
symmetric. As for homogeneity of variance, this 
also matches what we saw with the pooled t test – 
as long as the n sizes are close to equal, this as-
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sumption are not likely to adversely impact the re-
sults.

Final Thoughts on One-Way ANOVA (Fixed Ef-
fects Model)

One-way ANOVA is a powerful tool for testing 
for differences between multiple independent 
groups. We said at the beginning that this is the 
version for fixed effects. Fixed effects are independ-
ent variables whose values were chosen by the re-
searcher. There will be a different model for the 
random effects case. There will also be higher-
order ANOVA models (two-way and beyond) in 
our future. For now, let’s appreciate the simplicity 
of the one-way model.
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9 The full name of this 
chapter is “Statistical 
Significance, NHST 
Decisions, and Statistical 
Power.”

But that wouldn’t fit in the 
available space.

Effect Size and Statistical 
Power



Statistical Significance vs Practical Importance

Statistical significance addresses whether sam-
pling error is a likely cause of the observed results. 
It’s a yes/no question (the Fisher inferential 
model): We can rule out sampling error as a cause 
of the results (i.e., reject the null) or not (fail to re-
ject the null). Practical importance is whether the 
observed results are impressive (i.e., large differ-
ences between the means for an independent sam-
ple t test), moderate, or trivial (small). These are 
two different, albeit related, issues.

Here’s how they are related: Other things be-
ing equal, larger effects are more likely to be sig-
nificant.

Here’s how they are different: When sample 
sizes are small, even large effects may not be sig-
nificant (and nobody cares how big the effects are 
when you fail to reject the null because these “big 
effects” that you claim to have could be just sam-
pling error). Or when sample sizes are huge, we 

may reject the null even though the effects are triv-
ial in magnitude (yes, the results are unlikely due 
to sampling error, but given how small they are, 
who cares?).

Remember, no one cares about how big your 
effects are if your results are not significant. Can’t 
rule out sampling error as a cause of your results? 
Then, the conversation is over.

Indices of Effect Size: Cohen’s d

We need a way to quantify practical impor-
tance. Because we don’t want our indices of practi-
cal importance to be affected by sample size, z sta-
tistics, t statistics, and F statistics are out.

For comparisons of two group means (the in-
dependent samples t test scenario) we will use a 
statistic called Cohen’s d. sCohen’s d allows us to 
describe the difference in a standardized metric. 
Like z scores, Cohen’s d is in standard deviation 
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units; means that are one standard deviation apart 
have a Cohen’s d of 1.0 (or -1.0 if the direction is 
reversed).

Statistic:

d = X̄1 −X̄2

(n1 −1)S2
1 + (n2 −1)S2

2
n1 + n2 −2

Sharp-eyed equation fans will recognize the de-
nominator; it’s the square root of the pooled vari-
ance estimate (i.e., S2

p) from the pooled t test that 
you know and love from Chapter 5. The square 
root of variance is standard deviation. So this equa-
tion is really just a matter of dividing the differ-
ence between two means by their (average) stan-
dard deviation. That’s the essence of Cohen’s d: 
the difference between group means divided by a 
standard deviation (that is formed from a 
weighted average of their sample variances).

There are a number of twists to Cohen’s d – it 
really is quite flexible. I’ll list them below.

1. If σ is known (and is assumed the same for 
both groups), then the denominator above is 
simply σ.

2. If this is a one-sample situation, then re-
place X̄2 with the comparison population mean 
(μc). The denominator is σ, if known, or SX, if 
not.

3. Note 1 and Note 2 will probably never be 
relevant to you. Cohen’s d is almost always 
used for the two-group independent samples 
“pooled” t test situation.

4. Cohen’s d is related to the t statistic from 
the independent samples pooled t test in the 
following fashion (which can be a major labor-
saving move):

114



d = tobs
1
n1

+ 1
n2

This is nice as it means that every tobs can be 
turned into a Cohen’s d with a simple multipli-
cation involving the group n sizes.

5. If you like using online calculators for vari-
ous statistical applications, don’t use them for 
Cohen’s d as every one that I have seen uses 
an incorrect (oversimplified) form of the equa-
tion. Do not trust them. Trust me.

Standards for Cohen’s d. According to (Co-
hen, 1988, p. 40), the following standards should 
be used to interpret the magnitude of d:

Small: +/- .20

Medium: +/- .50

Large: +/- .80

Anything greater than +/- 1.0 isn’t just large; it’s 
enormous. A d of 1.0 is an entire standard devia-
tion. Effects that big are quite rare.

Example. Let’s use our example from Chapter 
7. Data: treatment: X̄1 =  38, S2

1  = 14, n1 = 25; con-
trol: X̄2 =  31, S2

2  = 12, n2 = 20. The first thing to 
note is that we rejected the null (tobs = 6.44, tcrit = 
1.681). There isn’t anything to discuss regarding 
effect size if we hadn’t. Also note that I provided 
variance statistics for each group; had I given stan-
dard deviations, squaring would be necessary (do 
not overlook this detail in life). Let’s compute d.

d = X̄1 −X̄2

(n1 −1)S2
1 + (n2 −1)S2

2
n1 + n2 −2

d = 38 −31
(24)14 + (19)12

24 + 19 −2

  =  7
13.12

 = 1.93

115



Cohen’s d = 1.93, which is a massive difference. 
The means of these two aren’t just a little differ-
ent – they are different by almost two standard de-
viations. These results would be very impressive if 
this were not just made up data.

You may have noticed that we have a tobs 
(6.44). Why don’t we compute d from that?

d = tobs
1
n1

+ 1
n2

d = 6.44 1
25 + 1

20  = 6.44 .09 = 1.93

Told you this way was easier.

Indices of Effect Size: Eta-squared

Cohen’s d is our effect size solution for two-
group situations. What about the ANOVA case in 
which we have three or more groups? Are we to 
compute Cohen’s d for every pairing of groups? 

Well we could, but it would be better to have a sin-
gle effect size statistic that captures all of the 
groups. That statistic is called eta-squared (η2).

η2 = SSB

SST

Note: It’s that simple.

Here’s how it works. In Chapter 8 we men-
tioned that the ANOVA model sees the within-
group variability (SSW) as error. (Side note: one of 
my undergraduate professors viewed the field of 
psychology as having two philosophies. One side 
sees things just like the ANOVA model: within-
group differences are uninteresting. The other side 
sees within-group differences as the interesting 
part – the entire purpose of the field is to under-
stand why people within groups are different on 
variables of interest.) In the ANOVA model 
between-group variability (SSB) is the interesting 
part. Because SST = SSB + SSW, dividing SSB by SST 
gives us the percent of total variance that is due to 
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differences between groups (presumably a treat-
ment effect). If all group means are the same (mak-
ing SSB = 0), then all variability is due to variabil-
ity within groups and η2 = 0. If the group means 
are different and all scores within a given group 
are identical, then all variability is due to between-
group differences and η2 = 1.0. If you’re a fan of re-
gression analysis (and what decent person isn’t?), 
η2 is analogous to R2. Some stat programs even re-
port η2 as R2.

Example. I would say let’s use our Chapter 8 
one-way ANOVA example, but that analysis was 
non-significant (i.e., we didn’t reject the null), 
meaning that there’s no reason to discuss effect 
size. I made a slight edit to the Chapter 8 dataset 
to give us a new example to work with (I lowered 
everyone’s score in Group 1 by a point and raised 
Group 3 scores by a point). The dataset and sums 
of squares are shown in Table 1. If you complete 
the ANOVA, and you should, you will end up re-

jecting the null. Let’s get to the eta-squared calcu-
lation.

η2 = SSB

SST
  = 24

SST
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TABLE 1 Sum of Squares Computation

X Y Between Within

1 3 (4-6)2 = 4 (3-4)2 = 1

1 4 (4-6)2 = 4 (4-4)2 = 0

1 5 (4-6)2 = 4 (5-4)2 = 1

2 5 (6-6)2 = 0 (5-6)2 = 1

2 6 (6-6)2 = 0 (6-6)2 = 0

2 7 (6-6)2 = 0 (7-6)2 = 1

3 7 (8-6)2 = 4 (7-8)2 = 1

3 8 (8-6)2 = 4 (8-8)2 = 0

3 9 (8-6)2 = 4 (9-8)2 = 1

SSB = 24 SSW = 6
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What is the SST? We could compute it from the 
raw data with the SST = Σ(Y −Ȳ )2 equation. Or we 
could recall that SST = SSB + SSW. Since we already 
have SSB and SSW, that seems easier. So SST = 24 + 
6 = 30.

η2 = SSB

SST
  = 24

30   = .80

We have our answer: 80% of the total variance is 
between-group variance, an incredibly high 
amount.

NHST Decisions

If the null hypothesis is in reality false, and we 
reject it, that’s good.

If the null hypothesis is in reality true, and we 
fail to reject it, that’s also good (although we’re 
probably none too happy about it). Why is this 
good? Because we learned the truth.

But what of the other outcomes? Table 2 lists 
the various outcomes that can occur with hypothe-
sis testing. Please understand that “accept H0” is 
just shorthand for “fail to reject H0.”

Type I error is rejecting the null when the null 
is true, and the probability (at maximum) of this 
error equals alpha (α). Think of the logic of NHST 
here: Assume the null is true and ask how un-
usual this result would be in a null distribution; if 
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TABLE 2 NHST Outcomes

Truth/RealityTruth/Reality
H0 (null is 

true)
H1 (alt is 

true)

Study 
Decision

Accept H0
Correct 
Decision

Type II Error
Study 

Decision
Reject H0 Type I Error

Correct 
Decision
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the answer is very unusual (a standard that corre-
sponds to α), then we reject the null. So, if the 
null is true, there is still an α probability that we 
will reject it.

Many researchers believe that when we have 
rejected the null, the probability that the null is 
true (and thus made a Type I Error) equals alpha (
α). Those people could not be more wrong. They 
could try to be more wrong. But they would fail. 
The probability of a Type I error is not the probabil-
ity that the null is true given that we rejected the 
null. The probability of a Type I error is the prob-
ability that we reject the null given that it’s true. I 
know this sounds confusing (which is why this 
misunderstanding is so common), so I’ll say it a 
few more ways.

Correct Version: “If the null is true (this 
means that we are assuming that the null is 
true), then the probability that I made a Type I 

error (i.e., rejected the null when true) is .05 
(i.e., alpha).”

Incorrect Version: “I rejected the null. Thus, 
the probability that the null is true (meaning I 
made a Type I error) is .05 (i.e., alpha).”

The second version is incorrect because given the 
limited knowledge we have when we conduct re-
search, we simply do not have enough information 
to estimate the probability that the null is true 
(thus make a Type I error when we reject it). (If 
we did have this info, then our approach to NHST 
would be very different.) I shouldn’t be too hard 
on researchers holding to this incorrect version – I 
was one of them for many years.

Finally, Beta (β) is the probability of Type II er-
ror:

β = Pr(fail to reject H0 when H1 is true*)

*I could have said “H0 is false.” Same thing.
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We don’t get to set this one – it depends on many 
factors (see Power section). Let’s understand Type 
II error. If H0 is false, we should reject it every 
time. But sometimes the results of our study do 
not rise to the level that allows us to reject the 
null (i.e., not in the 5% of the null distribution 
that is the rejection region for that type of hypothe-
sis). This is quite bad as it means that effective 
treatments (e.g., medical, educational, job train-
ing) are thought to be ineffective. Why does these 
Type II errors occur? The answer is almost always 
a lack of sufficient statistical power.

Statistical Power

Power is defined as the probability that we re-
ject the null hypothesis given that the null is false. 
This means that we are obtaining a significant re-
sult when we should have a significant result. 
Here are some more ways of saying the same 
thing.

Power = 1 – Pr(accept H0 given that the null is 
false)

Power = 1 – Pr(Type II Error)

Power = 1 – β

We want power. Lots of power. We want to be 
able to reject the null every time our hypothesis is 
true (which, of course, means that the null is 
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false). Notice that I didn’t say that we want to re-
ject the null every time – we want to reject it every 
time it is false. NHST is a (imperfect) tool we use to 
discover the truth.

The key to understanding a power diagram 
(Figure 1) is to keep in mind that these are sam-
pling distributions and that the H0 and H1 distribu-
tions represent two different possibilities: H0 for a 
“no effect” situation and H1 for the “there is an ef-
fect” outcome. These are alternate realities – they 
can’t both be true. We can construct the H0 distri-
bution for every hypothesis we test, but the H1 dis-
tribution you see in the diagram is unknown in 
practice; it represents the “if there is an effect that 
of this magnitude, then its sampling distribution 
looks like this” scenario.

An inspection of Figure 1 will help us under-
stand power. First, focus on the null (H0) distribu-
tion. As we have discussed, the null distribution is 
a sampling distribution that reflects the character-

istics of the null hypothesis. When the null is true 
some sample means will be low, most will be aver-
age, and some will be high. The vertical line in the 
graph represents the critical value; sample means 
greater than this value are in the top 5%, and if ob-
served, allow us to reject the null. If the null is ac-
tually true and we reject it because we obtained a 
sample mean that was in the top 5%, then we 
made a Type I error (red area).

That’s if the null is true. Now let’s examine 
the distribution for the alternative hypothesis (H1) 
(which makes the null false). If we obtain a sam-
ple mean greater than the critical value (i.e., falls 
in the top 5% of the null distribution), then we 
correctly reject the null (blue area). Note that 
about 2/3 of the H1 distribution is above that criti-
cal value. Thus, 2/3 of the time when the null is 
false (making the alternative hypothesis is true), 
we are rejecting the null. That’s power. A great 
power level is .9; .8 is still very good. Anything 
less than .8 (e.g., the .67 in ) is not very good.
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As to why low power is a problem, consider 
that when the null is false, we should be rejecting 
it every time. In Figure 1, when the alternative hy-
pothesis is true we will obtain a sample mean that 
is the below the critical value about 1/3 of the 
time, leaving us unable to reject a false null. That 
is a Type II error (green area). Consider that even 
a good power of .8 means that the Type II error 
rate is .20, four times the rate of a Type I error.

One criticism of power analysis that you 
might have is that the analysis involves informa-
tion that we don’t know and can’t know. That criti-
cism is correct; power isn’t computed – it’s esti-
mated. And the quality of the estimated power is 
dependent on the quality of the assumptions that 
go into the analysis. Power can’t be directly com-
puted as we don’t know whether H1 is true, and 
we don’t know its parameters (and, of course, we 
don’t know β). Power can be estimated, but that’s 
only because we estimate various parameters (e.g., 
population effect size). Thus, the accuracy of the 

power estimate is dependent on the quality of our 
parameter estimates.

Ways to Increase Statistical Power

Increase Alpha. What if we set α to .10 in-
stead of .05? This change would make it easier to 
reject the null. But this option is not really an op-
tion. And trades one error for another (i.e., in-
creased alpha means greater risk of Type I error). 
If you want to go this route, good luck.

Conduct a One-Tailed Test Instead of Two-
Tailed. Of course this option is only appropriate 
when we have a directional hypothesis. You would 
be surprised how often people conduct a two-
tailed test when they could have or should have 
conducted a one-tailed test. There are two com-
mon reasons for this oversight. First, there are 
many times when a researcher has enough infor-
mation to make a directional hypothesis but for 
some reason fails to state it that way. Thus, re-
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searchers making this error perform two-tailed 
tests when they could have performed the one-
tailed variety.* Think of every z and t table – other 
things being equal, the two-tailed critical value is 
always greater than the one-tailed value. Another 
cause of this error lies in the stat software we use. 
These programs always default to two-tailed tests. 
Many times there isn’t even an option for a one-
tailed test. Thus, careless researchers end up con-
ducting two-tailed tests even when they intended 
to run a one-tailed test of their directional hy-
pothesis.

(* I once heard a researcher defend this prac-
tice on the grounds that it results in a more con-
servative – reduced chance of a Type I error – test. 
To that, I say: If you want to lower α to something 
less than .05, then lower α; there’s little to be 
gained by doing it in a backhanded manner such 
as this.)

Decrease σ. Before we address the how, let’s 
start with the what. Decreasing the standard devia-
tion makes the sampling distributions (both null 
and alternative) narrower, leaving less of the H1 
distribution below the critical value. (Picture the 
Figure 1 distributions only skinnier.) How can we 
make this happen? The answer is in within-group 
variance (think SSW). Differences within groups 
are seen as error; ideally, everyone receiving the 
same treatment would perform the same way. Of 
course, this line of thinking is a fantasy, com-
pletely disconnected from reality. But follow it 
backwards: the more irrelevant influences (e.g., 
distracting half of the subjects within a given treat-
ment) that we introduce into our studies, the 
greater amount of irrelevant variance we introduce 
into their scores; that’s a bigger standard devia-
tion (σ). If it’s possible to make things worse (in-
troduce irrelevant influences to increase σ, then it 
should be possible to make things better by remov-
ing irrelevant sources of variance from your study 
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(i.e., exercise more experimental control). Of 
course there are limits to how much we can re-
duce σ, but some of this is under the control of 
the researcher. It is possible to do this with experi-
mental research and very difficult to do with non-
experimental research.

Increase N. Bigger N means more power. The 
denominator of every standard error contains N. In-
crease N and you decrease standard errors, the 
standard deviation of the sampling distribution – 
making those distributions skinnier. Increasing N 
has the same effect that decreasing σ has. The ad-
vantage here is that N is a factor that is always un-
der the direct control of the researcher. Just collect 
bigger samples already.
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10 Things to do with a 
significant ANOVA

Post Hoc Tests



What ANOVA Can’t Tell You

A significant F test in an ANOVA tells you 
that at least one of the means is different from the 
other means. But we don’t know which one or 
how many. We must do follow up tests to find out 
(if we care about that sort of thing – and we may 
not). These tests are called post hoc (Latin for I 
know a few words of Latin) tests. As the plural 
“tests” implies, there are many of these post hoc 
tests. We will discuss two in this chapter.

Fisher’s Least Significant Difference

Fisher’s Least Significant Difference (i.e., 
Fisher’s LSD, a name that engendered far fewer 
giggles when it was introduced in the early 20th 
century) allows us to compare any pair of group 
means, hence the term for this sort of thing: pair-
wise comparisons.

Setup: Compare any two group means 
(H0 : μ1 = μ2; H1 : μ1 ≠ μ2). Assumes equal n size per 
group. Also assumes equal variance (like pooled t 
test). This is basically a hopped up independent 
samples t test.

Start with independent samples “pooled” t 
test. Simplify with equal n size per group. And sub-
stitute the pooled variance estimate with its 
ANOVA equivalent (MSW), and you get this:

tobs = Ȳ1 −Ȳ2

MSW ( 2
n)

Where the degrees of freedom are the degrees 
of freedom from the MSW (i.e., the denominator d f; 
i.e., N −a). And where n is the number of people 
per group (N is the total sample size)

Since we don’t have a direction hypothesized, 
either one is fine (making this a 2-tailed test); so 
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we’ll take the absolute value of the numerator. 
The result will be significant if:

| Ȳ1 −Ȳ2 |

MSW ( 2
n)

> t(dfW),1−α
2

Where t(dfW),1−α
2
 is the critical value of t (two-

tailed).

If we move the denominator over to the other side 
(i.e., basic algebra), we get this:

| Ȳ1 −Ȳ2 | > (t(dfW),1−α
2 ) MSW ( 2

n)
In other words, if the absolute value of the mean 
difference is greater than what’s on the right side 
of the equation, then we have a significant differ-
ence. Thus, the right side of the equation repre-
sents the minimum difference needed to be signifi-
cant, or (who could see this coming?) the least sig-
nificant difference.

Example. Table 1 lists the data for 15 subjects 
in three groups (n = 5 for each group). Due to 
space limitations, I wasn’t able to show the sums 
of squares, but I think you can handle that one 
yourself. (Go ahead, and finish off the ANOVA – 
the tedious work is already done.) The means for 
each group are as follows: Group 1 = 5.0, Group 2 
= 6.0, Group 3 = 7.0. 

Degrees of freedom are 2, 12 (a −1, N −a), giv-
ing us an Fcrit of 3.89. Because Fobs (5.0) is greater 
than Fcrit, we can reject the null and conclude that 
the group means are not all the same. (Recall that 
I mentioned stat programs report an exact p-value 
and leave it up to you to conclude significance. In 
this case, the exact is p-value .026. Because .026 is 
less than .05 – and this is an ANOVA in which 
there is neither a direction nor tail option – we 
can reject the null.) Now it’s time for a post hoc 
test to identify which groups are different. At least 
one of them should be.
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Here’s the equation for Fisher’s LSD:

| Ȳ1 −Ȳ2 | > (t(dfW),1−α
2 ) MSW ( 2

n)
The right side is the LSD part. We need to com-
pute that before we start comparing means. To 
start, we’ll need the t statistic. Let’s see, the d fW is 
12 (N −a: 15 - 3 = 12). A quick check of a t table 
(α = .05, two-tailed) tells us that t = 2.179. If you 
computed the Fobs for this ANOVA, then you 
know that the MSW is 1.0. Finally, we know that n 
= 5. Plugging all of that info in:

| Ȳ1 −Ȳ2 | > (2.179) 1.0 ( 2
5 )

| Ȳ1 −Ȳ2 | > 1.378

So, if the difference between any pair of means is 
greater than 1.378, then those means are signifi-
cantly different. Now let’s get to comparing the 
means.
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TABLE 1 One-Way ANOVA Dataset

X Y Between Within

1 4 (5-6)2 = 1 (4-5)2 = 1

1 4 (5-6)2 = 1 (4-5)2 = 1

1 5 (5-6)2 = 1 (5-5)2 = 0

1 6 (5-6)2 = 1 (6-5)2 = 1

1 6 (5-6)2 = 1 (6-5)2 = 1

2 5 (6-6)2 = 0 (5-6)2 = 1

2 5 (6-6)2 = 0 (5-6)2 = 1

2 6 (6-6)2 = 0 (6-6)2 = 0

2 7 (6-6)2 = 0 (7-6)2 = 1

2 7 (6-6)2 = 0 (7-6)2 = 1

3 6 (7-6)2 = 1 (6-7)2 = 1

3 6 (7-6)2 = 1 (6-7)2 = 1

3 7 (7-6)2 = 1 (7-7)2 = 0

3 8 (7-6)2 = 1 (8-7)2 = 1

3 8 (7-6)2 = 1 (8-7)2 = 1



First, let’s examine the mean of Group 1 ver-
sus 2. That’s 5.0 and 6.0, respectively.

| Ȳ1 −Ȳ2 |

|5.0 −6.0 | = 1.0

Is a mean difference of 1.0 greater than the LSD of 
1.378? No, so the difference between 1 and 2 is 
not significant. Group 3 has a mean of 7.0, so the 
comparison of Groups 2 with 3 is also non-
significant. But Group 1 versus 3 is different.

| Ȳ1 −Ȳ3 |

|5.0 −7.0 | = 2.0

The difference between Groups 1 and 3 is greater 
than the LSD, so it is these two groups that are sig-
nificantly different. Now we know.

As we said at the start, there are things 
ANOVA just can’t tell us. Post hoc tests are em-
ployed to get that additional information.

The Trouble with Fisher

There is just one problem with Fisher’s LSD: 
α is set to .05 for each comparison. We had three 
comparisons in the example. This means that, if 
the null is true for all three, the probability is 
greater than .05 that we will reject the null for at 
least one test when the null is actually true – a 
Type I error. (Beware of the typical misinterpreta-
tion of NHST and Type I errors. See the previous 
chapter for more on that.). If there are, say, 10 
groups, then this probability is quite high (assum-
ing the null is true for all). You may have heard of 
the difference between test-wise alpha and 
experiment-wise alpha. That is what we’re dealing 
with here. This problem is known as probability 
pyramiding (best name ever). In spite of the cute 
name, some people can’t sleep at night because of 
issues like this (I am not one of those people – 
think about what we’ve said about how often the 
null is true) and have proposed solutions. Which 
brings us to our next post hoc test.
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Tukey’s Honestly Significant Difference

Tukey’s Honestly Significant Difference proce-
dure (i.e., Tukey’s HSD – more three letter acro-
nyms?) is designed to control Type I error rate so 
that it is 5% for all the tests combined. That 
means that each individual comparison will have 
an α that is less than .05 or 5% (i.e., test-wise α 
for these tests will be less than .05 so that 
experiment-wise α will be .05). Tukey’s test is not 
distributed as a z or a t (or even an F) distribution 
but as a Studentized Range distribution (q). The 
Studentized Range distribution is somewhat like 
the F distribution in that it has two degrees of 
freedom-type things: one is the number of groups 
(a), and the other is d fW. As with Fisher’s LSD, 
this test assumes equal n per group.

| Ȳ1 −Ȳ2 | > (q(a,dfW)) MSW /n

Where a is the number of groups in the origi-
nal ANOVA. MSW and d fw are also from the 
original ANOVA.

Note that many tables use k in place of a and v 
in place of d fw for reasons that don’t matter.

Example. We’ll use the same Table 1 example 
from before. First, we compute the HSD, and for 
that we need to consult a Studentized Range distri-
bution table of critical values. Because there are 
three groups and d fW = 12, we’ll look for the 3, 12 
value. A quick check of the table tells us that for α 
= .05, the critical value is 3.77. Solving for HSD,

| Ȳ1 −Ȳ2 | > (3.77) 1.0/5

| Ȳ1 −Ȳ2 | > 1.685

Now, we know. If the difference between any 
two means is greater than 1.685, then they are 
significantly different (i.e., we reject the null 
that they are the same in the population).
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Because Groups 1 and 2 as well as Groups 2 and 3 
differ by only a point, they are not significantly dif-
ferent. But Groups 1 and 3 differ by two points, 
which is greater than 1.685, which makes them dif-
ferent.

Thus, these results are the same as with 
Fisher’s LSD test. But you may have noticed that 
the minimum difference between group means re-
quired for significance increased with Tukey’s 
HSD (1.685 for Tukey’s vs 1.378 for Fisher’s). In 
short, you can see that there will be situations in 
which groups that were significantly different with 
Fisher’s test will not be significantly different with 
Tukey’s. Choose wisely.

What About the Equal n per Group Thing?

Both Fisher’s LSD and Tukey’s HSD are ap-
proximately valid in the unequal n per group situa-
tion. For the unequal n scenario we must replace n 

in equation with an average n (called a harmonic 
average):

nh = a
1
n1

+ 1
n2

+ … + 1
na

If nothing else, harmonic average is an objectively 
cool name.

Summary of Pairwise Comparisons

In terms of Type I error, Fisher’s LSD is the 
least conservative test (most likely to make a Type 
I error) and Tukey’s the most conservative test 
(least likely) with other tests (e.g., Duncan’s) 
somewhere in between. Duncan’s Multiple Range 
Test is quite nice.

Don’t Be That Guy

The ANOVA + post hoc model of significance 
testing is appropriate for one and only one situa-
tion: where you don’t have any hypotheses about 
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specific groups (e.g., Group 1 will be different 
from Group 3). For the ANOVA + post hoc model 
to be appropriate, your hypothesis must be of the 
form there will be differences (of an unspecified 
nature) between the groups. The ANOVA is the 
test of that hypothesis and the post hoc offers you 
supplemental information about the nature of the 
differences

If you have specific hypotheses about individ-
ual groups, test those hypotheses. At the most ex-
treme, let’s say that you had a hypothesis about 
Group 1 vs Group 3. Running an ANOVA just so 
that you can run the post hoc to check this is the 
wrong way to go. You don’t run one significance 
test just so that you can run some other test that 
you really wanted to run (which is how this model 
is often treated). Just imagine that the ANOVA is 
non-significant. According to the rules for post 
hoc testing, you aren’t even supposed to run the 
post hoc. Are you really not going to do that? And 
if you do, you haven’t even checked your hypothe-

ses properly as the MSW for both analyses will be 
affected by these other groups that you didn’t 
even care about.

In short, don’t be that guy. Test your hypothe-
sis as written. If your hypothesis only concerns 
two groups, but you also collected data on some 
other groups (maybe due to poor planning or fac-
tors outside of your control – ahem, thesis advi-
sors), just ignore the other groups. Test your hy-
pothesis with an independent samples t test. If 
your hypothesis had a direction, it should be obvi-
ous that this is the only way to go. But even if it 
didn’t, the idea that you would let data from irrele-
vant groups affect your hypothesis test is plain 
daft.

Here’s another “don’t be that guy scenario”: 
you have hypotheses about all the groups (e.g., 
Group 1 will have a greater mean than Groups 2 
and 3). This is also inappropriate for the ANOVA 
+ post hoc model. What you need is something 
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called a planned comparison. A planned compari-
son is not a post hoc test. You are looking for 
something specific, not just which groups are dif-
ferent from which other groups. We’ll get to 
planned comparisons soon. Very soon.
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11 They’re not post hoc tests

Planned Comparisons



Planned Comparisons

Planned comparisons are comparisons of spe-
cific groups (in specific ways) that are planned – 
they were hypothesized in advance of data analy-
sis. It’s great when the name actually means some-
thing.

A Planned Comparison is Not a Post Hoc Test

Although planned comparisons are often 
treated as a fancier version of a post hoc test, 
there is a key difference – planned comparisons 
are planned, that is, hypothesized. Post hoc tests 
are a follow up to a significant ANOVA. With a 
true post hoc (Fisher’s, Tukey’s, and the rest) 
there are no hypotheses stating which specific 
groups are different from other specific groups, 
which is why there are no directional tests with 
post hocs. The planned part of a planned compari-
son means that there is a hypothesized compari-
son. We’re not testing all of the groups against 

each other in some sort of free for all (that’s 
ANOVA) – we’re testing specific groups against 
specific groups (with directional tests, if desired). 
In fact, the flexibility inherent to planned compari-
sons can get overly complicated in a hurry.

Now here’s the controversial part, although it 
shouldn’t be controversial at all. A common ques-
tion about planned comparisons is: Do you need 
to have a significant F test from an ANOVA before 
you can conduct a planned comparison? Let’s re-
vise that question: Do you need to conduct an 
ANOVA at all before you conduct a planned com-
parison? It should be obvious that the answer is 
no. (It should be, but it isn’t to everyone.) The 
ANOVA and the planned comparison are testing 
two different types of hypotheses.

ANOVA: There are differences among the 
group means (with optional post hoc tests to 
determine which means are different). 
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Planned Comparison: Group X has a higher/
lower/different mean than the other groups 
(to offer but one possibility). 

Although the planned comparison example 
probably won’t be significant if the ANOVA is not 
significant (it shouldn’t be, but strange things do 
happen), you don’t have to run the ANOVA to 
have permission to run the planned comparison – 
they are testing different hypotheses. In short, 
your only obligation is to test the hypothesis you 
made. No more. If you’re still not convinced, let’s 
say you do the ANOVA F test, and it’s non-
significant. Are you not going to run the planned 
comparison? Of course you are going to run it. 
Like I said, strange things happen. (Here’s how: In 
close cases, one degree of freedom can make the 
difference.)

The point of all of this is that the significance 
of a planned comparison (and the propriety of con-

ducting one) does not depend upon the signifi-
cance of an ANOVA.

What Can You Do with a Planned Comparison?

You can test just about anything you want 
(within only a few limits).

If there are three groups, you can test 
whether:

Group 1’s mean is greater/lesser/different 
from the means of Groups 2 and 3 (note that 
with this hypothesis, we don’t care whether 
Group 2 is different from Group 3).

Or some other variation of that.

If there are four groups, you can test whether:

Groups 1 and 2 are greater/lesser/different 
than Groups 3 and 4.
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Group 1 is greater/lesser/different than 
Groups 2, 3 and 4.

Or some other variation of that

You get the idea. The flexibility of the planned 
comparison model allows to test a wide variety of 
hypotheses. To address the first example of the 
four group scenario (Groups 1 and 2 are greater 
than Groups 3 and 4), you might ask why some-
one would want to do that. The answer might be 
that Groups 1 and 2 are two treatment groups and 
Groups 3 and 4 are two control groups, and you 
want to find out if the treatments in general have 
an effect as compared to the control groups in gen-
eral. Maybe this hypothesis sounds strange to you. 
That’s fine. The point is that the planned compari-
son process is flexible enough to accommodate a 
variety of comparisons.

Did you notice the other big advantage of 
planned comparisons? You can test directional hy-
potheses (Group 1 is greater than Groups 2 and 

3). Good luck doing that with the ANOVA + post 
hoc model.

Conducting a Planned Comparison

First, figure out what you want to test (i.e., 
your hypothesis). Let’s do one of the hypotheses 
from the four group thing in the previous section: 
Group 1 and 2 are different than Group 3 and 4. 
Unlike the simple days of one-way ANOVA in 
which the null and alternative hypotheses were al-
ways the same, we’re going to have to specify 
them for planned comparisons. For the example, 
the alternative hypothesis would look like this:

H1:μ1 + μ2 ≠ μ3 + μ4

The null would look like this:

H0:μ1 + μ2 = μ3 + μ4

Which we could re-write as:

H0 : μ1 + μ2 −μ3 −μ4 = 0
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Thus, our null can be conceived as a linear combi-
nation (l) of means

l = (1)μ1 + (1)μ2 + (−1)μ3 + ( −1)μ4

Notice how weights sum to zero. They have to 
sum to zero.

The general form of that linear combination 
thing is this:

l = c1μ1 + c2μ2 + … + caμa = Σciμi

Where Σci = 0. Note that restriction: you can 
do whatever you want regarding weights as 
long as they sum to zero.

Thus for all of these planned comparisons, the 
null is really H0 : l = 0 (or H0 : l ≤ 0 or H0 : l ≥ 0 if 
your hypothesis has a direction). Think of l as a 
summary statement about the population means. 
In this case, the null states that these two group 
means (and we don’t care about them individu-
ally) are equal (because this is the null) to these 

other two group means (which we also don’t care 
about individually). The alternative hypothesis is 
of course that they are unequal in the population.

The sample equivalent of l is ̂l and is defined 
as ̂l = ΣciȲi. Thus, ̂l is just the sum of the sample 
means weighted according to our hypothesis. My 
suggestion to make this easy: Specify the null in 
the H0 : μ1 + μ2 −μ3 −μ4 = 0 format, turn it into the 
linear combination format:

l = (1)μ1 + (1)μ2 + (−1)μ3 + ( −1)μ4

Use that to set up your ̂l computation. In this 
case, ̂l would look like this:

̂l = (1)Ȳ1 + (1)Ȳ2 + (−1)Ȳ3 + (−1)Ȳ4

Let’s do an example with the data listed in Table 
1. The means for Groups 1-4 are 5.0, 6.0, 7.0, 8.0, 
respectively. For this hypothesis, ̂l is:

̂l = (1)5.0 + (1)6.0 + (−1)7.0 + (−1)8.0 = -4.0
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This means that in our sample, the means of 
Groups 1 & 2 differed from the means of Groups 3 
& 4 by -4.0 points. Is that a significant difference? 
We don’t know yet; that’s why we do the t test. 
The equal n test statistic is:

tobs =
̂l

MSW

n Σc2
i

With d fw (i.e., N −a) degrees of freedom.

If ns are not equal, then it’s this:

tobs =
̂l

MSWΣ c2
i

ni

Where ni is the n size for each group.

Back to our example. We computed ̂l as -4.0. 
You should do the work to compute MSW on your 
own, but I’ll just tell you that MSW = 1.333 and 
d fW = 12 (d fW = N −a = 16 −4). With this info, we 
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TABLE 1 Planned Comparison Dataset

X Y Between Within
1 4 (5-6.5)2 = 2.25 (4-5)2 = 1

1 4 (5-6.5)2 = 2.25 (4-5)2 = 1

1 6 (5-6.5)2 = 2.25 (6-5)2 = 1

1 6 (5-6.5)2 = 2.25 (6-5)2 = 1

2 5 (6-6.5)2 = .25 (5-6)2 = 1

2 5 (6-6.5)2 = .25 (5-6)2 = 1

2 7 (6-6.5)2 = .25 (7-6)2 = 1

2 7 (6-6.5)2 = .25 (7-6)2 = 1

3 6 (7-6.5)2 = .25 (6-7)2 = 1

3 6 (7-6.5)2 = .25 (6-7)2 = 1

3 8 (7-6.5)2 = .25 (8-7)2 = 1

3 8 (7-6.5)2 = .25 (8-7)2 = 1

4 7 (8-6.5)2 = 2.25 (7-8)2 = 1

4 7 (8-6.5)2 = 2.25 (7-8)2 = 1

4 9 (8-6.5)2 = 2.25 (9-8)2 = 1

4 9 (8-6.5)2 = 2.25 (9-8)2 = 1



can compute our test statistic. But first, we need 
to address this Σc2

i  thing. Σc2
i  is just the sum of 

the squared weights. In the case of our example 
data the weights were all +1 or -1. Squaring and 
summing is pretty easy.

Σc2
i = (1)2 + (1)2 + (−1)2 + ( −1)2 = 4

Finally:

tobs =
̂l

MSW

n Σc2
i

   = −4
1.333

4 (4)
  = −4

1.15

tobs = -3.46

To complete the test we need a critical value. 
This planned comparison did not specify a direc-
tion, so we need the two-tailed (α = .05) value. A 
check of the t table tell is that tcrit = ± 2.179.

The conclusion of our test of the hypothesis 
that Groups 1 and 2 are different from Groups 3 
and 4 is as follows. Because the tobs (-3.46) is less 

than the at tcrit (-2.179 for this situation), we re-
ject that the null that the Groups 1 and 2 are the 
same as 3 and 4 and conclude that they are differ-
ent.

Final Thoughts on Planned Comparisons

That may have seemed fairly pointless to you, 
but let me remind you that you have almost com-
plete freedom on what you test in a planned com-
parison. Here’s a version of the example that 
might be more interesting. Let’s say that Groups 
1-3 are three different treatments for something 
and Group 4 is a control. We might be curious is 
the treatments, taken together, have lower scores 
than the control on the dependent variable. The is-
sue isn’t which treatment but the treatments as a 
whole. The alternative hypothesis would look like 
this:

H1 : μ1 + μ2 + μ3 < μ4
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The null would look like this:

H0 : μ1 + μ2 + μ3 ≥ μ4

Let’s do the null rewrite so that we can get the 
weights (remember, they have to sum to 
zero). First, a little algebra to get it to equal 
zero.

H0 : μ1 + μ2 + μ3 −μ4 ≥ 0

Now to translate into l form:

l = c1μ1 + c2μ2 + c3μ3 −c4μ4

The one rule for weights is that they must 
sum to zero. So if we go with unit (i.e., 1.0) 
weights, we have a problem: 1 + 1+ 1 - 1 ≠ 0. 
But there are solutions. One is this:

l = (1)μ1 + (1)μ2 + (1)μ3 + (−3)μ4

Or if you prefer fractions, there is this option:

l = (1/3)μ1 + (1/3)μ2 + (1/3)μ3 + (−1)μ4

That works. If you want to get creative, you 
could do this:

l = (10)μ1 + (10)μ2 + (10)μ3 + (−30)μ4

Whatever weights you choose, just make sure they 
sum to zero. You’ll then use those weights when 
computing ̂l and Σc2

i  for the t statistic.

Maybe we should have done that version of 
the example. It looks more interesting. You know, 
there’s nothing stopping you from doing it now.
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12 Something old, something 
new

Random Effects ANOVA



Fixed vs Random Effects ANOVA

A quick review of fixed effects versus random 
effects independent variables is necessary. Way 
back in Chapter 1 we said:

A fixed variable is one whose values are deter-
mined by the researcher. This can only apply 
to an independent variable in a true or quasi 
experiment. In the case of a fixed (independ-
ent) variable, the researcher decides what val-
ues the variable will have in the study. For ex-
ample, if the study involves time spent study-
ing a new language, the researcher might as-
sign one group of subjects to study for zero 
minutes, another group to study for 10 min-
utes, and a third group to study for 20 min-
utes. Why these values and not some other val-
ues? Ask the experimenters – they’re the ones 
who chose them.

The fixed variable should be very familiar to us. 
Everything we’ve done to this point has dealt with 

fixed variables for independent variables. The 
ANOVA model that we covered in Chapter 8 was 
the fixed effects (FE) model.

We need to address random variables. Our ear-
lier definition of a random variable stated that it is 
a variable whose values were not the result of a 
choice made by the experimenter. When the inde-
pendent variable is a random variable the values 
were chosen by a random process. An example 
may help to highlight the difference. Suppose 
there are twenty possible treatments (e.g., 20 tech-
niques for improving performance on a test). We 
probably don’t want to test all 20 conditions as 
the number of subjects required would be prohibi-
tive (i.e., a real pain). We could pick the most 
promising five or so treatments and just test 
them; that version of the study uses the FE 
ANOVA model (that we know and love). That 
study might be a fine study, but it wouldn’t tell us 
anything about the 15 treatments that we didn’t 
test. However, if we pick 5 treatments at random 
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from the 20, we are using the random effects (RE) 
model of ANOVA. The RE model has a surprise 
benefit that may justify the decision.

Random Effects ANOVA

First, the good news. For a one-way ANOVA, 
RE ANOVA calculations are the same as FE. Same 
sums of squares, mean squares, degrees of free-
dom, and F test. Bad news: What is different are 
the hypotheses and the interpretation of the re-
sults. With random effects (RE) ANOVA, the val-
ues of the IV chosen are just some of the possible 
values we could have chosen.

The big difference between the FE and RE 
models is that with FE ANOVA we are testing for 
differences between the values of the independent 
variable that we chose (H0:αi = 0 for all a groups), 
whereas for RE ANOVA we are testing for differ-
ences between all possible levels of the independ-
ent variable (H0:σ2

α = 0). It may help to remember 

that αi = μi −μ (i.e., the difference between the 
mean of group i and the grand mean). Thus, by 
saying σ2

α = 0, we’re saying that the means of all 
possible levels are the same (i.e., when variance 
equals zero, everything is the same).

That one difference in the null hypothesis may 
not sound like much, but it carries some big impli-
cations. To restate, the FE null states that the 
means of the treatments in the study are the 
same; the RE null states that the means of all possi-
ble treatments (including those not in the actual 
study) are the same. The RE version of the null is 
a much bigger statement.

To summarize how FE case and RE case are 
different, consider the various conclusions that oc-
cur with each model (Table 1). The interesting 
case is when the we fail to reject the null. The ran-
dom effects model allows for much greater gener-
alizability. Because the treatments studies were se-
lected at random from a domain of possible treat-

144

figure:3DCF93B9-E067-43F4-A532-E69B00D94D16
figure:3DCF93B9-E067-43F4-A532-E69B00D94D16


ments, we are able to generalize to the entire do-
main (no differences in the ones we picked at ran-
dom means no differences among all of them).

Expected Mean Squares

In the FE ANOVA model we introduced ex-
pected mean squares. It was fairly simple and re-
duced to this.

E(MSB) = W + B

E(MSW) = W

The real equations were more complicated than 
this, but we simply labeled the parts as describing 
within-group stuff (W) or between-group stuff (B). 
Given the structure of the F test (F = MSB /MSW), 
the expected value of the F test is 1.0 if the null is 
true because the expected value for MSB equals the 
expected value for MSW (i.e., when the null is true 
E(MSB) = W + 0 because there are no between-
group differences).

We have now reached a good news/bad news 
situation with RE ANOVA. The good news is that 
for one-way RE ANOVA, the expected mean 
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TABLE 1 Fixed vs Random Effects ANOVA Conclu-
sions

ANOVA ModelANOVA Model

Fixed Effects
Random 
Effects

Study 
Decision

Accept 
H0

The a 
treatments 
are equivalent

All possible 
treatments 
are equivalent

Study 
Decision

Reject 
H0

At least one 
treatment is 
different

Some 
treatments 
that exist are 
different



squares end up looking like the expected mean 
squares for the FE one-way ANOVA model.

E(MSB) = W + B

E(MSW) = W

The actual equation is different the expected mean 
square between (E(MSB) = σ2 + nσ2

α) but the net re-
sult is the same.

The bad news is that when we get to two-way 
ANOVA and beyond, expected mean squares go 
completely sideways for RE ANOVA. But that’s a 
problem for another day. For today, expected mean 
squares along with sums of squares, degrees of 
freedom, mean squares, and the F test are the 
same for FE and RE one-way ANOVA.

Concluding Thoughts on Random Effects Model

This all seems like a big waste of time. Why in-
troduce the RE effects model when hardly any-

thing changes (only the scope of the conclusions 
change)? The answer is that although nothing 
changes in one-way ANOVA, things will change in 
a big way for not just expected mean squares but 
also for the F test itself with multi-way ANOVA 
(i.e., two-way, three-way, etc.). Even worse, there 
will be mixed models in which some independent 
variables are FE and others are RE.
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13 Twice the fun

Two-Way ANOVA



Why Two-Way ANOVA?

To this point our discussion of ANOVA has 
been limited to a single factor (i.e., one independ-
ent variable). Sometimes we desire to conduct re-
search on multiple independent variables at once. 
To do that, we will need an ANOVA that can ac-
commodate these multiple independent variables. 
That’s where two-way (and beyond) ANOVA 
steps in. Two-way ANOVA allows researchers, in a 
single analysis, to analyze the effect that two inde-
pendent variables have on a single dependent vari-
able. 

The big question you might have is why? Why 
analyze two independent variables in a single 
analysis? Why not simply perform the analysis as 
two one-way ANOVAs? There are multiple good 
answers to this question. First, if the same set of 
subjects are used for both independent variables, 
then a two-way ANOVA can be more sensitive to 
the effects of each independent variable than two 

one-way ANOVAs. We’ll demonstrate this later. 
Second, a two-way ANOVA allows us to examine 
more than just the effects for each independent 
variable in isolation; it allows us to examine 
whether the two independent variables interact 
with the dependent variable. Testing for interac-
tions is very important, and is not something to 
be ignored. We will also address this later. For 
starters we need to lay the foundation for the two-
way ANOVA (fixed effects) model.

Factors and Cells

With one-way ANOVA, we had one independ-
ent variable with various levels (or treatments or 
groups). With two-way ANOVA, we have two inde-
pendent variables (which we will now call fac-
tors), each with various levels/ treatments/groups 
(we’ll use those terms interchangeably). A fully-
crossed design (which we definitely want) has 
every combination of the two factors (i.e., all possi-
ble combinations of treatments). If there are three 
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treatments on the first factor and four treatments 
on the second, there are 3 × 4 = 12 possible com-
binations, and all combinations are included in the 
study. A given combination (say, the group with 
Treatment 2 on the first factor and Treatment 3 on 
the second factor) is called a cell. A cell is like the 
group of the one-way ANOVA days. Each cell in a 
multifactor ANOVA consist of a different group of 
subjects, necessary to satisfy the independence re-
quirement of iid.

One more weird thing, in two-way ANOVA 
you often hear talk about row effects and column 
effects. These are just shorthand terms for the ef-
fect at a given treatment of Factor A (irrespective 
of Factor B) and vice versa. Table 1 displays an ex-
ample of the row/column structure of two-way 
ANOVA.

The effect for the entire set of rows (or col-
umns) for a given factor is called a main effect. A 
main effect for Factor A is the same (in terms of 

the numerator of the F test) as a one-way ANOVA 
on Factor A (the main effect for Factor A is ob-
tained by collapsing the data across the groups of 
Factor B – as if we didn’t know there was a Factor 
B).

Note how in Table 1 each cell has a sample 
size of size n (we’re assuming equal sample sizes 
per cell). Also note the concept of collapsing 
across a factor: there are n subjects in cell (1,1), 
but if we collapse across Factor B, there are bn 
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TABLE 1 Two-Way ANOVA Data Structure

Factor B (with b levels)Factor B (with b levels)Factor B (with b levels)Factor B (with b levels)

1 2 3 4

Factor A 
(with a 
levels)

1 n obs n obs n obs n obs bn obsFactor A 
(with a 
levels)

2 n obs n obs n obs n obs bn obs
Factor A 
(with a 
levels) 3 n obs n obs n obs n obs bn obs

an obs an obs an obs an obs
abn (or 
N) obs
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(where b is the number of levels on Factor B) in 
Level 1 of Factor A. Similarly we can collapse 
across Factor A, giving us an subjects in Level 1 of 
Factor B. The total number of subjects is abn 
(number of levels of A × number of levels of B × 
number of subjects per cell) or just N.

A Recap of the One-Way Model

In the one-way days Yij was the score on Y for 
jth  observation of group/level/treatment i, and a 
was the number of groups/levels/treatments in 
our independent variable. The difference between 
the group/level/treatment mean and grand mean 
was αi (i.e., αi = μi −μ). Finally, the model was 
given as:

Yij = μ + αi + eij

Which means a given score on Y (i.e., Yij) can be 
decomposed into the overall mean of Y (i.e., μ), 

the effect for group (αi), and a random component 
(eij, distributed as ∼ N(0, σ2)).

The Two-Way ANOVA Model

In two-way ANOVA dependent variable scores 
are Yijk (score on Y for the kth  observation within 
level i of Factor A and level j of Factor B). As be-
fore, a is number of levels/treatments for Factor 
A. To that we can add b, the number of levels/
treatments for Factor B. We also had αi = μi −μ, 
which is now specific to Factor A. To that we add 
the Factor B equivalent, βj = μj −μ.

The two-way ANOVA model has the following  
structure:

Yijk = μ + αi + βj + αβij + eijk

Which means a given score on Y (i.e., Yijk) can be 
decomposed into: the overall mean of Y (i.e., μ), 
the effect for the level of Factor A (αi), the effect 
for the level of Factor B (βj), the effect for the inter-
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action of Factor A and B (αβij), and a random com-
ponent (eijk, distributed as ∼ N(0, σ2)).

In summary, the two-way ANOVA model is 
like the one-way but with effects for two independ-
ent variables plus an interaction term.

Partition of Variance

In one-way ANOVA total variability was di-
vided into a between-groups component (which 
will now be labeled as SSBetween to eliminate ambi-
guity) and a within-groups component:

SST = SSBetween+ SSW

In two-way ANOVA we will be breaking what was 
a single between-group component into multiple 
parts. Figure 1 shows the division of the sums of 
squares in two-way ANOVA. What was once a sin-
gle term for between-group differences is now 
three terms: a main effect for Factor A (SSA), a 

main effect for Factor B (SSB), and an interaction 
term (SSAB).

Degrees of Freedom

As always, N is the total number of observa-
tions, and n is number of observations per cell; if 
equal number of observations per cell (as we as-
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FIGURE 1 Sums of Squares in One-Way ANOVA vs 
Two Way ANOVA
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sumed), then N = abn. Because we have so many 
sources of variance in two-way ANOVA we will 
make a table (Table 2) for the various degrees of 
freedom.

Mean Squares

As always, we obtain mean squares by divid-
ing the sum of squares by its relevant degrees of 

freedom. The various mean squares are listed be-
low in full detail (this is really the same informa-
tion presented in Table 2).

MSA = SSA/(a −1)

MSB = SSB /(b −1)
MSAB = SSAB /(a −1)(b −1)

MSW = SSW /ab(n−1)

Hypothesis Testing in Two-Way ANOVA

In the one-way days, life was simple. All we 
could test was whether there were differences in 
groups/treatments. In two-way ANOVA, we can 
test three things: Are there differences among 
groups/treatments of Factor A (null hypothesis: 
the means of the a groups of Factor A are the 
same; αi = 0 for all groups), are there differences 
among groups/treatments of Factor B (null hy-
pothesis: the means of the b groups of Factor B are 
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Note: AB is the interaction term.

TABLE 2 Degrees of Freedom and Mean Squares 
in Two-Way ANOVA

Source df Mean Square

A a – 1 SSA/dfA

B b – 1 SSB/dfB

AB (a – 1)(b – 1) SSAB/dfAB

W ab(n – 1) SSW/dfW

T N – 1
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the same; βi = 0 for all groups), and is there an in-
teraction of Factor A and B (null hypothesis: after 
controlling for main effects, are the means of the 
ab cells the same; αβij = 0 for all cells)? That’s 
three significance tests. It’s not as bad as it 
sounds.

Table 3 lists the three F tests in two-way 
ANOVA as well as their degrees of freedom 
(which can be deduced easily enough by examin-
ing the mean squares in the numerator and de-
nominator of the F tests). One of the nice things 
about the fixed effects model for multi-way 

ANOVA is that the denominator mean square for 
all F tests is MSW. That won’t be the case with 
two-way (and beyond) random effects ANOVA.

Expected Mean Squares

Expected mean squares in two-way fixed ef-
fects ANOVA aren’t much worse than in one-way. 
There are just the obvious additions. First, the 
ugly equations:

E(MSA) = σ2 + bn
a −1

a

∑
i= 1

α2
i

E(MSB) = σ2 + an
b −1

b

∑
j= 1

β2
i

E(MSAB) = σ2 + n
(a −1)(b −1)

a

∑
i= 1

b

∑
i= 1

(αβ)2
ii

E(MSW) = σ2

That was unpleasant. Let’s see the easy versions.

153

TABLE 3 F Tests in Two-Way ANOVA

Source Fobs dfnum dfdenom

A MSA/MSW a – 1 ab(n – 1)

B MSB/MSW b – 1 ab(n – 1)

AB MSAB/MSW (a – 1)(b – 1) ab(n – 1)
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E(MSA) = W + A

E(MSB) = W + B

E(MSAB) = W + AB

E(MSW) = W

Because MSW is used as the denominator, the ex-
pected value for the F test of Factors A and B and 
their interaction will be 1.0 when the null is true 
(as was the case with the one-way fixed effects 
model).

Computing Sums of Squares

As a refresher, the relevant sums of squares in 
one-way ANOVA were computed as follows.

SSBetween = ∑ (Ȳi −Ȳ)2

SSBetween was computed as the difference between 
the group mean from the overall mean.
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TABLE 4 One-Way ANOVA Sum of Squares

A Y Between Within

1 6 (15-17)2 = 4 (6-15)2 = 81

1 8 (15-17)2 = 4 (8-15)2 = 49

1 12 (15-17)2 = 4 (12-15)2 = 9

1 14 (15-17)2 = 4 (14-15)2 = 1

1 16 (15-17)2 = 4 (16-15)2 = 1

1 18 (15-17)2 = 4 (18-15)2 = 9

1 22 (15-17)2 = 4 (22-15)2 = 49

1 24 (15-17)2 = 4 (24-15)2 = 81

2 8 (19-17)2 = 4 (8-19)2 = 121

2 10 (19-17)2 = 4 (10-19)2 = 81

2 14 (19-17)2 = 4 (14-19)2 = 25

2 16 (19-17)2 = 4 (16-19)2 = 9

2 22 (19-17)2 = 4 (22-19)2 = 9

2 24 (19-17)2 = 4 (24-19)2 = 25

2 28 (19-17)2 = 4 (28-19)2 = 81

2 30 (19-17)2 = 4 (30-19)2 = 121



SSW = ∑ (Y −Ȳi)2

SSW was computed as the difference between the 
score on Y from the group mean.

Let’s review an example to refresh our memo-
ries. In the Table 4 dataset we have a single inde-
pendent variable (A) with two groups or levels (n 
= 8 for each). The groups means are 15 for Group 
1 and 19 for Group 2. The grand mean is 17. The 
SSBetween = 64, and the SSW = 752. With that proc-
ess established, let’s explore how sums of squares 
are calculated in two-way ANOVA.

Two-Way ANVOA

An understanding how sums of squares are cal-
culated is crucial for a full understanding of two-
way ANOVA. Everything after the sums of 
squares, including mean squares and F tests, is 
simply a matter of following directions (Table 3 is 

essentially a recipe card). The sum of squares cal-
culation is where the magic happens.

The sum of squares for Factor A is computed 
as follows:

SSA = ∑ (Ȳi −Ȳ)2

SSA is computed as the difference between the 
mean of the group (or level) of Factor A from the 
overall mean. Unlike the SSBetween computation we 
are specifying group mean to be the mean of a 
group of a certain factor (Factor A in this case).

The sum of squares for Factor B is similar, 
only with Factor B level means.

SSB = ∑ (Ȳj −Ȳ)2

SSB is computed as the difference between the 
mean of the group (or level) of Factor B from the 
overall mean.

155

figure:A199429E-25A6-4B6F-A83C-67CFCA8B27DC
figure:A199429E-25A6-4B6F-A83C-67CFCA8B27DC
figure:2BBED1E4-B381-41FB-B041-C33C41816ED6
figure:2BBED1E4-B381-41FB-B041-C33C41816ED6


There is a sum of squares SSBetween in two-way 
ANOVA. We need to expand our idea of what 
SSBetween means. In the one-way days, it was just 
how different the group means were. In two-way 
land, SSBetween indicates the difference between the 
groups are at the smallest possible grouping, the 
cells. Thus, we compute SSBetween as the difference 
between the cell mean and the overall mean. As a 
reminder, SSBetween in two-way ANOVA is the sum 
of three sources of variance.

SSBetween = SSA + SSB + SSAB.

We need the SSBetween to compute interaction sum 
of squares (SSAB). With that in mind, we compute 
SSBetween as follows.

SSBetween = ∑ (Ȳij −Ȳ)2

The key term in the above equation is Ȳij, which is 
the cell mean. In multi-way ANOVA a cell is the 
specific combination of the independent variables. 
For example, cell (2,3) is Level 2 of Factor A and 

Level 3 of Factor B. So the equation for SSBetween is 
computing the difference between the cell mean 
and the grand mean. These are between-group dif-
ferences at the smallest grouping possible.

Because SSBetween = SSA + SSB + SSAB we can rear-
range to solve for SSAB once we know the other 
terms. In other words, compute between-cell vari-
ability and subtract from it the main effect variabil-
ity to get interaction variability:

SSAB = SSBetween−SSA −SSB

Finally, there is the sum of squares within to 
compute. In the one-way days, SSW indicated the 
difference between the actual score on Y and the 
group mean. In multi-way ANOVA, it’s almost the 
same but with cell means instead of group means.

SSW = ∑ (Y −Ȳij)2

Thus SSW is calculated as the difference between 
the score on Y and the cell mean. It’s within-cell 

156



157

TABLE 5 Two-Way ANOVA Sum of Squares Part 1

A B Y SSA SSB

1 1 6 (15-17)2 = 4 (11-17)2 = 36

1 1 8 (15-17)2 = 4 (11-17)2 = 36

1 1 12 (15-17)2 = 4 (11-17)2 = 36

1 1 14 (15-17)2 = 4 (11-17)2 = 36

1 2 16 (15-17)2 = 4 (23-17)2 = 36

1 2 18 (15-17)2 = 4 (23-17)2 = 36

1 2 22 (15-17)2 = 4 (23-17)2 = 36

1 2 24 (15-17)2 = 4 (23-17)2 = 36

2 1 8 (19-17)2 = 4 (11-17)2 = 36

2 1 10 (19-17)2 = 4 (11-17)2 = 36

2 1 14 (19-17)2 = 4 (11-17)2 = 36

2 1 16 (19-17)2 = 4 (11-17)2 = 36

2 2 22 (19-17)2 = 4 (23-17)2 = 36

2 2 24 (19-17)2 = 4 (23-17)2 = 36

2 2 28 (19-17)2 = 4 (23-17)2 = 36

2 2 30 (19-17)2 = 4 (23-17)2 = 36

TABLE 6 Two-Way ANOVA Sum of Squares Part 2

A B Y SSBetween SSWithin

1 1 6 (10-17)2 = 49 (6-10)2 = 16

1 1 8 (10-17)2 = 49 (8-10)2 = 4

1 1 12 (10-17)2 = 49 (12-10)2 = 4

1 1 14 (10-17)2 = 49 (14-10)2 = 16

1 2 16 (20-17)2 = 9 (16-20)2 = 16

1 2 18 (20-17)2 = 9 (18-20)2 = 4

1 2 22 (20-17)2 = 9 (22-20)2 = 4

1 2 24 (20-17)2 = 9 (24-20)2 = 16

2 1 8 (12-17)2 = 25 (8-12)2 = 16

2 1 10 (12-17)2 = 25 (10-12)2 = 4

2 1 14 (12-17)2 = 25 (14-12)2 = 4

2 1 16 (12-17)2 = 25 (16-12)2 = 16

2 2 22 (26-17)2 = 81 (22-26)2 = 16

2 2 24 (26-17)2 = 81 (24-26)2 = 4

2 2 28 (26-17)2 = 81 (28-26)2 = 4

2 2 30 (26-17)2 = 81 (30-26)2 = 16



differences instead of within-group differences.

Example. Now it’s time for a two-way 
ANOVA example. Much of the data will look famil-
iar. In fact, it’s much the same dataset as before, 
now with two independent variables. Factor A is 
still there. We have a Factor B now.

Table 5 lists the data for our example as well 
as the sums of squares calculation for the main ef-
fects, Factors A and B.  As always, we need means. 
The grand mean is 17, the means for Levels 1 and 
2 for Factor A are 15 and 19, respectively. The 
means for Levels 1 and 2 for Factor B are 11 and 
23, respectively.

For Factor A the sum of squares is 64. For Fac-
tor B the sum of squares is 576. At the point, it is 
clear that there are much bigger differences be-
tween the levels on Factor B than on Factor A. Of 
course, you could have spotted this simply by not-
ing that the Factor A level means (15 and 19) are 
much closer to the grand mean of 17 than the Fac-

tor B level means (11 and 23). That’s exactly what 
the sum of squares for the various independent 
variables calculates. Treatment (or level) means 
that are further from the grand mean = a bigger 
sum of squares for that factor.

As for the sum of squares between and sum of 
squares within, I couldn’t fit all of the column on 
one table, so I had to list them in a new table, Ta-
ble 6 along with the raw data. Both sums of 
squares (SSBetweeen and SSW) use cell means, so we 
need to list them now. The means for cell (1,1) is 
10. For cell (1,2) the mean is 20. Cell (2,1) is 12. 
Cell (2,2) is 26.

The SSBetweeen is the difference between the cell 
mean and the grand mean. The sum of all of these 
squared differences is 656. The SSW is the differ-
ence between the actual score on the dependent 
variable and the cell mean. This is cataloging 
within-cell differences in scores. The SSW is 160 
for the Table 6 data.
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Finally, we can compute the sum of squares 
for the interaction of Factors A and B (SSAB). Be-
cause SSBetween = SSA + SSB + SSAB, we can compute 
SSAB with a bit of algebraic rearrangement:

SSAB = SSBetween−SSA −SSB

SSAB = 656 −64 −576 = 16

Which doesn’t sound like much.

Finally, we can compute some F tests. We 
need degrees of freedom first. Using the Table 2 in-
formation we find that both Factors A and B have 
1 degree of freedom (both factors have two levels, 
so it’s 2 - 1 = 1 for both). The interaction also has 
one degree of freedom, (2 - 1)(2 - 1) = 1. Finally, 
degrees of freedom for within deserve some atten-
tion. The equation is ab(n−1); a and b are 2, and 
n, the number of people per cell, is 4. Thus, we 
have 2 × 2(4 −1) = 12 degrees of freedom within.

As for mean squares, this is where everything 
starts to become incredibly simple. Just divide the 
sum of squares by its d f, and you have your mean 
squares.

MSA = SSA/d fA  =  64/1 = 64

MSB = SSB /d fB  =  576/1 = 576

MSAB = SSAB /d fAB  =  16/1 = 16

MSW = SSW /d fW  =  160/12 = 13.333

Table 3 shows us the way from here. Recall that 
one of the great things about fixed effects ANOVA 
is that the denominator mean square is MSW for all 
three tests. Let’s get the critical values first. So 
our critical F will have 1 degree of freedom for the 
numerator and 12 degrees of freedom for the de-
nominator for all three tests. A check of the F ta-
ble (α = .05) indicates that Fcrit (1, 12) = 4.75.

As for the F values, for Factor A we have:
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FA.obs = MSA/MSW = 64/13.333 = 4.8

For Factor B:

FB.obs = MSB /MSW = 576/13.333 = 43.2

And for the interaction:

FAB.obs = MSAB /MSW = 16/13.333 = 1.2

We can now draw our conclusions. Because Fobs 
for Factor A (4.8) is greater than Fcrit (4.75), we re-
ject the null and conclude that there are differ-
ences on Factor A. Because Fobs for Factor B (43.2) 
is greater than Fcrit (4.75), we reject the null and 
conclude that there are differences on Factor B. Fi-
nally Because Fobs for the interaction (1.2) is not 
greater than Fcrit (4.75), we do not reject the null, 
and we are unable to conclude that there is an in-
teraction.

So that’s three significance tests. Both main ef-
fects were significant, but the interaction was not. 
Speaking of interactions, further discussion is war-

ranted. But first, let’s compare the results of our 
two-way ANOVA test of Factor A with a one-way 
ANOVA. I think you’ll find something interesting.

Two-Way ANOVA vs One-Way on Factor A

As we saw with Table 4 (one-way ANVOA) 
and Table 5 (two-way ANVOA), the sum of 
squares for Factor A is computed in the same fash-
ion with the same result. In both cases, we are 
squaring (and summing) the difference between 
the group mean and the grand mean. Because it’s 
the same dataset in both tables, the sum of 
squares was 64 for both. Lesson: computing the 
sum of squares for a main effect in two-way AN-
VOA is comparable to ignoring the second factor 
and treating it like it was a one-way ANOVA. (To 
that point, when we did the sum of squares for 
Factor B, we ignored Factor A.)

So computing the sum of squares for Factor A 
in a two way ANOVA is just like computing the 
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sum of squares between for that same factor in a 
one-way ANOVA. We just act like Factor B isn’t 
there.

Here’s a question: If we are only interested in 
determining whether there is an effect for Factor 
A, is there any reason to conduct this analysis as a 
two-way ANOVA? The answer is yes. As for why, 
it’s in the the sum of squares within. Let’s com-
pare the one-way and two-way ANVOAs again. In 
the one-way version, SSW 752. In the two-way ver-
sion SSW = 160. Why the massive difference? Bear 
in mind that a bigger SSW means a bigger MSW, and 
given the nature of the F test (F = MSA/MSW), a 
smaller Fobs. All in all, we don’t want the SSW to be 
big.

So why is SSW bigger in the one-way vs a two-
way ANOVA of the same dataset. Let’s remember 
that the total sum of squares (SST) is the same for 
both since they are the same data. The answer to 
that question can be found by looking at the equa-

tions for each version. In one-way ANOVA, SST is 
broken into two components (SSBetween is the sum 
of squares for Factor A).

SST = SSBetween+ SSW

Two-way ANOVA breaks the SSBetween into three 
parts (SSBetween = SSA + SSB + SSAB). So the full equa-
tion looks like this:

SST = SSA + SSB + SSAB + SSW

Another reminder, the data in Table 4 and Table 5 
are the same. SST is the same, and SSA is the same 
(64 for both). What do you think happens to the 
SSB and SSAB variance when you analyze it as a 
one-way? It goes into SSW. And that’s what we see 
here.

I’ll fill in the values for the two-way

SST = 64 + 752

Now I’ll fill in the values for the one-way
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SST = 64 + 576 + 16 + 160

See what happened? All of the variance associated 
with Factor B (SSB) and the interaction (SSAB) in 
the two-way ANOVA shifted over to the SSW in the 
one-way (576 + 16 +160 = 752). (This wouldn’t 
be an issue if they had zero variance, but that’s in-
credibly rare.) Let’s compare the F tests of Factor 
A in both cases to take this comparison to its con-
clusion. In the one-way ANVOA Fobs is 1.19, and 
the Fcrit is 4.6. We do not reject the null. In the 
two-way ANOVA the Fobs for Factor A is 4.8 with 
an Fcrit of 4.75, allowing us to reject the null. Same 
dataset, different conclusions.

Long story short, if a variable is manipulated 
in any sort of multi-factor study (and this variable 
has a non-zero effect), you do not want the vari-
ance associated with that variable shoved into SSW. 
You may not be all that interested in the second 
factor, but the proper way to test for the main ef-
fect of Factor A is in a two-way ANOVA. (Why is 

that second variable in your study if you’re not in-
terested in it? Probably someone, your advisor 
maybe, told you to include it even though it 
doesn’t directly pertain to your hypotheses. These 
things happen in life.)

Interactions vs Main Effects

Let’s use some graphs to understand main ef-
fects. After that we’ll move on to interactions.

Example 1: One Main Effect (Factor B). 
This first example is a 2 × 2 ANOVA with one 
main effect. In this case, the effect is on Factor B 
(p < .05); there are no differences on Factor A (p 
> .05). The means for each of the four groups are 
displayed in Figure 2. In all of the graphs in this 
section, Factor A will be on the x-axis. Factor B 
will be represented by the separate lines. The dots 
indicate the means of the different cells. In this ex-
ample, the mean of cell (1,1) is represented by the 
left dot on the lower (dark blue) line and is 10.0. 
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Let’s understand why there is an effect for Factor 
B but not for Factor A. For Factor B, the means are 
very difference for subjects in Level 1 versus Level 
2. For Factor A, the level matters not – the means 
are the same. As for the interaction, there is none 
(p > .05). This can be seen in that the lines are 
perfectly parallel. More on interactions later. Fi-
nally, if you want to inspect the ANOVA table that 

a stats program produces, the table of results for 
this analysis is given in Table 7.

Example 2: One Main Effect (Factor A). In 
this new example, the effect is for Factor A (p < 
.05) not for Factor B (p > .05). The means for 
each of the four groups are displayed in Figure 3. 
The ANOVA table is shown in Table 8. In this ex-
ample, there is no effect for Factor B – note how 
the lines are almost on top of each other. The 
means tell us why there is an effect for A but not 
one for B. Means are much higher for people in 
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FIGURE 2 One Main Effect (Factor B)
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TABLE 7 One Main Effect (Factor B)

Source SS df MS F p-value Fcrit

A 0 1 0 0 1 4.75

B 324 1 324 17.4 0.001 4.75

AB 0 1 0 0 1 4.75

Within 224 12 18.67

Total 548 15
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Level 2 of Factor A than for Level 1, but there is al-
most no difference between levels 1 and 2 of Fac-
tor B. The F tests bear this out. Also note that the 
lines are once again parallel, no interaction here.

Example 3: Two Main Effects. In this third 
example (Figure 4) both Factor A (p < .05) and 
Factor B (p < .05) have significant main effects (Ta-
ble 9 lists the ANOVA results). In this example we 

can see that Level 2 means are greater than Level 
1 means for both factors. Once again, the lines are 
parallel, indicating no interaction.

Example 4: No Main Effects with an Inter-
action. There are an infinite number of types of in-
teractions, but let’s look at the coolest one, the in-
teraction that renders any talk of main effects 
pointless. To reiterate, interactions are observed 
when the lines are non-parallel; they do not have 
to cross. The easiest way to understand an interac-
tion is that an interaction occurs when there are 
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FIGURE 3 One Main Effect (Factor A)
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TABLE 8 One Main Effect (Factor A)
Source SS df MS F p-value Fcrit

A 324 1 324 19.01 0.001 4.75

B 0.25 1 0.25 0.01 0.906 4.75

AB 0 1 0 0 1 4.75

Within 204.5 12 17.04

Total 528.8 15
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differences in cell means that can’t be explained by 
main effects alone. 

Figure 5 displays the means of a dataset with a 
significant interaction (see Table 10 for the 
ANOVA results). As shown in Figure 5 the cell 
means are 21 and 7 for the four cells. So there are 
differences among the cell means. Yet the main ef-
fects are all non-significant. Why? The reason is 

that when you collapse across cells, the mean for 
each level of Factor A is 14. The is also true of Fac-
tor B (mean = 14 for both levels). That’s why 
there is no main effect. Each factor when exam-
ined in isolation appears to have zero differences 
on the dependent variable.

Now about that interaction. A significant F 
test for the interaction means that the lines are 
not parallel. In this case the slopes of the lines are 
completely inverted. This is a prime example of 
the principle that interactions can hide main ef-
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FIGURE 4 Two Main Effects
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TABLE 9 Two Main Effects
Source SS df MS F p-value Fcrit

A 256 1 256 11.82 0.005 4.75

B 144 1 144 6.65 0.002 4.75

AB 0 1 0 0 1 4.75

Within 260 12 21.67

Total 660 15
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fects. I don’t know if that’s a great way to say it 
though. I think this example is showing us that in-
teractions can make main effects a moot point. 
The important point is that even if you didn’t hy-
pothesize an interaction, you should always check 
for one as failing to do so in this case would give 
you the erroneous impression that these independ-
ent variables had no effect on the dependent vari-

able. They do have an effect. It’s just complicated 
and can’t be described with a “Level 2 of Factor B 
has higher scores than Level 1” type statement.

Example 5: Two Main Effects and an Inter-
action. As I mentioned at the beginning of this ex-
ample, there are an infinite number of forms of 
the interaction. Interactions can exist with main ef-
fects as well.

Figure 6 displays a case in which both factors 
and the interaction are significant (p < .05 for all, 
see Table 11). This case is a perfect example of the 

166

FIGURE 5 No Main Effects, Significant Interaction
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TABLE 10 No Main Effects, Significant Interaction
Source SS df MS F p-value Fcrit

A 0 1 0 0 1 4.75

B 0 1 0 0 1 4.75

AB 784 1 784 42 0.0001 4.75

Within 224 12 18.67

Total 1008 15
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nature of an interaction: differences among cell 
means that can’t be explained by main effects 
alone. There are main effects for both factors; 
Level 2 means are greater than Level 1 means for 
both; however, the mean for cell (2, 2) is greater 
than the pattern suggested by the main effects. In 
short, it’s as if the combination of Level 2 on Fac-
tor A and Level 2 on Factor B combines to form 

some sort of extra bonus. Also notice that the 
lines are not parallel.

Three-Way ANOVA and Beyond

There is no limit to the number of independ-
ent variables we can have in our studies. Three? 
Four? Fifty? Sure. As many as you want. The good 
news is that fixed effects ANOVA handles all of 
this with ease. It’s just more of the same stuff. 
There is one piece of bad news: You’ll have more 
interaction terms to test than anyone would ever 
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FIGURE 6 Two Main Effects and an Interaction
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TABLE 11 Two Main Effects and an Interaction
Source SS df MS F p-value Fcrit

A 729 1 729 33.65 0.0001 4.75

B 529 1 529 24.41 0.0001 4.75

AB 121 1 121 5.58 0.04 4.75

Within 260 12 21.67

Total 1639 15



want. In just a three-way ANOVA, there are four 
interaction terms: the three-way interaction be-
tween Factors A, B, and C plus three two-way in-
teractions (AB, AC, and BC). And of course you 
still have your main effects to test. That’s seven 
significance tests in all.

Now imagine what a five-way ANOVA would 
be like.
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14 This really belongs in a 
different textbook

Maybe one covering 
correlation and regression

The Chi-Square Test of 
Independence



The Way It Was

To this point we have been looking for differ-
ences in dependent variable scores by level of the 
independent variable. The fundamental question 
always was: Are the dependent variable means dif-
ferent by level of the independent variable? Now 
we are going to address a different question: Is 
there a relationship between the independent vari-
able and the dependent variable? This is a ques-
tion that is most commonly addressed with a cor-
relation, but when the variables are categorical, 
there is a more intuitive way to conduct the analy-
sis. In this context, the terms dependent and inde-
pendent are used instead of related and unrelated. 
If the variables are independent, then there isn’t a 
relationship. To the converse, if the variables are 
dependent, then there is a relationship.

Chi-Square Test of Independence

The chi-square test of independence is our 
much easier correlation type test for a relationship 
between variables. As mentioned, both variables 
are categorical. Categorical not only means not con-
tinuous – it also means that there is no order to the 
levels (i.e., these are not selected levels of a con-
tinuous variable, we’ll get to that later). Each vari-
able can have any number of categories, but let’s 
start with the simplest case, the 2 × 2 design.

The null hypothesis is that the variables are in-
dependent. More on this in bit. Table 1 displays 
the structure of the frequency table used for a chi-
square analysis.

Each entry in the table is simply the number 
of cases in that condition. For example n11 is the 
number of people who are in Level 1 of row vari-
able and Level 1 of the column variable. As to 
which variable, row or column, is the dependent 
variable, that’s up to the researcher (because it 
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really doesn’t matter). The convention for the vari-
ous frequency terms is as follows.

nij = number observed for rowi, colu mnj

ni. = number observed for rowi

n.j = number observed for colu mnj

n.. = total number of subjects (i.e., N)

An example will help illustrate things. Let’s 
make our example about whether student level 
(undergraduate vs graduate student) is associated 

with having a job at the time of graduation. We 
collect data from a sample of 100 students (be-
cause we’re making this up and having 100 total 
students makes for some easy math). At this 
point, let’s say that we don’t know the actual cell 
frequencies, but we know the category frequencies 
(i.e., row and column totals). Table 2 lists what we 
know so far.

So half of the sample has a job and half 
doesn’t. And 80% of the sample is undergrad and 
20% graduate. If these variables were independent 
(i.e., no association), then we would expect to see 

171

TABLE 1 Chi-Square Frequency Table Structure

Column VariableColumn Variable
1 2

Row 
Variable

1 n11 n12 n1.Row 
Variable 2 n21 n22 n2.

n.1 n.2 n..

TABLE 2 Example with Totals Only

Student LevelStudent Level
Under Grad

Job?
No 50

Job?
Yes 50

80 20 100

figure:590F5B59-7BC2-4103-94C8-06033CA7F7C2
figure:590F5B59-7BC2-4103-94C8-06033CA7F7C2


that half of the undergraduates have jobs and half 
of the graduate students have jobs. (Or, we could 
state that 80% of the job holders will be under-
grads and 80% of the non-job people will be under-
grads, but that’s less interesting). Let’s fill in the 
cells with values to fit these expectations (Table 
3).

How did I get these values? Because the math 
is so easy in this case, you can just reason it out. 
But we need an actual equation to do this for 
those times where the numbers aren’t as friendly. 

Just multiply the respective column and row 
means and divide by the total N. For example, for  
Cell (1,1) the expected frequency (e11) is:

e11 = (80 × 50)/100 = 40

Even without the math, it should be clear that if 
there are 80 undergrads, and we expect half of 
them to have jobs, then that’s 40 people. Here’s 
the general form of the equation for an expected 
frequency (expected frequency means expected if the 
variables are independent):

eij =
(ni . )(n. j)

n. .
Which is really just:

eij = (row total)(colu mn total)
g rand total

So, those are the expected frequencies. You 
have probably guessed that we will be comparing 
the expected frequencies (eij) to the observed fre-
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TABLE 3 Expected Frequencies If Independent

Student LevelStudent Level
Under Grad

Job?
No 40 10 50

Job?
Yes 40 10 50

80 20 100

figure:EF34F5CC-BAA5-4711-BEF5-3E66C9F2AA7A
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quencies (nij) to determine if there is a relation-
ship. (Table 4 lists the observed frequencies.) If 
the observed frequencies deviate from the ex-
pected frequencies, then the variables are not inde-
pendent. Of course, a small deviation is to be ex-
pected given sampling error. Thus, we’ll need to 
construct a significance test to determine how big 
of a difference is necessary to allow us to reject 
the null that there are no differences.

Before we get to that, let’s talk null and alter-
native hypotheses (note that we lack proper sym-
bols to differentiate between sample and popula-

tion values, but rest assured, these hypotheses con-
cern population values).

H0: Level and Job are independent (nij = eij for 
all cells)

H1: Level and Job are dependent (nij ≠ eij for at 
least one cell)

Now, on to the observed frequencies:

No surprise, the observed frequencies depart 
from the expected values. We need a statistic to in-
dex the magnitude of the departure. The obvious 
approach is to compute the sum of the difference 
between observed and expected frequencies for 
each cell (i.e., ∑ (nij −eij)). However, as we have 
seen before (cf. variance) this will always sum to 
zero. As with variance, we square these differ-
ences so they can sum to something other than 
zero. One more issue: if we go this route, the big-
gest cells will have a disproportionate effect on the 
result. So, let’s adjust this squared difference by 
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TABLE 4 Observed Frequencies

Student LevelStudent Level
Under Grad

Job?
No 46 4 50

Job?
Yes 34 16 50

80 20 100

figure:2BA47658-83F1-488A-A28B-831BD08B25AE
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the expected frequency. This gives us something 
approximately distributed as a chi-square (χ2).

The chi-square distribution is similar to the F 
distribution in shape; it’s skewed with the un-
usual scores in the right tail. Unlike the F, the chi-
square has a single degree of freedom. Selected 
chi-square critical values are shown in Table 5.

As for the test statistic, it is listed below.

χ2
obs =

r

∑
i= 1

c

∑
j= 1

(nij −eij)2

eij

Where: r = the number of rows and c = the 
number of columns

With (r −1)(c −1) degrees of freedom

This equation simply tell us to (a) divide the 
squared difference between the observed and ex-
pected values by the expected value for each cell 
and (b) sum that value across all cells. It’s as easy 
as it sounds.

As for our example, the observed and ex-
pected frequencies (expected frequencies in paren-
theses) are shown in Table 6. None of the values 
in this table are new to us. I just listed it again 
this way because this is the traditional method of 
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TABLE 5 Selected Chi-Square Critical Values (α = 
.05)

df Chi-
Square df Chi-

Square
1 3.841 9 16.919

2 5.991 10 18.307

3 7.815 15 24.996

4 9.488 20 31.410

5 11.07 25 37.652

6 12.592 30 43.773

7 14.067 40 55.758

8 15.507 50 67.505

figure:0E98D81C-96B3-4FCC-99B0-E708747EBEEA
figure:0E98D81C-96B3-4FCC-99B0-E708747EBEEA
figure:54A677D8-E528-4D02-8E7E-3B0F5B45F06C
figure:54A677D8-E528-4D02-8E7E-3B0F5B45F06C


showing the observed and expected values for a 
chi-square test of independence. The calculation 
of χ2

obs is shown in Table 7. According to Table 7, 
the χ2

obs for our example dataset is 9.0 with 1 de-
gree of freedom, d f = (r −1)(c −1) = (2 −1)(2 −1) 
= 1.

Or so you would think. Remember how I said 
that this test statistic was approximately distributed 
as a chi-square? Well, I did. You can check. This 
approximation will be on solid ground if:

(a) eij for each cell is greater than or equal to 5 
for any analysis with designs greater than 2 × 
2 (greater than 10 for a 2 × 2 design).

(b) and a continuity correction is used for the 
2 × 2 design:

χ2
obs =

r

∑
i= 1

c

∑
j= 1

( |nij −eij | −.5)2

eij

Where the numerator is 0 for cells in which 
nij = eij.
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TABLE 6 Observed and Expected Frequencies

Student LevelStudent Level
Under Grad

Job?
No 46 (40) 4 (10) 50

Job?
Yes 34 (40) 16 (10) 50

80 20 100

TABLE 7 Chi-Square Computation (Part 1)

Cell nij – eij (nij – eij)2 (nij – eij)2/eij

1, 1 46 - 40 = 6 (6)2 = 36 36/40 = .9

1, 2 4 - 10 = -6 (-6)2 = 36 36/10 = 3.6

2, 1 34 - 40 = -6 (-6)2 = 36 36/40 = .9

2, 2 16 - 10 = 6 (6)2 = 36 36/10 = 3.6

∑ = 9.0

figure:27892095-85C2-4885-B408-8C7B8630E518
figure:27892095-85C2-4885-B408-8C7B8630E518
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This being a 2 × 2 design, we need to re-compute 
our previous example to include the continuity cor-
rection. Table 8 lists the new version of the calcula-
tion for a 2 × 2 design, yielding a χ2

obs of 7.5625.

According to the table of chi-square critical val-
ues (Table 5), χ2

obs(1) = 3.841, allowing us to re-
ject the null that level and job status are independ-
ent. We conclude that they are dependent, mean-
ing that there is a relationship between student 
level and having a job at graduation (the nature of 
the relationship is unknown, but they are related).

Measures of Association Based On Chi-Square

The chi-square test is a significance test. Like 
all significance tests, it is heavily dependent on 
sample size and does not convey magnitude of as-
sociation, or effect size. We’ll need a different sta-
tistic for that. This will sound very familiar to fans 
of ANOVA where the F test just told us if there 
were differences but did not indicate the magni-

tude of the differences (we used eta-squared for 
that). Or for the two-group scenario, think of the 
relationship between the t test and Cohen’s d. As 
with the ANOVA situation, we’ll be using the 
same basic building blocks to get what we want 
here. Unlike ANOVA, we will have two measures 
to enjoy

Phi Coefficient
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TABLE 8 Chi-Square Computation (Part 2)

Cell |nij – eij| (|nij – eij| - .5)2 (|nij – eij| - .5)2/eij

1, 1 |46 - 40| = 6 (6 - .5)2 = 
30.25 30.25/40 = .756

1, 2 |4 - 10| = 6 (6 - .5)2 = 
30.25

30.25/10 = 
3.025

2, 1 |34 - 40| = 6 (6 - .5)2 = 
30.25 30.25/40 = .756

2, 2 |16 - 10| = 6 (6 - .5)2 = 
30.25

30.25/10 = 
3.025

∑ = 7.5625

figure:64691EAB-B7E0-460A-82E7-FB4AD01530D2
figure:64691EAB-B7E0-460A-82E7-FB4AD01530D2
figure:0E98D81C-96B3-4FCC-99B0-E708747EBEEA
figure:0E98D81C-96B3-4FCC-99B0-E708747EBEEA


ϕ = χ2
obs /N

Nice and simple. Note that the χ2
obs used is the 

one without the continuity correction. The only 
problem is that phi ranges from 0 to 

min(r −1,c −1). That’s right, the square root of 
r −1 or c −1 , whichever is smaller

This is not what we want. We want something 
that ranges from 0 to 1. That’s where our next in-
dex steps in

Cramer’s V

V =   ϕ
min(r −1,c −1)

Or,

V =
χ2

obs /N

min(r −1,c −1)

For our example, phi = 9/100 = .30 and V = 
.30/1 = .30. That’s right, for a 2 × 2 design ϕ = V.

Directional Hypotheses with a 2 × 2 Design

You may have noticed something about the 
null and alternative hypotheses to the chi-square 
test: there aren’t a lot of options. Either the vari-
ables are independent or they aren’t. My point is 
that there is no direction to the chi-square test. 
Well, with a 2 × 2 design, we might want to test 
the direction of the association. There are a few 
ways to do this, but the simplest is to compute a 
correlation.

But wait, you say. I thought the correlation 
was only for continuous data – these data are de-
cidedly not continuous. Well, there is a special cor-
relation for two dichotomous variables, the phi 
correlation. Better news: it’s really the same corre-
lation that we use for two continuous variables 
(the Pearson correlation). The phi correlation is ac-
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tually a simplified version of the Pearson equation 
– simplified for dichotomous data. Note that the 
version derived from a chi-square statistic (previ-
ous section) can only yield a positive value – there 
are other versions that indicate direction. In the 
case of our previous example, I coded Job as 0 for 
no and 1 for yes. I coded level as 1 for undergrad 
and 2 for grad. With these codes phi correlation is 
+.3. Had I coded undergrad and grad in the oppo-
site fashion, the correlation would have been -.3. 
Note that the coding scheme made no difference 
to the chi-square test because there is no direction 
to the chi-square test – differences are differences, 
they get squared.

As for a significance test for a correlation, it’s 
a fairly simple t test:

tobs = r
1 −r2

N −2

With N – 2 degrees of freedom

Final Thoughts on the Chi-Square Test

The chi-square test is wonderfully simple and 
intuitive. But this simplicity causes limitations. 
We know that it’s insensitive to direction in a 2 ×
2 design – you’ll need to use a real correlation to 
test for a direction. What about ordered categories 
when there are more than two levels? As you may 
have guessed, the chi-square test is insensitive to 
this as well. It can’t tell if things are falling in a cer-
tain order. It only knows that there are differences 
between the observed and expected frequencies to 
the point we conclude that the variables are not in-
dependent. If you don’t believe me, find any chi-
square with a design more complicated than a 2 × 
2 and switch up the order of the categories. You 
will get the same result every time. There is no or-
der to the categories on a chi-square test of inde-
pendence.

How to test if there is an association with 
more than two ordered categories? There are a few 
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options, but I favor correlations. If both variables 
are continuous measured at the interval level, use 
the Pearson correlation. Otherwise (i.e., with ordi-
nal data), use Spearman’s correlation.
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