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1 Measurement is important 
to all fields of science.

Without accurate 
measurement psychology 
would not be a science.

The stakes have never 
been higher.

Psychological 
Measurement: Why We 
Care



The Importance of Measurement

Despite what is said by most physicists and 
my wife (with her fancy chemistry minor), psychol-
ogy is a science. But what does it mean to be a sci-
ence? It means, among other things, proposing 
testable hypotheses and then actually testing 
them. The key words are testable and testing. Even 
if we argued all day about the merits of an untesta-
ble hypothesis, we will never be any closer to 
learning whether this hypothesis conforms with re-
ality. Moreover, it’s not enough to perform some 
kind of a test of the hypothesis – we must perform 
a good test of it.

You may already be familiar with the basic ele-
ments of research design (e.g., random assign-
ment to groups, experimental control). The design 
of the study is one important component of an ade-
quate test of our hypothesis. Measurement is the 
other. Consider the following quotation.

The government are very keen on amassing 
statistics – they collect them, raise them to the 
nth power, take the cube root, and prepare won-
derful diagrams. But what you must never for-
get is that every one of these figures comes in 
the first instance from the village watchman, 
who just puts down what he [expletive de-
leted] pleases. (Stamp, 1929, p. 258)

Thus, we must measure our variables with care. 
For what value is there in analyzing data that is no 
better than the village watchman’s? Just as a 
flawed research design will prohibit us from per-
forming a meaningful test of our hypothesis, so 
will flawed measurement. Without quality meas-
urement we can never test our hypotheses, and 
psychology ceases to be a science. The issues are 
that simple. And they are that important.
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Testing Terminology

It is unfortunate, but any discussion of psycho-
logical measurement requires an understanding of 
a few key concepts. These are important, and we 
will be using them for the rest of the book.

Item: Any test stimulus that produces a single 
response. Each response is an observable behavior. 
For example, the GRE Verbal section has a para-
graph followed by five questions about that para-
graph. Each of these five questions are individual 
items.

However, an item may not explicitly ask a 
question. Many tests of attitudes or personality 
make statements followed by a scale indicating 
how much one agrees with the statement. A com-
mon item type is as follows:

I am absolutely thrilled to learn about 
psychological measurement.
I am absolutely thrilled to learn about 
psychological measurement.

A. I strongly agree
B. I agree
C. I neither agree nor disagree
D. I disagree
E. I strongly agree

Test: A collection of items. Although some 
tests have only one item, most tests are composed 
of multiple items. The items can take a variety of 
forms (e.g., a paper and pencil test, an interview, 
an observation of children on a playground, per-
formance on a flight simulator, ratings of some-
one’s job performance, weight in pounds on a 
scale). 

Also integral to a test is a system for adminis-
tering the test and assigning points to the re-
sponses. The test must be administered the same 
way to each test taker. If the test has a 30 minute 
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time limit, then every test taker must finish the 
test in the allotted time. The same responses to a 
test item should be scored in the same way. If “C” 
is the correct answer to Item 27, then everyone 
who answers “C” should receive a point.

Finally, tests measure a sample of behaviors. 
We likely cannot measure every behavior relevant 
to the purpose of the test. Not every math opera-
tion can be measured on a math test. Performance 
on the sample of behaviors measured by the test 
can be interpreted as being representative of this 
larger domain of relevant behaviors. Or it can be 
interpreted as representing something beyond a 
set of observable behaviors (more on this below).

Construct: A hypothetical, unobservable 
cause for an observable behavior. Consider the con-
struct of intelligence. We can’t see or directly 
measure someone’s intelligence (thus, the unob-
servable part). We can measure head size, brain 
mass, or performance on a math test, but none of 

these are direct measures of intelligence. Because 
we can’t see intelligence, it is hypothetical. We 
think it exists, but we don’t know for sure. Be-
cause we can’t measure the construct directly, we 
measure the presumed effects of the construct by 
measuring observable behaviors. Why can a per-
son correctly answer all of the items on the intelli-
gence test? It must be because she is smart. Her in-
telligence is causing her to behave in this manner. 
By assuming that constructs cause behavior, we 
can use performance on the items that appear on 
the intelligence test to infer the test taker’s actual 
level of intelligence.

So that’s the primary definition of construct. 
And to some researchers (e.g., Ebel, 1975), it’s 
the only definition. But there is an additional and 
equally valid definition. That is, instead of a con-
struct causing a set of behaviors, the other view is 
that a construct is a set of behaviors (Guion, 
1977). From this viewpoint a construct is not 
something unobservable; it’s just a collection of re-
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lated behaviors (not just any set of behaviors, but 
a meaningful set – as in they are all a part of the 
same activity). Driving a car can be defined as a 
set of behaviors (e.g., parallel parking, left turns, 
etc.) with no reference to underlying causes or 
abilities. On a driving test, we are not trying to de-
termine whether a person has a high ability at 
some unobservable driving construct, we just 
want to determine if the person can successfully 
perform the same set of behaviors that actual driv-
ers perform. In this case, we generalize from per-
formance on the sample of behaviors measured on 
the test to the larger domain of relevant behaviors. 
To use the driver’s test example again, we can’t in-
clude every driving behavior on our road test – the 
test would too long. So we make our test a sample 
of behaviors from this larger domain of all possi-
ble driving behaviors. We infer that a person who 
can perform the sample of behaviors well can also 
perform the other, unmeasured behaviors well.

So we have two definitions of construct. The 
first is the unobservable cause definition, and the sec-
ond is the set of behaviors definition. Figure 1 and 
Figure 2 illustrate these two definitions. Both defi-
nitions are valid. Sorry about the confusion. I hear 
this double meaning thing doesn’t happen in engi-
neering. Finally, you should know that the follow-
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Construct A causes Behaviors 1-3. Performance on the measured be-
haviors is used to infer standing on the unobserved cause for these 
behaviors.

FIGURE 1 A Construct Is an Unobservable Cause for 
Observable Behaviors
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ing terms are often used as synonyms for con-
struct: ability, dimension, trait, latent trait, factor.

Construct Standing: A person’s status on the 
construct in question. If the construct is intelli-
gence, then a person’s standing might be high 
(i.e., smart), low, or somewhere in between.

Dimensionality: The number of constructs 
measured on a test. A test can be unidimensional 
(one construct only) or multidimensional (more 
than one construct). Life gets confusing when 
tests are multidimensional. Here’s why. Consider 
the following four-question test (answered in a 
yes/no fashion) measuring the fictional constructs 
Delta and Zeta (because Greek letters are cool).

1. Do you like aspect 1 of concept Delta?
2. Do you like aspect 1 of concept Zeta?
3. Do you like aspect 2 of concept Delta?
4. Do you like aspect 2 of concept Zeta?

Now, let’s say two people (Hermes and Nike) take 
this test. They both answer “yes” to two of the 
four questions. How do we interpret their scores? 
Did they score a two because they like Delta but 
not Zeta – or is it the other way around? Or do 
they like both Delta and Zeta but only in part? 
What we have here is a multidimensional test. We 
need to break it into two unidimensional tests, 
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Construct A is Behaviors 1-3. Performance on the measured behav-
iors is used to infer performance on the set of all relevant behaviors.

FIGURE 2 A Construct Is a Set of Behaviors



one measuring attitudes toward Delta (Items 1 
and 3) and another measuring attitudes toward 
Zeta (Items 2 and 4). Fortunately, we don’t have 
to actually break the test in half. We can keep it as 
it is and just score it as two separate tests.

Important point: We’re used to thinking of a 
test as what we can fit on a few sheets of paper, 
one test booklet equals one test. But the number 
of distinct tests (as indicated by the number of 
constructs measured) is determined by the num-
ber of ways we score the questions on the paper. 
One test booklet may contain as many tests as you 
like. To illustrate, when we score our incredibly in-
teresting Delta/Zeta test two ways, we find that 
Hermes has a score of 2 on the Delta questions 
and a 0 on the Zeta questions. Nike has scores of 
0 and 2, respectively. So now it’s clear. Hermes 
likes Delta but doesn’t like Zeta, and Nike is just 
the opposite. Our problem was solved by moving 
from a single multidimensional test to two unidi-

mensional tests. Interpreting the meaning of a test 
score is far easier with unidimensional tests.

One of the things we’ll see later is that we like 
unidimensional tests so much that we’re willing 
to throw out items if removing them improves 
unidimensionality.

Measurement: Assigning symbols (usually 
numbers) to objects (usually people) so that the 
properties of the objects are accurately repre-
sented by the symbols.

The big question in psychological measure-
ment is: Do the tests yield scores that accurately 
describe the properties of the object being meas-
ured? If you were to step on a scale and the scale 
said you weigh fourteen pounds, you would proba-
bly say that the scale is broken. This test (the 
scale) is not faithfully describing properties 
(weight) of the object (you). We’re going to apply 
this same logic to other measurement devices to 
determine how well they are working.
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Now let’s put a few of these definitions to-
gether to address at an important concept. What 
is the purpose of measurement? If we’re measur-
ing people, we measure to determine a person’s  
standing on the construct in question. And here’s 
the kicker: We do this assuming (and hoping) that 
some people will have higher scores than others. 
That is, there should be differences among the 
scores for the people tested. A test that produces 
the same scores for everyone is a useless test. This 
concept is called discrimination. Note that this is 
not unfair discrimination. We definitely do not 
want the test to assign scores on the basis of irrele-
vant factors (like sex or race). By extension, any 
construct other than the desired construct is irrele-
vant. We want the scores to be a pure representa-
tion of the desired construct. And if people vary in 
their standing on the construct, then their scores 
on a test of that construct should vary as well.

Populations and Samples

The classic statistics class issues of popula-
tions, samples, and sampling error do not play a 
big role in psychometrics, but they are still rele-
vant. Any measurement book without them would 
be incomplete. That said, we’ll get by with just a 
brief treatment of them.

Population: Everyone relevant to a study. If 
your study is about people in general, then your 
population consists of every person on the planet. 
If your study is about students in an art history 
class being taught a certain way at a certain place, 
then your population is everyone in that class. 
Aside from studies with narrowly defined popula-
tions, we never measure the entire population. 
Sometimes researchers like to pretend that they 
have measured a population just because their 
sample is big, but they’re just pretending.

Sample: A subset of the population. If there 
are ten million in the population, and you meas-
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ure all but one, you’ve measured a sample. Sam-
ples can be small (N = 23) or large (N = 10,823). 
Smaller samples are likely to lead to greater error 
in our results. So we prefer larger samples. Bad 
news: Large samples are labor intensive.

Sampling Error

Sampling error is the difference between a sta-
tistic (e.g., mean) computed in a sample and the 
true population value for that statistic. As an ex-
ample, let’s say that we desire to investigate how 
well high school seniors know the capitals of the 
50 states. Thus, the population consists of every 
high school senior (remember, the population 
isn’t always everyone on the planet – it’s everyone 
relevant to the study). It is obvious that it will be 
too much work to give our state capital test to 
every senior high school student. So via a random 
process we select 163 students and test them. And 
let’s say that their mean score is 34 correct. Now 
that’s a sample of people and their mean score rep-

resents our best estimate of the mean score for all 
the senior students. But this estimate is just that, 
an estimate, and it won’t be perfect. Now for the 
sake of argument, imagine that we collected data 
from every single high school senior (i.e., the 
population). And the mean population score turns 
out to be 22 correct. That’s not exactly a small dif-
ference between our sample value (34 correct) and 
the population value (22 correct). That difference 
is sampling error. And it’s the price we pay for be-
ing lazy. Sometimes sampling error is big, or some-
times, by sheer luck, it works out to be zero for a 
given study. The rule to remember is this: Larger 
samples are likely to lead to smaller amounts of 
sampling error. So, we like large samples. The big-
ger, the better.

For the “larger samples lead to smaller 
amounts of sampling error” rule to work, every-
one in the population must have an equal chance 
of being selected for the sample (such a sample is 
called a probability sample). There are a variety of 
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techniques (e.g., simple random sampling, cluster 
sampling) available to collect a probability sample. 
It’s work, but it can be done. But what if the sam-
ple isn’t a probability sample? The “larger samples 
lead to smaller amounts of sampling error” rule 
definitely does not apply if the sample is any type 
of non-probability sample (i.e., samples of conven-
ience; volunteer samples; collecting data from 
friends, family, and pets). In a non-probability sam-
ple, some members of the population have no 
chance of being selected. The classic example of a 
non-probability sample is the use of college stu-
dents in psychological research. Any sample taken 
from a college student subject pool will not be rep-
resentative of any population broader in scope 
than college students for the simple reason that 
people who are not college students have zero 
chance of being selected.

Data gathered from a non-probability sample, 
regardless of size, should never be used to draw in-
ferences regarding population characteristics; the 

validity of such generalizations is unknown and 
unknowable (Pedhazur & Schmelkin, 1991). No 
statistical magic exists which would fix the prob-
lems caused by the use of a non-probability sam-
pling technique.

This next point should be obvious, but I’ll 
state it anyway. The population from which the 
sample is taken must be the right kind of popula-
tion. That is, it must be the population that is rele-
vant to the study. Using our state capital example 
from earlier, if we wanted to know the average 
score of high school seniors, it wouldn’t make 
sense to draw our sample from the membership of 
a plumber’s union. If the sample is taken from 
Population A, we can’t validly generalize sample 
characteristics to Population B.

To summarize matters, we can state a rule re-
garding inferences from samples. To make infer-
ences from sample statistics to the population 
with a minimum of error, our sample (a) must be 
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large, (b) must be collected via a probability sam-
pling technique, and (c) must be collected from 
the right type of population.

Finally, these rules apply to all statistics. We 
used means in our example, but we could have 
used medians, standard deviations, correlations, 
or half of a-thousand other statistics of which you 
have not yet dared to dream. Sampling error af-
fects every statistic that we compute, and the only 
sure way to completely avoid it is to measure the 
entire population. Because that’s too much work, 
we can minimize the magnitude of sampling error 
by the use of large probability samples.
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2 Variability. Sampling Error. 
Standard Scores.

It doesn’t get any better 
than this.

Statistics and Statistics 
Related Accessories



Introduction

Psychological measurement (or psychometrics, if 
you’re cool) is not really about statistics. Various 
statistics are used and used often. But at the end 
of the day, we don’t care that much about the sta-
tistics themselves. Statistics are just tools we use 
to evaluate various characteristics of our measure-
ment. Furthermore, we will not dwell on the bane 
of every statistics class, significance testing. That 
is, in psychometrics there will not be an emphasis 
on ANOVAs, t tests, or the like. We will mostly 
live in the land of descriptive statistics: means, 
standard deviations, correlations, and regression 
equations. (The sample sizes in our psychometric 
projects are often so large that the concept of sta-
tistical significance is seldom a concern; Nunnally, 
1967).

Levels of Measurement

Anyone can slap a number on something and 
call it measurement. That’s fine, but we can’t treat 
all of the numbers as if they have the same proper-
ties. The mere fact that one person has a score 
that is twice as large as yours (e.g., 100 versus 50) 
doesn’t mean that his or her standing on the con-
struct is twice as high as yours (i.e., if it is an intel-
ligence test, they are not necessarily twice as 
smart). It may not even be the case that he or she 
has a higher standing on the construct than you. 
Thus, we must be careful that we do not infer 
more from the numbers than the type of measure-
ment will allow. In the most extreme case, the 
numbers are just shorthand for names and are not 
meaningful in themselves. This level of measure-
ment issue was analyzed by Stevens (1946). His 
system for understanding the various types of 
measurement is called Stevens’s Scales.
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The lowest (as in simplest) level of measure-
ment is nominal, a word meaning in name only. 
Nominal measurement is summarized in Chart 1. 
It’s measurement according to the definition, but 
it’s not really measurement in the way we typi-
cally think of it – the numbers are completely arbi-
trary. The arbitrary nature of the numbers is why 
we can do so many kinds of transformations. Ordi-
nal is where measurement starts to resemble the 
sort of measurement that we expected to see 

(Chart 2). With ordinal data, bigger numbers do 
mean more of the construct. That’s a big step. The 
big limitation in ordinal is that although bigger 
means more, we don’t know how much more. A 
one point difference may be small, or it may be 
big. We don’t know. Even if you did know that the 
difference between 53 and 54 is small, we don’t 
know if the difference between 8 and 9 is equally 
small even though both differences are one point.
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Characteristics Numbers are just codes for 
categories. Greater numbers do 
not mean more of the construct

Example Test taker gender (e.g., male = 0, 
female = 1)

Permissible Data 
Transformations

Anything that maintains the 
original categories (e.g, recode all 
males to -7; recode all females to 
+112)

CHART 1 Nominal Measurement

Characteristics Greater numbers indicate more of 
the construct but do not indicate 
how much more. A 10 point 
difference between scores might 
be big or small and isn’t 
consistent across entire scale

Example Class rank

Permissible Data 
Transformations

Anything that maintains the 
original order of scores (e.g., add 
83 points to all scores)

CHART 2 Ordinal Measurement

figure:3FFA17C3-8386-4D1D-AF81-D62E682EDCAE
figure:3FFA17C3-8386-4D1D-AF81-D62E682EDCAE
figure:67FFEE1A-9192-45C9-954D-2CBE88F99C48
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Interval adds what we were missing from ordi-
nal (Chart 3). With interval the size of the differ-
ence between points has a constant meaning. If a 
10 point difference is a big difference, then it’s a 
big difference at all points along the scale. That is, 
the difference between 60 and 50 is of the same 
magnitude as the difference between 35 and 25. 
The only thing we are missing in interval is a 
meaningful zero. In interval, zero is just another 

number. It does not mean the absence of the con-
struct. A zero on an IQ test does not mean that 
the test taker is completely lacking in intelligence. 
Just to be weird we could set up the test so that 
zero is the highest score. It’s silly, but we could do 
that. Wouldn’t change a thing. Why is this zero 
thing so important? Because a meaningful zero is 
needed to say things like, “My score is 100. Yours 
is a 50. Therefore, I have twice as much _____ as 
you.” (Fill in the blank with whatever construct 
the test is measuring.) We can’t do that with tests 
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Characteristics Greater numbers mean more of 
the construct, and the size of the 
difference between scores is 
meaningful. Zero doesn’t mean 
anything special

Example Many intelligence and personality 
tests

Permissible Data 
Transformations

Multiply all scores by a constant 
and/or add a constant to all 
scores (e.g., linear z score 
transformation)

CHART 3 Interval Measurement

Characteristics Everything that interval had plus a 
meaningful zero point. A zero on 
the test means zero of the 
construct

Example Time to complete a task

Permissible Data 
Transformations

Multiply scores by a constant 
(e.g., transform time from minutes 
to seconds by multiplying by 60)

CHART 4 Ratio Measurement

figure:2F5D3209-7970-4FE6-BC18-35CAFE34E656
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operating at the interval level. But with ratio we 
can. Ratio has it all (Chart 4). Bigger numbers 
mean more of the construct. The size of the differ-
ence between scores is constant and meaningful. 
Zero means the absence of the construct. I hope 
that you can see why ratio is mostly limited to 
physical constructs like size, weight, and time.

How do Stevens’s scales impact the statistics 
we use? For nominal, we’re pretty much limited to 
percentages (e.g., our sample was 53% male and 
47% female), chi-square tests of association, 
modes, and the like. For ordinal, we have a bit 
more, but none of the really good stuff. If we want 
to compute the average of ordinal data, we’re 
stuck with medians – not even a mean. We can do 
correlations, but not the regular kind. We have to 
use special ones like the Spearman rank-order cor-
relation. It is not until we reach interval level 
measurement that we can use all of our favorite 
statistics. Thus, it is very important that we de-
sign our tests so that they have interval level meas-

urement. How we do this will be covered on an-
other day.

Here’s an example using the latest results sent 
from my contacts down at the track.

Place Horse Name Number Time

1 Seattle Tex 67 1:00
2 Four Sided Triangle 33 1:07
3 Mud King 92 1:21
4 Glue Factory Jailbreak 10 1:22
5 Mane Event 51 2:00

Nominal is exemplified by the number of the 
horse (e.g., Seattle Tex wears number 67). As 
should be clear, greater identification numbers do 
not indicate better performance. Ordinal is exem-
plified by the place the horse finished. First place 
(Seattle Tex) is the best. Second place (Four Sided 
Triangle) is second best. Mane Event is the worst. 
Ratio is shown by the time variable. Time indi-
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cates the time elapsed from the start of the race 
until the finish. Mane Event took twice as long as 
Seattle Tex to finish the race (in other words, Seat-
tle Tex was twice as fast as Mane Event). Where’s 
interval, you ask? Sorry, I don’t have one for this 
example; it doesn’t lend itself to the world of 
horse racing. (Well, there’s temperature in Fahren-
heit or Celsius. That’s arguably interval...)

Note how ordinal data doesn’t indicate a con-
sistent magnitude of the differences between 
scores. Mud King finished one place ahead of Glue 
Factory Jailbreak. Glue Factory Jailbreak finished 
one place ahead of Mane Event. It’s a one place dif-
ference in both cases, but the size of the difference 
isn’t the same. How do we know this? Look at the 
actual times (ratio level). Mud King finished one 
second ahead of Glue Factory Jailbreak. Glue Fac-
tory Jailbreak finished 38 seconds ahead of Mane 
Event. The one place difference doesn’t have a con-
stant meaning.

Distributional Statistics: Central Tendency

You’ve probably already learned that there are 
three types of averages: mean, median, and mode. 
An average score describes the central tendency of 
a set of data. The mode is the most frequently oc-
curring value. Consider the data in the following 
table.

Person Score

L. Sebastian 22
Kyle 18
S. Joe 29
Shauna 18
Ron 19

The modal score is 18 because it occurs more of-
ten (twice) than any other score (all just once 
each).

The median is the middle score. As an anal-
ogy, in a family with three children, who is the 
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middle child? The second one of course. If there 
are three scores, then the median is the value of 
the second score. So to compute a median, just 
find the middle score and obtain its value. In the 
above example, there are five scores so the middle 
score is the third highest one. The value of the 
third highest score is 19. Thus, the median score 
is 19 (not 3 or 29). It should be clear that to com-
pute a median, one must (a) sort the data from 
highest to lowest (or lowest to highest), (b) find 
the middle score, and (c) obtain the value of the 
middle score. OK, new example. What if a family 
has four children, who is the middle child? It is a 
little tougher because two kids (the second and 
the third) tie for the middle spot. We could have 
the same issue with finding the median score. In 
the above dataset, let’s say we obtain data from a 
sixth person, whom we will call Tammy. Tammy 
has a score of 20. That means we have six total 
scores. The middle scores are the third and fourth 
highest scores. Note that there are the same num-

ber of scores greater than and lesser than these 
two – that means that you’ve successfully found 
the middle value(s). The values of the two middle 
scores are Ron’s 19 and Tammy’s 20. To compute 
the median, split the difference. Thus, the median 
score is 19.5. To summarize, when we have an odd 
number of scores, just sort the data and find the 
value of the middle score. When we have an even 
number of scores, sort the data, find the values of 
the two middle scores, and split the difference.

You’re probably most familiar with means. To 
compute a mean (symbolized as μ for populations 
and X̄ for samples) add the scores and divide by 
the number of scores. If you like a good formula, 
here’s one:

X̄ = ∑ X
N

Now that you know three ways to compute av-
erage or central tendency, we should talk about 
the advantages and problems with each. There is 
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no problem with mode, except that nobody uses 
it. And I mean nobody. Means can be overly influ-
enced by a single extreme score, resulting in a 
value that is not representative of the dataset. Me-
dians do not suffer from that problem. In fact, one 
might say that medians are not influenced enough 
by extreme scores.

Distributional Statistics: Variability

A frequency distribution (also called a histo-
gram) is a graph of scores of a single variable (Fig-
ure 1). The x-axis indicates the various levels of 
the variable and the y-axis indicates the number of 
times each value is observed. It sounds fancy, but 
it’s really just a bar graph, the sort of thing you 
made in third grade. The jagged nature of the bars 
is due to the X variable, a variable which has dis-
crete categories (like ACT scores) where the only 
possible score values are integers (there’s no 
21.7). In other words, the variable is not truly con-
tinuous. With infinitely large datasets (and con-

tinuous variables), frequency distributions smooth 
out to something called a probability density func-
tion, (see Figure 2). Much nicer, no?

Let us note a few of things in the two distribu-
tions. First, not many people have scores that are 
very low (-2 or -3) or very high (+2 or +3). Most 
people have scores in the middle (“The meaty part 
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FIGURE 1 Frequency Distribution (Histogram)
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of the normal curve.” Costanza, 1997). Second, 
the Figure 2 distribution is symmetrical. If you 
draw a line down the middle, one side is a mirror 
image of the other. Go ahead, find a mirror and try 
it. We’ll come back to this symmetry issue later. Fi-
nally, when the distribution is symmetrical like Fig-
ure 2, that line down the middle tells you where 
the mean is located. In this case, the mean is zero.

Moving on, distributions for two different data-
sets are displayed in Figure 3 and Figure 4. What’s 
the difference between the two distributions? 
When they are shown on separate graphs they ap-
pear to be the same. They have the same mean 
score. Notice how the midpoint of each is zero. 
They have the same sample size (trust me on 
this). If you’ve read the title of this section, then 
you’ve guessed that the difference is variability. In 
the Figure 3 distribution (in black), most (approxi-
mately two-thirds) of the scores are within one 
point of the mean (the mean plus or minus one 
point), whereas in the Figure 4 distribution (in 
blue), very few of the scores are within one point 
of the mean. You have to move out to five points 
away from the mean (the mean plus or minus five 
points) in order capture most of the scores. If we 
place both datasets on the same scale (Figure 5), 
it’s clear that the scores are not spread out in the 
same way (if Figure 5 seems like a massive cheat, 
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FIGURE 2 Probability Density Function
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pay careful attention to the scale on the x- and y- 
axes on the three graphs).

Variability is greater for the blue distribution 
than for the black distribution. Variability is all 
about the differences between the scores. There 
are a number of ways to compute variability, but 
we’ll end up using just two of them.

The simplest measure of variability is called 
range. The range is simply the difference between 
the highest and lowest scores. Easy to compute, 
sure, but range is a crude index of variability. A 
single outlying score can result in a high range.

A slightly more sophisticated measure of vari-
ability is the interquartile range. To compute the 
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interquartile range, find the scores at the 75th and 
25th percentiles (not unlike computing the me-
dian, which is the score at the 50th percentile) and 
compute the difference between the scores. The in-
terquartile range is better than a simple range be-
cause it is more difficult for a single score to skew 
the results, but interquartile range is still not a 
sensitive measure of variability.

The measure of variability that we like is 
called variance (symbolized for populations as σ2). 
Yes, the name is a little confusing, so here’s a hint. 
Variability refers to all of these statistics (including 
range), whereas variance refers to a specific equa-
tion, given below for populations. (Just to be clear, 
the equation below computes variance for a popu-
lation of data. But wait, you say, I thought people 
never measure an entire population. True. So why 
do we need this equation? To understand sample 
variance, we first need to understand population 
variance. All things in due time.)

σ2
X = ∑ (X −μ)2

N

This equation isn’t that bad. In fact, it is really 
similar to the equation for a mean. To see that, 
take all the parenthetical stuff and call it Q (just to 

give it a name). The equation is now 
∑ Q

N
. Essen-

tially, it is the mean of this Q variable. So variance 
is the mean of something. Now let’s look at the 
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parenthetical component. It’s (X −μ)2. Forget the 
squared part, focus on (X −μ). This is called a 
mean-deviation score and it is the difference be-
tween a score on X and the mean score. If X equals 
the mean score, then the mean-deviation score is 
zero. If X is greater than the mean score, then the 
mean-deviation score is positive. You get the idea. 
We’ll be computing mean-deviation scores for all 
people in our dataset. An example is presented be-
low. The mean of X is 6.

Person X (X - Mean)

Bennett 3 -3
Tommy 9 3
Todd 4 -2
Matt 8 2

Now to deal with the squared part, we’ll simply 
square those mean-deviation scores.

Person X (X - Mean) (X - Mean)2

Bennett 3 -3 9
Tommy 9 3 9
Todd 4 -2 4
Matt 8 2 4

Remember that Q thing we made up? That’s the 
last column, the squared mean-deviation scores. 
As we said, variance is just the mean of this thing.

So variance is the mean of the squared mean-
deviation scores. In this case, it’s (9+9+4+4)/4 
= 6.5. Another way to describe it: variance repre-
sents the average squared difference between each 
score and the mean. Here’s another example.
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Person X (X - Mean) (X - Mean)2

Julianna 9 0 0
Paul 9 0 0
Jennifer 9 0 0
Anthony 9 0 0
Brenden 9 0 0

Variance is – you guessed it – zero. Why? Every 
score is the same. Thus, the average distance be-
tween each score and the mean is zero. Just for 
fun, diagram the frequency distribution of this da-
taset.

So that’s the equation for population variance. 
What about the equation for computing variance 
when you measured a sample? (Which, as we have 
discussed, is pretty much all of the time.) The 
equation to compute the variance of a sample of 
data (when you want an unbiased estimate of the 
population variance – trust me, this is what you 
want) is:

S2
X = ∑ (X −X̄ )2

N −1
The only difference (aside from the symbol S2

X and 
the replacement of μ with X̄) is instead of dividing 
by N, we divide by N −1 . It is worth noting that 
the popular statistics programs (e.g., SPSS, SAS) 
use this N −1 version for all of their variance com-
putations (but Excel offers both equations – you 
pick the one you want). And, of course, the N −1 
version is the correct equation – unless you hap-
pened to have measured a population. And that 
won’t happen on accident. So we’ll stick with sam-
ple variance from here on out.

You might be wondering why we divide by 
N −1 instead of N with the sample variance equa-
tion. Here’s the short answer (and feel free to skip 
this paragraph if you don’t care): the N −1 denomi-
nator is necessary to obtain an unbiased estimate 
of the population variance. “Unbiased estimate?” 
you say. Well, think about it. We measure samples 
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because it’s inconvenient (well nigh impossible) 
to measure the entire population. But, and this is 
important, we want our sample statistics to repre-
sent the population statistic. All of the statistics 
we have discussed to this point (e.g., mean) were 
unbiased, meaning that the sample statistic would 
not consistently yield a value that was too high or 
too low (stated another way, there was about a 
50% chance that the sample statistic would be too 
high compared to the population value and about 
a 50% chance that it would be too low). Variance 
computed in a sample using the N denominator is 
a biased statistic in that it will consistently yield a 
value lower than the population value. And where 
does the N −1 denominator come in? By dividing 
the squared mean-deviation scores by N −1, the 
bias is eliminated, and the sample variance equa-
tion produces an unbiased estimate of the popula-
tion value. Aren’t you glad you asked? If you want 
to know why the N denominator version of the 
equation produces a biased estimate in a sample, 

that’s a much bigger question. There are proofs 
for that. Take my word for it – they are not fun.

Our final variability statistic is called standard 
deviation (symbolized as SX). If you know vari-
ance, then standard deviation is a snap because…

SX = S2
X

That’s right, standard deviation is just the square 
root of variance. If you know one, you can always 
compute the other. A clear sign of this is the sym-
bol for each. The variance symbol (S2

X) has a 
squared sign and the standard deviation symbol (
SX) doesn’t.

You might be tempted to ask, given that vari-
ance and standard deviation are basically the 
same, why do we need both of them? Well, that’s 
a good question, and I’m glad you asked it. Re-
flects well on your intellect. The answer relates to 
the metric of measurement. If scores on X are the 
weight of people in pounds, and the variance 
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works out to 85, then we say the variance is 85 
pounds squared because variance is in squared 
units. Right away you can see the problem: squared 
pounds. Now imagine that we measured ACT 
scores. Squared ACT points? Variance doesn’t live in 
the land of regular units of measurement. But stan-
dard deviation does. With standard deviation, 
we’re back to pounds, ACT points, and the like – 
the original metric of measurement. Operating in 
the original metric of measurement makes it a lit-
tle easier to determine if a given value is big or 
small. In squared units, everything looks big.

Distributional Statistics: Skewness

The distributions we have seen to this point 
have all been symmetrical; one half is a mirror im-
age of the other half. Consider the distribution in 
Figure 6; it is not symmetrical. Would you believe 
me if I told you that Figure 6 has the same mean 
(0.0) and standard deviation as, say, Figure 3 
(1.0)? It’s true. I went to a lot of trouble to make 

it true. Same mean, same standard deviation but 
different shape. It does not have a symmetrical 
shape. We call it skewed. Figure 7 shows the 
skewed distribution (in blue) and a symmetrical 
distribution (in gray) on the same axes. Same 
means, same standard deviations, different shapes.
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FIGURE 6 Skewed Distribution
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There is an equation to compute skew, but I 
won’t burden you with it. If the value comes out 
to be zero, then there is no skew, meaning that the 
distribution of scores is perfectly symmetrical. If 
it’s positive, then there are fewer scores at the 
high end (above the mean) than at the low end. If 
the skew is negative, then it is the opposite (too 

few scores below the mean). The blue distribution 
is a prime example of positive skew (skew = 
+1.4). And yes, I think the positive/negative la-
bels are backwards too.

Distributional Statistics: Kurtosis

Examine the distribution in Figure 8. Looks 
pretty good, right? Bell-shaped. Perfectly symmetri-
cal. Probably one of those normal distributions you 
hear people on the street talking about. But it’s 
not. The shape is slightly off. You see, a normal dis-
tribution has a very specific shape. The normal dis-
tribution is not just any symmetrical distribution 
with most of the scores in the middle. In a normal 
distribution, a certain percentage of scores are at 
the midpoint versus the tails (the extreme ends) 
of the distribution. Now examine Figure 9. The 
distribution from Figure 8 is reproduced along 
with an actual normal distribution (in gray).
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FIGURE 7 Skewness Versus Symmetry
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Both distributions have the same means (0.0) 
and standard deviations (1.0). They are both per-
fectly symmetrical. So what’s the difference? The 
Figure 8 distribution has too many scores at the 
midpoint and not enough in the -1 to -2 and +1 to 
+2 areas as compared to a normal distribution. 

This issue is called kurtosis. Kurtosis is a function 
of the proportion of scores that are at the mean, 
close to mean, at the extremes of the distribution, 
and so on. A normal distribution has a kurtosis of 
zero.
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A nice distribution that looks like a normal distribution. Looks like be-
ing the key words

FIGURE 8 A Normal Distribution?

Distribution exhibiting non-normal kurtosis (blue) and a normal distribu-
tion (gray)

FIGURE 9 Kurtosis Comparison
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Just to be clear, this isn’t a difference in vari-
ability. Kurtosis sounds a little like variance, but 
it’s different. Variance describes the average 
(squared) distance between each score and the 
mean. Kurtosis describes the proportion of scores 
that are close to and far from the mean. The above 
example is but one way for kurtosis to be off (i.e., 
not zero). As with skewness, I won’t encumber 
you with a kurtosis formula. I will tell you that the 
kurtosis of the Figure 8 distribution is +1.2.

The Normal Distribution

Well, I spoiled the normal distribution in the 
previous section. I was trying to save it all for a 
big reveal here, but there isn’t a good way to ex-
plain kurtosis without mentioning the normal dis-
tribution. So I blew the surprise. Sorry.

The normal distribution (or Gaussian distribu-
tion) has a bell shape, but not all bell shaped dis-
tributions are normal. All dogs are mammals, but 

not all mammals are dogs. A bell curve is called a 
bell curve because it kind of looks like the profile 
of a bell. The normal distribution is indeed bell 
shaped, so it is an example of a bell curve. There 
are many distributions that look bell shaped, but 
aren’t normally distributed, as we saw in the kurto-
sis section. What then, is the difference between 
the true normal distribution and a mere bell 
curve? The normal distribution is a very specific 
shape. To be specific, the normal distribution has 
zero skew and zero kurtosis. You’ve seen enough 
normal distributions by this point, so I won’t draw 
another one. (Almost every distribution in this 
chapter has been a normal distribution. The only 
distributions that weren’t normal were the blue 
distributions in the sections on skewness and kur-
tosis.) The normal distribution can be described 
by the following equation (called a probability den-
sity function, and is exemplified in Figure 2), 
which I present for reference purposes only.
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h X = 1

e((X −μ)2/2σ2) 2πσ2

Where:
h X is the height of the normal curve at X.

Because normally distributed data always has 
the same shape, the normal distribution has many 
desirable properties, all related to zero skewness 
and zero kurtosis. First, because the normal distri-
bution is symmetrical, we can talk about a score’s 
relative position to the mean. That is, is a score 
above the mean or below the mean? How far 
above or below? Both questions are important and 
both have quantifiable answers that have the same 
meaning for all normally distributed data. (What 
if the data are not normally distributed? Well 
then, life’s not so simple. We have the good for-
tune that most variables are approximately nor-
mally distributed.)

Here’s what you’ll find if you examine a set of 
normally distributed data. A certain percentage of 
scores will always be the same distance from the 
mean. For example, let’s say you have a set of nor-
mally distributed data from a sample of 100 peo-
ple. Let’s also say the mean of this data is 0 and 
the standard deviation is 1. If you count how 
many people have scores between the mean and 
one standard deviation above the mean, you will 
find 34. If you count the number of people with 
scores between one and two standard deviations 
above the mean, you’ll find 14. Finally, if you 
count the number of people with scores between 
two and three standard deviations above the 
mean, you find just two people. And because the 
distribution is symmetrical, things are the same 
for scores below the mean.

A few words about the preceding numbers. 
First, because I used a sample of 100 people, the 
numbers are rounded. Second, the previous para-
graph also makes it appear that the normal distri-
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bution goes no further than three standard devia-
tions above or below the mean. The truth is that 
the normal distribution is without bounds; in the-
ory, you could find someone with a score so high 
that they are seven standard deviations above the 
mean (or nine below the mean or whatever). 
These are scores so rare that we will not concern 
ourselves with them; we’ll just focus on the world 
that is three standard deviations above and below 
the mean. It is this area that contains 99.7% of all 
scores. One last note, if a person’s score is at the 
mean, their score is at the 50th percentile, mean-
ing that it is higher than 50% of the scores. Figure 
10 is a diagram of the normal distribution, divided 
into sections by standard deviation, showing the 
percentages in each section.

Now, what does all of this buy us? It allows us 
to quickly and easily attach meaning to a score. All 
you have to do is remember three numbers: 34, 
14, and 2. If I told you that my score on a test was 
one standard deviation below the mean, what do 

we know about it? Obviously, it’s below average. 
Using the 34/14/2 rule, we can estimate my per-
centile rank (the percent of people at or below a 
given score – we’ll discuss percentile ranks in 
greater detail later). Now how do we figure this 
out? The only people with scores worse than mine 
are those with scores even lower than one stan-
dard deviation below the mean. A quick calcula-
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FIGURE 10 Areas of the Normal Distribution
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tion shows that my score is greater than 2% + 
14% of the scores. Thus, my percentile rank is 
16%. This example is shown in Figure 11. So 
knowing the properties of the normal distribution 
helps us interpret test scores without much work. 

And it’s all because normally distributed data al-
ways has the same shape.

I should stress one point that with this 34/14/
2 rule for normal distributions: these percentile 
ranks are only crude estimates. If any precision is 
needed, consult a z table. Also, if the number of 
standard deviations above or below the mean for 
the score in question isn’t a nice round number 
(e.g., 1.7 standard deviations above the mean), 
we’ll need to consult a z table. And if the dataset 
isn’t normally distributed, then forget 34/14/2 
rule. And forget the z table. The z table is based 
on (and descriptive of) the normal distribution. 
Maybe this helps explain kurtosis. A dataset with 
a kurtosis other than zero will not have scores dis-
tributed in the 34/14/2 manner.

The only lingering question is this one: How 
do we know the number of standard deviations 
above or below the mean a score lies? As an exam-
ple, if someone’s score on a test is a 23, how do 

If a Score Is...

It’s Greater Than...

FIGURE 11 Using the 34/14/2 Rule to Estimate Percen-
tile Ranks for a Normally Distributed Set of Data
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we know the number of standard deviations above 
or below the mean? We’ll have to compare that 
score to the mean score and use the standard de-
viation of the test to compute something. We’ll 
save the rest of the answer to that question for a 
later section about something called linear z 
scores. Maybe you can figure it out yourself before 
we get there.

Normative Inference

So we just covered how easy it is to attach 
meaning to a test score with percentile ranks. But 
why do we need percentile ranks to interpret a 
test score? Here’s the unpleasant truth: Scores on 
most tests have no inherent meaning. I can give 
you a measure of extroversion and tell you that 
you scored a 36. But what does a 36 mean? We 
don’t know until we compare it to something. The 
most popular (but not the only) comparison is 
with other people’s scores. If it turns out that your 
score of 36 is greater than almost everyone else’s 

score, then I can say a score of 36 means that you 
are extremely extroverted. This process of giving 
meaning to a test score by comparing it to other 
scores is called normative inference. So that’s the 
plain truth, most test scores have no inherent 
meaning. All we can say is, “Here’s how you did 
compared to everyone else.” Pay no attention to 
that man behind the curtain.

This process of normative inference is actually 
very familiar to you. You’ve been doing it your en-
tire life in school. As an example, consider all of 
the times in class where you get a test back with a 
score that’s really low, say 42. Based on the usual 
rules (90-100 = A, etc.), you have some idea of 
what a 42 means, but you need more information. 
So you ask questions like, “What was the average 
score?” “What was the highest score?” or “What’s 
the curve?” If you find out that the highest score 
is a 72 and the average is a 65, you probably don’t 
feel too good about your score of 42. (On the 
other hand, if you find out that the highest score 
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is 42, you feel great about your test.) That’s nor-
mative inference in action. The test score has no 
meaning by itself, but it gains meaning when we 
compare it to other scores on the same test.

In order to make meaningful comparisons, the 
norm group, the group of people against whom we 
compare scores, must be representative of the 
population. (Side note: In some situations – aca-
demic tests in a single class – the norm group can 
consist of the entire population, but these are 
small populations.) Sampling issues were dis-
cussed in Chapter 1, so I’ll just list the issues 
here. First, small samples are more likely to be af-
fected by sampling error and, thus, are less likely 
to represent the population from which were are 
drawn. Second, for the sample to have a chance at 
being representative of the population, the sample 
must be drawn with a probability sampling tech-
nique.

What are the effects of using a norm group 
based on an unrepresentative sample? If I compare 
my score to a unrepresentative norm group, I’ll 
conclude that my score is higher or lower than it 
really is. One way or the other, I drew the wrong 
conclusion.

One last issue. Consider your performance on 
the ACT. Who constitutes a relevant norm group? 
High school seniors or eighth grade students? It 
should be obvious that it’s the high school sen-
iors. We could compare your score to the scores 
taken from a large, probability sample of eighth 
grade students, but who cares? They’re not rele-
vant to our study; any comparison to them is 
meaningless. To summarize, if our norm group is 
to be a sample, we want it to be a large sample col-
lected via a probability sampling technique from a 
relevant population of people.
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Score Transformation Overview

You are already familiar with the way in which 
temperature values can be transformed from Fahr-
enheit to Celsius (or to Kelvin, if you’re a fan of 
that one). A temperatures can be expressed in any 
of these formats with no loss in information. We 
often use whatever format is most convenient to 
us. You are also familiar with transforming raw 
scores (number of items answered correctly) on a 
test into a percent correct score (12 out of 20 be-
comes 60 percent). In both of these cases, you 
have transformed scores from one metric into an-
other more convenient, or more useful, metric. 

Score transformations are important in meas-
urement for the simple reason that raw scores ob-
tained from most tests are not all that useful in 
their raw score state. Thus, it is often to our advan-
tage to transform these raw scores into another 
metric.

Standard Scores: Linear z Scores

Standardizing a set of data changes the scores 
so that they have a useful mean and standard de-
viation. We call these rescaled scores standard 
scores. There are many forms of standard scores. 
We’ll discuss a few. Before we get to that, why 
would anyone use standard scores? As we men-
tioned in our section on normative inference, test 
score metrics (e.g., measuring race results in sec-
onds versus hours, measuring job performance 
with a 5-point scale versus a 7-point scale) are ar-
bitrary. Thus, it is difficult to interpret a score 
without knowing something about how other peo-
ple score on the test. The mean and standard de-
viation are two pieces of information describing 
how well other people scored. Both statistics are 
used to transform raw scores into standard scores. 
Data expressed in standard scores allow us to in-
terpret how high or low the score is as long as we 
know the characteristics of the standard scores. 
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Think of standard scores as a neutral playing field 
for our test scores.

There are many types of standard scores, but 
the most popular is the linear z score (often re-
ferred to as just z score, but the linear word is im-
portant as we will learn later). In fact, you already 
know a little about z scores based on what we 
learned earlier. The sample-based equation for 
computing a z score is very simple.

zX = (X −X̄ )
SX

X represents the person’s score in question. X  
is the mean score and SX is the standard deviation. 
So, all we need to know in order standardize a 
score is: the test taker’s score, the mean score, 
and the standard deviation.

How about an example? Let’s say that I took 
the SAT, and my verbal score (SAT-V) is a 400. 
The mean of the SAT-V section is 500, and the 

standard deviation is 100. Now we’re ready to go. 
Plugging in these values into the z score equation, 
we find that my 400 on the SAT-Verbal becomes a 
z score of -1.0. 

Let’s take a closer look at my z score of -1.0. 
My z score is negative. The negative sign tells you 
something – I did worse than average. If my score 
was above the mean, my z score would have been 
positive. If my score had been exactly the same as 
the mean, my z score would have been 0.0. The dif-
ference between my score of 400 and the mean is 
100 points. The standard deviation is 100 points. 
Thus, my score of 400 is exactly one standard de-
viation below the mean. The z score is -1.0. Do 
you see where this is going? I’m not this redun-
dant on accident. Here it comes: A z score is liter-
ally the number of standard deviations a score de-
viates from the mean. In case that's not clear, I'll re-
state the definition in the form of a question: How 
far (in terms of number of standard deviations) 
from the mean (above or below) is this score? If 
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the z score is -2.0, then the person’s score is two 
standard deviations below the mean. If the z score 
is 1.5, then the person’s score is one and a half 
standard deviations above the mean. If the z score 
is 0.0, then the person’s score is zero standard de-
viations above the mean – it is right on the mean. 
So when we talk about the number of standard de-
viations a score is from the mean, we’re also using 
z scores. Very convenient. The last thing to men-
tion is that if our data are normally distributed, 
then we can quickly and easily attach meaning to 
the score with the 34/14/2 rule we learned earlier. 
Take my score of 400. In z score terms it is -1.0. If 
the data are normally distributed, that means my 
score is better than only 16% of the test takers 
(see Figure 11 again).

One important point about the linear z score 
transformation (and all other linear transforma-
tions) is that the shape of the distribution does 
not change. If the data were normally distributed 
before the transformation, it will be normally dis-

tributed after. It the data were skewed before, they 
will be skewed after. The linear z score transforma-
tion changes the mean and standard deviation of 
the data, not the shape of the distribution.

This is a good time to mention that there is a 
normal distribution called the standard normal dis-
tribution. What’s the difference between the stan-
dard normal distribution and the normal distribu-
tion, you ask? Not much. In fact, the only differ-
ence is that the standard normal distribution has a 
mean of zero and a standard deviation of one. 
Thus, it’s a normal distribution in z score terms.

(If you want the equation for the height of the 
normal curve at X for a standard normal distribu-
tion, it’s the same as before, only with 0 substi-
tuted for μ and 1 substituted for σ. Making those 
substitutions simplifies the equation to:

h X = 1
e(.5X2) 2π
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Not that you couldn’t have figured out how to put 
a zero and a one in the original equation yourself. 
I just like the way the simplified version looks.)

So, to summarize things this far. Linear z 
scores indicate the number of standard deviations 
that a score lies above or below the mean. They 
are incredibly useful for interpreting test scores. 
Because the transformation of raw scores into z 
scores involves comparing the raw score to the 
mean and standard deviation of a group of people, 
they allow for easy normative inferences. If the 
data are normally distributed, then we can make a 
quick estimation of the z score’s percentile rank 
by using the 34/14/2 rule. More precise estimates 
require a z table.

There’s another benefit to standard scores. 
Standard scores allow for easy comparisons of 
scores. Comparing two or more scores from the 
same test is child’s play if the measurement is 
done at the ordinal level or better – the highest 

score represents the highest standing on the con-
struct. Highest number wins. But what if we want 
to compare scores from one test to scores from a 
different test? This won’t be as easy. Now you 
might ask, why would anyone want to do this? 
The answer is that we have many similar tests that 
do the same thing. The ACT and the SAT offer but 
one example. Let’s say that you took the ACT and 
scored a 30. We already know that I took the SAT 
and scored a 400 on the verbal section. Who did 
better, me or you? A layperson might look at the 
scores and say that I did better because 400 is big-
ger than 30. But we know better. We know that 
each test has a different metric of measurement – 
they use different numbers with different stan-
dards for good, average, and poor performance. 
What we need is a way to put both scores on the 
same metric of measurement. All we have to do is 
translate both scores to standard scores.

Back to our ACT-SAT example. We know my 
400 on the SAT-Verbal translates to a z score of 
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-1.0. What about your 30 on the ACT? What’s its 
z score? Using the z score equation (we’ll say that 
the ACT has a mean of 20 and a standard devia-
tion of 5), your ACT score transforms to a z score 
of +2.0. Again, z scores are the number of stan-
dard deviations above or below the mean. So your 
score is two standard deviations above the mean. 
If ACT scores are normally distributed, then you 
did better than 98% of the test takers. Very nice. 
Now that both of our scores are in z score units, 
we can directly compare the numbers. It is clear 
that your z score of 2.0 is bigger than my z score 
of -1.0. You win. You did better on your test than I 
did on mine. Try to stay humble. It won’t be easy.

One last bit on this comparison business and 
then we’ll move on. Some comparisons are not 
meaningful. Suppose you take a test of depression 
and I take the SAT-Verbal again. Your score is a 4 
and mine is a 410 (I studied a bit harder this 
time). Who did better? The answer is: Who cares? 
The tests are completely different, measuring dif-
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REVIEW 1 z Scores

Check Answer

Question 1 of  2
If a set of data has a mean of 50 and a standard devia-
tion of 20, what is the z score for a person with a raw 
score of 40?

A. -0.5

B. +0.5

C. +2.0

D. -2.0

E. +0.75

F. -0.75



ferent constructs, existing for different purposes. 
It’s a meaningless comparison.

Other Linear Standard Scores

Hard as it may be to believe, not everyone 
loves z scores. Probably the second most popular 
standard score is the T score. T scores are similar 
to z scores except that T scores are set to have a 
mean of 50 and a standard deviation of 10. Know-
ing this, it is easy to transform z scores to T scores 
(and back again). If my z score is 0.0, what’s my T 
score? Answer: 50. Why? My z score is 0.0 which 
means that I am zero standard deviations above 
the mean. T score are set to have a mean of 50 and 
my score is right at the mean, thus it’s 50. New ex-
ample. My score in z score units is -1.0. What’s 
my T score? My z score of -1.0 tells us that I am 
one standard deviation below the mean. So in T 
score-land, I start at the mean of 50 and go down 
one standard deviation (10 points) to 40. My score 
in T score units is 40. Last example. My z score is 

3.0. What’s my T score? It is 80, which is three 
standard deviations above the mean.

Now let’s score the other way. My score in T 
score units is 35. What’s my z score? This is easy. 
Recall that T scores are set to have a mean of 50 
and standard deviation of 10. Just use the z score 
equation: (35-50)/10 = -1.5. My z score is -1.5 
meaning that my score is one and a half standard 
deviations below the mean.

Why would anyone want to use T scores when 
T scores do the same thing that z scores do, only 
not quite as elegantly? This is just my opinion, but 
I think there are two answers, neither of which are 
very compelling. First, with z scores half of the 
data will be negative. Scoring in the negative range 
sounds like your score was terrible, but in z-score-
land, it’s only below average. So, for the protec-
tion of test taker egos, we may want to report 
scores that are positive. With T scores, it’s very dif-
ficult to get a negative score. (Just how low would 
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you have to score to have a negative T score? 
There’s something to think about the next time 
you’re stuck in traffic.) The second reason is re-
lated to what we’re used to in school. We’ve been 
used to the 90-100 is an A, 80-90 is a B, etc. sys-
tem for many years. Thus, we’re used to the idea 
that a 10 point difference is a big difference and a 
one point difference is a small one. (Important 
note: A one standard deviation difference is huge.) 
Now, in z score terms, a one standard deviation dif-
ference is one point, but in T score terms it is 10 
points. Thus, T scores conform to our idea of a big 
difference in scores. A ten point T score difference 
looks big, but a one point z scores difference looks 
small – even though they are really the same size. 
Again, this is what it looks like to people unfamil-
iar with statistics. We know better. A one standard 
deviation difference is big. The difference between 
z scores of 1.4 versus 2.4 is big. Even if it is just 
one point.

It should be clear at this point that we could 
create any new standard score system we want 
and be able to transform our data to it. Let’s say 
that we develop our own standard score system. 
We’ll call it..., let’s see, X, Y, Z are already taken. 
What’s after Z? Omega? We’ll go with that. 
Omega-Scores. Omega-Scores are designed to 
have a mean of 27 and a standard deviation of 11. 
If your z score is +2.0, what is your score in 
Omega-Scores? It’s two standard deviations above 
the mean: 2 × 11 = 22. Thus, it’s 22 points above 
the mean. 22+27 = 49. Let’s say someone else 
has a z score of -1. Their Omega-Score would be 
16. Why 16? The mean is 27 and they were one 
standard deviation (11) worse than the mean. Can 
we start with Omega-Scores and end up with z 
scores? Sure, just use the z score equation. Let’s 
say our Omega-Score is 5. The z score would be 
(5-27)/11, which equals -2. The key to all of this 
is to remember: a) the z score equation and b) 
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that z scores tell you the number of standard devia-
tions above or below the mean.

Percentile Ranks

Standard scores aren’t the only ways in which 
we can change our data. Another popular transfor-
mation is the percentile rank, a change with which 
we are already familiar. Let’s be clear about this: it 
is perfectly fine to compute someone’s percentile 
rank in order to give more meaning to their test 
score, but it is not a good idea to throw away the 
raw score in the process. What I mean is, consider 
the percentile rank to be a supplement to the raw 
score, not a replacement for it. Why? Percentile 
ranks are ordinal data, which means that we can’t 
do much (statistically) with them. They help us at-
tach meaning to a test score, but that’s about it. If 
we want to perform all of our favorite statistical 
operations, we need the original raw scores.

How do we convert raw scores to percentiles? 
If the data are normally distributed, we can con-
sult a z table. Or we can just do it by hand – some-
thing that works for all data, regardless of the 
shape of their distribution. How? Here goes… 
First, sort the scores from highest to lowest. Sec-
ond, count how many people have scores below 
the score in question (we’ll call this N< X, the num-
ber of scores less than X). Third, count how many 
people have the score in question; there may just 
be one person or a bunch of people tied at this 
score (we’ll call this NX). Fourth, count the total 
number of people (N). Finally, plug into the equa-
tion below.

PR = ( N< X + (.5)NX

N )100 %

Where:
PR is percentile rank.

Last note on percentile rank transformations. 
After the transformation, what is the shape of the 
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distribution? Let’s say it was normal before we 
started (i.e., the raw scores were normally distrib-
uted). After a transformation to percentiles, the 
distribution will be rectangular. As you can see in 
Figure 12, each percentile rank occurs exactly one 
time (aside from rounding issues). It should be ob-
vious why we don’t want to throw out the raw 
scores. (By the way, I'm sure I'll get no argument 
when I say that the rectangular distribution is 
least interesting distribution in the history of, 
well, distributions.)

Normalized z Scores

Another type of z score is the normalized z 
score. It sounds like a regular, linear z score, but 
with one huge difference, the normalized part. 
When we normalize something, we change the 
shape of the distribution to force it to be normally 
distributed. If the data were already normally dis-
tributed, then nothing changes but the mean and 
standard deviation, just like a linear z score trans-

formation. But, if the distribution was say, seri-
ously skewed, converting the raw scores to normal-
ized z scores changes the shape of the distribution 
to perfectly normal. For an example of the changes 
that happen with normalizing, look back to Figure 
7 or Figure 9; the blue distribution represents be-
fore normalizing and the gray distribution repre-
sents after, all nice and normal. Think of those dis-
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FIGURE 12 Percentile Rank Distribution
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tributions as one of those weight loss ads you see 
with before and after pictures. Only with normaliz-
ing you’re not losing weight – you’re losing skew 
and irregular kurtosis.

As you can see, the raw scores are positively 
skewed. After the transformation, the normalized 
scores are normally distributed. This change is 
non-linear, which means that the scores are not 
changed by a constant amount. The change occurs 
by compressing the scores at the high end (the dif-
ference between high scores is reduced; a two 
point difference before the transformation be-
comes a one point difference after the transforma-
tion) and stretching the scores at the low end (a 
one point difference becomes a two point differ-
ence). Scores in the middle may not be changed by 
much. Compare this with any linear transforma-
tion (including linear z scores) in which all scores 
are changed by a constant amount, regardless of 
whether they are high, medium, or low (e.g., if we 
measure time in minutes, but decide to change the 

scores to time in seconds, we multiply everyone’s 
score by 60; a one unit difference now becomes a 
60 unit difference across the board). This normaliz-
ing business is officially a big deal. It should be 
clear that normalizing should not be undertaken 
without good reason. What’s a good reason? I’ve 
never seen one.

How are normalized z scores computed? 
Given that I more or less just told you that you 
shouldn’t do it, it seems strange to describe the 
steps for doing it. But here goes. Normalizing is a 
two step process. First, transform raw scores into 
percentiles. Second, use a z table to find the z 
score associated with each percentile rank. That’s 
it. It’s simple and lethal. No more distributional 
problems. Everything is normally distributed.

Let me close with a comment on normalizing. 
The idea that normalizing is a valid technique we 
can use to solve our problems regarding normality 
assumptions is a relic from an outdated mentality 
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regarding data. The prevailing philosophy of the 
time, a simpler time, was that normalizing (or 
some other non-linear transformation) can solve 
your distributional problems. This line of thinking 
is almost always incorrect. The correct approach is 
to analyze the data with the correct statistics given 
the properties of the data. To be clear on proper 
procedures, don’t perform some non-linear change 
to the data; do change the statistics you use to ana-
lyze the data.
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3 If loving regression is 
wrong, I don’t want to be 
right.

Correlation and 
Regression



Overview

You may have noticed that everything we’ve 
discussed so far has been related to scores on a sin-
gle variable. That is, we’ve talked about a set of 
ACT scores, but we’ve never looked at the relation-
ship between two variables (ACT and college 
GPA, just to throw out a wild idea) for a group of 
people who each have scores on both variables. Are 
the scores related? Unrelated? In what way are 
they related? Is it a strong relationship or a weak 
one? As you can see, life gets much more interest-
ing when we measure multiple variables for each 
person. And we haven’t even talked about why 
these two variables are related. That’s a topic for 
another day (and another book). For now, let’s fo-
cus on understanding how we quantify associa-
tions between two variables.

Bivariate Associations

When describing the association between two 
variables there are two issues to consider: the 
strength of the relationship and the direction of 
the relationship. One way to assess the associa-
tion between two variables is to simply examine 
the raw data. Below is another one of our absurdly 
small datasets, which we’ll use as an example.

Person X (ACT) Y (GPA)

John 12 1.1
Sal 23 2.8
Tim 24 2.9
Amy 31 3.4
Antonio 10 -

First off, we note that each person should have 
two scores: X, the ACT score, and Y, the GPA. If a 
person had only one score, we would be unable to 
include him or her in the analysis. Note that Anto-
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nio doesn’t have a score on the Y variable – we are 
unable to include him in the analysis. A person 
must have scores on both variables to be included. 
We also note that I’ve sorted the scores from low-
est (John) to highest (Amy) on X. Now let’s see if 
there’s a trend in the data. And because I made up 
the data, there is. Lower scores on X are associ-
ated with lower scores on Y. Higher scores on X 
are associated with higher scores on Y. So it ap-
pears that there is a strong, positive relationship 
between X (ACT score) and Y (GPA). We say that 
it is a strong relationship because the rank-order is 
perfectly consistent. The person with the highest 
score on X (Amy) also has the highest score on Y. 
The person with the second highest score on X 
(Tim) also has the second highest score on Y. And 
so on. There are no exceptions to this perfect or-
dering of the scores. This consistency of rank-
order is the primary determinant of the value of 
the correlation coefficient. Finally, we say the rela-
tionship is positive because higher scores on X are 

associated with higher scores on Y. If higher 
scores on X were associated with lower scores on 
Y, then the relationship would have been negative. 
Thus, we have addressed both aspects of bivariate 
associations: strength (the relationship between X 
and Y is strong) and direction (the relationship is 
positive). Now this is about all we can get from ex-
amining the raw data (don’t try doing even this 
with large datasets – it’s borderline impossible); 
let’s move on to a better way to examine the rela-
tionship, the scatterplot.

The Scatterplot

A scatterplot is a graph of the X and Y scores 
on two axes. It’s the same old kind of x-y graph 
you’ve known since, oh, about third grade. The 
data from our example are graphed in Figure 1. 
On a scatterplot, each person receives a dot (or a 
square, or a plus sign, or a smiley face, or what-
ever you want). The dot indicates a person’s score 
on X and Y. It should now be clear as to why we 
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couldn’t include Antonio in the analysis. Where 
would we put his dot? It would be somewhere at 
3.0 on the x-axis, but how high on X = 3 do we 
put the dot (y-axis location)? We can’t assume 
that he would have done poorly on Y. We’re not in 
the business of assuming anything – we’re in the 
business of using the available data to describe the 

relationship. Thus, he’s gone. Looking at the scat-
terplot, we can see a trend, the same trend we saw 
when we looked at the raw data: higher scores on 
X are associated with higher scores on Y. And no-
tice how the scores fall in the path of a straight 
line. The basic Pearson correlation tells us the 
strength of the linear relationship between two 
variables. What if the relationship is not linear? 
Another time, another book for that topic.

Getting back to how closely the scores match 
a straight line, let’s draw the graph again, only 
this time with a straight line added as a reference 
(Figure 2).This line is called the line of best fit, or 
more commonly, the regression line. The regres-
sion line is the line that minimizes the vertical dis-
tance between the line and each point. You can 
imagine pulling out a ruler, measuring the vertical 
distance between each point and the line, averag-
ing the distance, moving the line ever so slightly 
to try to improve things, and repeating until you 
find the sweet spot. You can imagine doing this, 
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FIGURE 1 Scatterplot of Example Data
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but it sure doesn’t sound like fun. In a fortunate 
turn, we don’t have to do this graphically (where 
we measure things with a ruler); we can do it 
mathematically with the raw data. Even more 
good fortune, we can let computers do all the 
work for us (more on this later). As mentioned, 
the strength of a relationship between two vari-

ables is indicated on the scatterplot by how close 
the points are to a straight line. As we will see, in 
weaker relationships, the points are far from the 
line. The direction of the line (pointing up or 
pointing down) tells you direction of the relation-
ship (positive or negative). If the line is com-
pletely flat, there is no relationship. Very impor-
tant point: The apparent slope of the regression 
line (aside from the case where it is completely 
flat) does not indicate the strength of the relation-
ship. It seems like it should, but it doesn’t (aside 
from one special exception, with which we will 
not concern ourselves). As mentioned, the 
strength of a relationship between two variables is 
indicated on the scatterplot by the closeness of the 
points to a straight line, not the slope of this line. 
Why? The answer is that we can stretch or squash 
the x- and y-axes by a number of different meth-
ods to increase or decrease the slope of the line. 
The same data are displayed again in Figure 3, this 
time with different ranges on both axes.
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FIGURE 2 Scatterplot of Example Data with Regres-
sion Line
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That new slope sure looks amazing. But the 
strength of the association is unchanged. The cor-
relation stays the same. So don’t be fooled by the 
apparent slope of the regression line. Notice how I 
said that the apparent slope doesn’t indicate the 
strength. If you were to compute slopes with the 
old slope = rise/run equation for the above graph 

and the previous one, you would find that the 
value is the same in both cases. By changing the 
range on the axes I’ve made the slope appear to be 
stronger. Always examine how close the points are 
to the line to assess the strength of the relation-
ship. But this graphical stuff is just a visual repre-
sentation of the data, something that we can eye-
ball to get a general idea of what is going on. To de-
scribe the strength of the association between two 
variables with any accuracy requires something 
more than a casual inspection of the raw scores or 
even a graph of these scores. We need a statistic to 
quantify the strength of the relationship. We have 
a few options. Before we discuss any of these sta-
tistics, let’s discuss the properties a good measure 
of association statistic would have.
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Measures of Association

What properties should a measure of associa-
tion have? First off, it must accurately convey the 
desired information: strength and direction of the 
relationship. If it does’t do that, then there’s really 
no need to proceed with it. Furthermore, it should 
be sensitive to small differences in strength. One 
of the problems with evaluating strength with an 
examination of a scatterplot or dataset is that we 
are able to determine only the biggest of big pic-
ture ideas about strength (“It’s kinda strong. 
Maybe, medium strong.”). There is simply no way 
to be precise that way. A measure of association 
must be precise, or why bother?

Building on this, a good measure of associa-
tion should be easy to interpret. That is, upon com-
puting the coefficient, we should be able to deter-
mine, without any other information, whether the 
relationship is strong or weak, positive or nega-

tive. We should be able to see the number and in-
stantly know what it means.

Finally, a good measure of association should 
have a design that makes some sort of logical 
sense. It should be more than just a magic box 
where the raw data is fed in the front, resulting in 
a coefficient falling out of the back end. I realize 
that this may not seem all that important, but it 
is.With these expectations set, let’s examine our 
first measure of association, covariance.

Covariance

Covariance is not just our first measure of as-
sociation, it’s the first measure of association. Co-
variance is the start of it all. Aside from one in-
credibly annoying limitation, covariance is the sim-
plest and most fundamental way to understand 
measures of association.
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Covariance is like variance, but for a pair of 
variables. To understand covariance we must take 
a step backwards and discuss variance again. Vari-
ance quantifies differences among scores for a sin-
gle variable (remember that if everyone has the 
same score, variance is zero). If you recall, vari-
ance (in the population form) is defined as the 
mean of the squared mean-deviation scores:

σ2
X = ∑ (X −μX)2

N

Where:
μX is the mean of X.

As long as we’re looking at the variance equation, 
I’ll do a little algebraic manipulation and expand 
the squared part.

σ2
X = ∑ (X −μX)(X −μX)

N

There, same equation, just presented a little differ-
ently. Just to refresh your memory a little more, a 

mean-deviation score is computed as the simple 
difference between a given score and the mean of 
that variable (i.e., X −μX). A positive mean-
deviation score indicates that the score is above 
the mean. A negative mean-deviation score indi-
cates that the score below the mean. And a mean-
deviation score of zero indicates that the score is, 
you guessed it, right at the mean.

To summarize how variance is computed, we 
transform every person’s score into a mean-
deviation score, square these mean-deviation 
scores, and compute the mean of these squared 
values.

Covariance is computed like variance – but for 
a pair of scores for each person. That is, instead of 
multiplying a each person’s mean-deviation score 
on the X  variable with itself (i.e., squaring), we 
multiply each person’s mean-deviation score on X 
by his or her mean-deviation score on Y. To make 
this happen, all we need to do is make a small 
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modification to the variance equation listed above. 
Below is the equation for population covariance.

σXY = ∑ (X −μX)(Y −μY)
N

Where:
σXY is the population covariance of X and Y
μY is the mean of Y.

Below is a dataset demonstrating the calculations 
for covariance.

Person X Y (X-
MeanX)

(Y-
MeanY)

(X-MeanX)* 
(Y-MeanY)

John 12 1.1 -10.5 -1.45 15.225
Sal 23 2.8 0.5 0.25 0.125
Tim 24 2.9 1.5 0.35 0.525
Amy 31 3.4 8.5 0.85 7.225

The last column is the product of the mean-
deviation scores. The mean of it yields the the co-
variance (σXY = 5.775).

Covariance Logic

How does the covariance equation work as a 
measure of association? Consider what we learned 
about bivariate associations: A strong positive as-
sociation is obtained when people with high 
scores on one variable (e.g., X) have high scores 
on another variable (e.g., Y) and when people with 
low scores on X also have low scores on Y. When 
we say high scores and low scores, doesn’t that sound 
like mean-deviation scores? (High or low com-
pared to what? The other scores, with the mean 
being a great representation of the other scores.)

Now, all we need is a way to quantify the de-
gree of consistency of these mean-deviation 
scores. Multiplying the two mean-deviation scores 
for each person results in a product which is only 
maximized when both scores are large numbers 
(either positive or negative). Take the mean of 
those products and you have a pretty sweet meas-
ure of association.
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Let’s talk a little more on how the mean of 
this product works. Consider that half of the the 
mean-deviation scores will be positive and half 
will be negative. If the people with high scores on 
X have high scores on Y, then you’ll have two posi-
tive mean-deviation scores. Compute the product, 
and you have a nice, big, positive number (see 
Amy in previous dataset). Continuing with this ex-
ample, if the people with the low scores on X have 
low scores on Y, then you’ll have two negative 
mean-deviation scores. Take the product, and due 
to the old negative times a negative equals a positive 
property of numbers, and you’ll have another nice, 
big, positive number (see John). The mean of all 
of the big, positive numbers is a big, positive num-
ber, indicating a strong, positive association. 
There’s our index of strength and direction.

To continue to understand the logic of covari-
ance, let’s flip the previous scenario around. Now, 
the people with the high scores on X have the low 
scores on Y (and the converse). Thinking in terms 

of mean-deviation scores, that’s a big, positive 
number multiplied by a big, negative number. 
Which results in a big, negative number. The 
mean of these is a big, negative number, indicating 
a strong, negative association.

And finally, what if there is no pattern? How 
does the covariance equation handle that? Some of 
the people with high scores on X have high scores 
on Y. Others have low scores on Y. Still thinking 
in terms of mean-deviation scores, that’s some 
big, positive numbers multiplied by a big, positive 
numbers, resulting in big, positive products, and 
some other big, positive numbers multiplied by 
some big, negative numbers, resulting in big, nega-
tive products. Take the mean of these products, 
and you get a zero, indicating no association.

That’s the logic of the covariance equation. 
That’s how it quantifies the direction and strength 
of association. This statistic allows us to see how 
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these variables vary together, or co-vary (hence, 
the name covariance).

Totally irrelevant thought: What if the Y vari-
able is just a copy of the X variable? Same scores 
and all. Doesn’t that turn this part of the covari-
ance equation: (X −μX)(Y −μY) into this: 
(X −μX)(X −μX)? A change which takes us back to 
the variance equation. As mentioned, covariance is 
like variance for a pair of variables.

Since there was a population and a sample 
form of the variance equation, you just know that 
there had to be a population and a sample form of 
the covariance equation. So here it is, the sample 
form of the covariance equation.

cXY = ∑ (X −X̄ )(Y −Ȳ )
N −1

Where:
cXY is the covariance of X and Y in a sample of 
data.

There’s really nothing else we need to say about 
this one. Other than the N −1 thing and the use of 
the sample mean instead of the population mean, 
everything else is the same.

Now that we’ve described the mathematical 
basis for covariance, let’s talk about what it does. 
As mentioned a number of times, covariance indi-
cates the strength and direction of the relationship 
between two variables. A covariance of zero indi-
cates no relationship between the variables. A posi-
tive covariance indicates a positive relationship be-
tween the variables, and a negative covariance indi-
cates a negative relationship between the vari-
ables. The only problem with covariance as a meas-
ure of association is that it is difficult to under-
stand just how strong or weak these relationships 
are. For one set of data a covariance of 41.4 might 
be weak, but for a different set of data a covari-
ance of .83 might be very strong. It’s all very an-
noying. This lack of a consistent standard for 
strong and weak relations is the major limitation 
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of covariance, and it is the principle reason why co-
variance is seldom used as an index of the associa-
tion between two variables. (It does have other 
value in terms of summarizing data, but don’t 
worry about that.) Good news though, there is a 
statistic that does indicate the strength and direc-
tion of the relationship between two variables in a 
standardized, easy to interpret fashion. And that 
statistic is the correlation coefficient.

Correlation

Correlation is, like covariance, a measure of as-
sociation between two variables. Unlike covari-
ance, correlation describes the association in a 
way that allows us to easily interpret the strength 
of the association. Correlation is, in essence, stan-
dardized covariance. Correlation is defined as the 
covariance divided by the standard deviations of 
each variable.

ρXY = σXY

σX ⋅ σY

Where:
ρXY is the correlation of X and Y in a popula-
tion.

Below is that sample version of the correlation 
equation.

rXY = cXY

SX ⋅ SY

Where:
rXY is the correlation of X and Y in a sample of 
data. To reiterate, the symbol for sample corre-
lation is r, variable name subscripts optional.

For both equations, the principle is the same: 
Correlation is covariance divided by the standard 
deviations of each variable. What purpose does 
that serve? Dividing by the standard deviations res-
cales the statistic so that the maximum and mini-
mum values are always 1.0 and -1.0, respectively 
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(covariance maximums and minimums were a 
function of the product of the standard deviations; 
different standard deviations mean different maxi-
mums and minimums). Thus, a correlation of .6 
always means the same thing in terms of strength, 
regardless of the standard deviations of the vari-
ables. That’s the big advantage correlations have 
over covariance.

There are many types of correlation equations, 
but we’ll focus on the most popular one, the Pear-
son Product Moment Correlation. If someone says 
that they correlated two variables, with no other 
information, they are talking about the Pearson 
one. If you use one of the weird ones (e.g., phi, tet-
rachoric, Spearman), you mention them by name.

The Pearson correlation summarizes the 
strength and direction of the association between 
two variables in a single number. The correlation 
coefficient ranges from -1 to +1. A positive coeffi-
cient means that the relationship is, you guessed 

it, positive. A negative coefficient indicates a nega-
tive relationship. A -1.0 correlation indicates a per-
fect negative relationship and a +1.0 correlation 
indicates a perfect positive relationship. A 0.0 cor-
relation indicates no relationship between the two 
variables. Thus, the strength of the relationship is 
indicated by how close the number is to +1 OR 
-1. A correlation of -.8 is just as strong as a +.8. I 
hope that it is clear that the sign of the correlation 
is irrelevant to the strength of association. The di-
rection of the relationship is useful information 
worth knowing; it is just different information 
than the strength of the relationship. 
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Consider the following dataset.

Person X (ACT) Y (GPA)

Frank 8 1.3
Kevin 12 1.7
Gianni 17 2.2
Warren 20 2.9
Judy 23 2.5

As you can see in Figure 4, the rank order, al-
though good, is not perfectly consistent. The per-
son with the highest score on X, Judy, has the sec-
ond highest score on Y. The person with the sec-
ond highest score on X, Warren, has the highest 
score on Y. They are out of order. Everyone else 
falls in line (third on X is third on Y, fourth is 
fourth, etc.). 

Clearly the trend is positive, but compare this 
graph to any of the scatterplots of the previous da-
taset (Figure 2). Notice how the points in our new 

scatterplot are not as close to a straight line. 
Weaker association. Computing the correlation 
confirms what we already know, r = .92. Still very 
strong, but weaker than the previous dataset.
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FIGURE 4 New Dataset, Weaker Association
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Time for a new example.

Person X (ACT) Y (GPA)

Rusty 26 2.6
Buck 27 2.7
Jeff 33 4.0
Dale 34 3.5
John 35 2.9
Margaret 36 3.3

Now we see even more exceptions to perfect rank 
ordering (Figure 5). The person with the highest 
score on X, Margaret, has the third highest score 
on Y. The person with the second highest score on 
X, John, has the fourth highest score on Y. More 
exceptions abound, but in spite of them, we can 
still see a general trend: Higher scores on X are as-
sociated with higher scores on Y. 

The line points up, but the points are even fur-
ther from the line than we have seen before. Thus, 

we have a positive association that’s not perfect. 
How strong is it? r = .61. So it’s positive and 
strong, but weaker still than the previous datasets.
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FIGURE 5 Even Newer Dataset, Even Weaker Associa-
tion
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You might be wondering what a zero correla-
tion looks like. Well, wonder no more.

Person X Y

Hunter 8 3
Lonny 8 2
Charles 10 3
Craig 10 2
Danny 12 3
Kendall 12 2

What do we see? No clear trend. High scores on X 
are associated with both high and low scores on Y. 
Low scores on X are associated with both high and 
low scores on Y. The scatterplot is shown in Fig-
ure 6 and looks like a rectangle of scores. I’ll bet 
you didn’t know what a rectangle of scores looked 
like before now. I’ll also bet that you didn’t care to 
know. And you still don’t.

Of course, a six person dataset makes for a 
fairly uninteresting scatterplot when the correla-
tion is zero, but, hopefully, the point is made: 
There is no trend in the data.
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FIGURE 6 Zero Correlation Scatterplot
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When you have a larger dataset, a zero correla-
tion scatterplot resembles a circle (Figure 7). No-
tice how the regression line is perfectly flat. No 
slope at all. This is the land of r = 0.0. A bleak 
and desolate land. Unfit for both man and animal. 
No association of X and Y of any kind.

Finally, how about a negative correlation.

Person X (Hours Worked) Y (GPA)

Nick 7 2.6

Al 5 2.7

Evan 3 4.0

Eddie 3 3.5

Ernie 4 2.9

Kelly 1 3.3

We can see a clear (although not perfect) trend: 
Higher scores on X are associated with lower 
scores on Y. The scatterplot is shown in Figure 8 
and is different from our previous examples.
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FIGURE 7 A Zero Correlation Scatterplot from a Sam-
ple of Conventional Size
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The line of best fit points down, indicating a 
negative association; the points are fairly close to 
the regression line, indicating a strong association. 
So we see a strong, but not perfect, negative asso-
ciation. The actual correlation is r = -.68.

At this point, it’s time to introduce another 
way to illustrate the association between vari-
ables. If you like Venn diagrams, and who doesn’t, 
one is shown in Figure 9. Venn diagrams illustrate 
the relationship between various concepts. When 
applied to correlations, the circles represent the 
variance of each variable. The overlap of the circles 
indicates the degree of association. Greater over-
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FIGURE 9 Venn Diagram Illustrating Relationship be-
tween X and Y

FIGURE 8 Negative Correlation Scatterplot
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lap indicates greater associations. To get technical, 
the percent of the area of Y overlapped by X repre-
sents the squared correlation between the two vari-
ables (i.e., r2

XY). We’ll talk more on squared correla-
tions later, but it’s not like there’s a lot of mystery. 
You have a correlation. You square it. You get r2.

Computing Correlation Coefficients

As mentioned, there are a number of types of 
correlations, but we’ll stick with the ever popular 
Pearson correlation. Since we live in a computer 
age, there is little to be gained by focusing on equa-
tions. Little, but not nothing. There are a few dif-
ferent, but equivalent, versions of the equation for 
the Pearson correlation. We’ve already seen one 
that starts with covariance. Let’s examine the 
most intuitive form of the Pearson correlation 
equation, the average product of z scores. Listed 
below is the population version of it.

ρXY = ∑ (zX ⋅ zY)
N

It’s fairly simple – just compute the product of the 
z scores for each person, compute the mean of 
those products, and you’re done.

To refresh our memory on z scores, the popula-
tion form of the z score equation is listed below.

zX = (X −μX)
σX

And, of course, if we want to compute z scores for 
Y, the equation is be the similar, only with Y sub-
stituted for X at every opportunity.

Just for fun, let’s take these z score equations 
for X and Y and substitute them into the correla-
tion equation from above. Here’s what we obtain 
with those substitutions:

ρXY =
∑ ( (X −μX)

σX
⋅ (Y −μY)

σY
)

N
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It’s still the correlation equation, but it looks famil-
iar. Where have we seen something similar? 
That’s right, take away the standard deviations 
(σX,σY), and it’s the equation for population covari-
ance.

σXY = ∑ (X −μX)(Y −μY)
N

Do you see it in the above two equations? The 
only differences between the correlation (ρXY) and 
covariance (σXY) equations are the standard devia-
tions in the former.

Here’s a thought exercise: What if X and Y 
were standardized? The standard deviations would 
both be 1.0. And since anything divided by 1 
equals itself, the standard deviation parts of the 
correlation equation disappear, leaving us with 
what we see in the covariance equation. (One 
quick lesson from this is that for standardized 
data, covariance equals correlation.)

As mentioned earlier, covariance is computed 
as the average of the products of mean-deviation 
(i.e., X −μX) scores for each person. Correlation is 
computed as the average of the products of the z 
scores for each person. And what’s the difference 
between a z score and a mean-deviation score? A 
division by a standard deviation. I hope that it’s 
clear to you that correlation and covariance are 
very similar statistics. But correlation is better. 
There, I said it.

Those were population versions of the equa-
tions. For reasons that should be obvious by now, 
it will be much more useful if we discuss the corre-
lation equation designed for samples. And here it 
is.

rXY = ∑ (zX ⋅ zY)
N −1

What’s the difference? Well, there’s the symbol 
for correlation. It’s now r instead of ρ. So, there’s 
that. The only other difference is the denominator. 
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It’s N −1 instead of just N. Does this look famil-
iar? It should. This is the variance story all over 
again. When computing the variance of a popula-
tion of data, the denominator is N. When comput-
ing the variance of a sample of data, the denomina-
tor is N −1. It’s the same pattern with the Pearson 
correlation equation: the N denominator for popu-
lations, the N −1 denominator for samples. So, 
when computing z scores for the sample correla-
tion equation (sample z score equation repeated 
below), be sure to use the appropriate N −1 vari-
ance equation. With samples, it’s N −1 denomina-
tors all the way down.

zX = (X −X̄ )
SX

Of course, we let computers do the dirty work for 
us, and they use sample versions of equations for 
everything. But just in case you have to do compu-
tations by hand, you have enough information to 
do it right.

How Correlations Work

Let’s put this all together so that we can really 
understand what makes correlations tick. Correla-
tions are measures of association between two 
variables. When people who have high scores on 
one variable also have high scores on the other 
variable (and vice-versa), you get a strong, posi-
tive correlation. The Pearson correlation equation 
quantifies the relationship by computing the mean 
cross-product of z scores. Interactive 1 demon-
strates this process.
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INTERACTIVE 1 How Correlations Work
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Correlation and Causation

Correlation does not equal causation. It’s im-
portant to remember that a correlation is just a sta-
tistic that describes the association between two 
variables. Why these variables are associated is an-
other matter. Why is an issue of causality. In gen-
eral, our statistics can’t address causality. It is our 
research design that allows us to address causal is-
sues. As but one example, consider the ACT/
College GPA correlation. There is a positive corre-
lation of about .5 between these two variables. 
Does that mean that your performance on the 
ACT causes your college performance (X causes 
Y)? Probably not. Does that mean that your col-
lege performance causes your ACT performance (Y 
causes X)? We can safely rule this out based on 
logic: ACT performance is measured months be-
fore college performance even begins. Statistically, 
the Y causes X inference is as valid as the X causes Y 
inference. It is our research design that allows us 
to rule out Y causing X in this case. So we’ve cov-

ered the causality issue in both directions. There 
is, however, a third possibility. It is possible that a 
third variable, which we’ll call Z , is causing per-
formance on both X and Y – making Z responsible 
for the correlation between X and Y. What is this 
third variable in our ACT-GPA example? Let’s pick 
one: study habits. People with good study habits 
do well on the ACT and do well in college. People 
with poor study habits generally do poorly on 
both. So, it appears that Z is responsible for the 
correlation. No guarantees, but if I was betting per-
son, which I am not, I’d bet on Z. (Just to be com-
plete, there is also a fourth option in which X 
causes Z which causes Y, making X an indirect 
cause of Y. Don’t worry about it, though. The pre-
vious explanation is far more relevant.)

New example: Ice cream sales (X) are corre-
lated .7 with shark attacks (Y) at a certain seaside 
resort. Which seaside resort? That information is 
classified. Is X causing Y? Maybe, if people are eat-
ing a bucket of ice cream and then going swim-
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ming right away. Is it possible that the sharks are 
attracted to the smell of ice cream? Can they even 
smell it? Does the flavor matter? All good ques-
tions, but let’s switch gears. Is Y causing X? That 
is, are the shark attacks causing people to buy ice 
cream? Maybe the survivors of the shark attacks 
like to celebrate cheating death with some mint 
chocolate chip. Statistically, both are equally valid 
explanations – do you see why research design is 
so important? Also, do you see the dangers of a 
blind application of statistics (i.e., devoid of 
logic)? Now is it possible there is some third vari-
able at work here? Yeah, probably.

As you know, a correlation of zero indicates 
that there is no relationship between X and Y. And 
you know that +1 and -1 indicate perfect relation-
ships. But what are industry standards for strong, 
medium, and weak correlations? The classic re-
source on this issue is Cohen (1992). Cohen’s 
standards for correlational strength are as follows: 
small is .10, medium is .30, and large is .50. Natu-

rally, the same rules apply to negative correlations. 
As Cohen stated, .10 is small; it’s far too weak to 
be useful under most circumstances. So consider 
.30 to be the minimum decent value for a correla-
tion.

Significance Testing in Correlation

At the beginning of this book, I mentioned 
that we wouldn’t concern ourselves with signifi-
cance testing. And we won’t. At least, not much. 
Computers do them for us, but it helps to see the 
equation. Before I explain how to conduct a signifi-
cance test for a correlation coefficient, I need to ex-
plain the general concept of significance testing. 
First, we need to review three terms from earlier: 
sample, population, and sampling error. I’m sure 
you recall that we measure samples because it’s in-
convenient or impossible to measure an entire 
population. We analyze data in our sample and 
make inferences from the sample to the popula-
tion (e.g., 55% of the people in our sample watch 
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football on TV; thus, we estimate that 55% of the 
people in the population watch football on TV). 
Unfortunately, measuring a sample instead of the 
entire population leads to problems. The results 
that we find in our samples will not be a perfect 
match to the population statistics. The difference 
between the two is called sampling error, and it is 
the price we pay for laziness.

Given our knowledge of sampling error, it 
should be clear that we should not infer too much 
from our samples. Quick example: let’s say we col-
lect a sample (N = 127) of ACT scores from high 
school athletes. We analyze the data and find that 
soccer players have a mean score of 20.5, and ten-
nis players have a mean score of 20.3 (yes, it’s a 
pointless study). It is obvious that soccer players 
outperformed tennis players in our sample of 127 
students. But should we make an inference to the 
population and say that soccer players score 
higher than tennis players on the ACT? Probably 
not, you say, since the difference between the 

mean scores is so small. Good call. It is a mistake 
to think that a small difference in our sample sta-
tistics indicates that there is a difference between 
the groups in the population. The small difference 
in our sample could be due to sampling error. 
Now what if there was a big difference in the sam-
ple means (let’s say that the soccer players out-
scored the tennis players by 11.5 points)? Does 
this large difference in sample scores allow us to 
conclude that soccer players outscore the tennis 
players in the population? Yes, it is likely that they 
do (assuming certain other things with which we 
will not concerns ourselves at the moment).

Where do significance tests fit in? Significance 
tests (also called inferential statistics) are used to 
analyze the sample characteristics and indicate 
when it is wise (or unwise) to make inferences to 
the population. They tell us if we can conclude 
that a certain characteristic (e.g., a difference be-
tween test scores of girls and boys) actually exists 
in the population. Significance tests are probabil-
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ity analyses, and give an answer like, “There is 
only a three percent chance that a result like the 
one we found in our sample could have been 
found if there truly was no difference in the popu-
lation. Therefore, we conclude that there is a differ-
ence in the population.” (It helps if you read that 
sentence with a deep, authoritative voice.)

So what about significance tests for correla-
tions? It’s the same story except now that we ex-
amine the correlation in our sample (rXY) and use 
it make inferences about the relevant population 
correlation (ρXY). Example: let’s say we collect a 
sample of college students (N = 93) and find that 
time spent playing video games is positively corre-
lated with GPA, r = .07. Sure, it’s a weak correla-
tion, but it’s a positive correlation. It is indisput-
able that in our sample people who spent more 
time playing video games had a higher GPA. Go 
ahead, try and dispute it. Can we then conclude 
that in the population more time spent playing 
video games is associated with higher GPAs? I 

hope you’re shouting, “No, our sample correlation 
is likely influenced by sampling error! The popula-
tion correlation could be zero for all we know! The 
sample correlation is only slightly greater than 
zero!” That’s enough shouting for now. Your in-
stincts are correct. We need to conduct a signifi-
cance test to determine whether our sample corre-
lation is large enough to allow us to conclude that 
the population correlation is not zero.

Now that we have the general significance test-
ing issues out of the way, how does the signifi-
cance test of a correlation work? It’s a t test, and 
all you need to know to perform the test are the 
sample correlation and sample size.

t = r
1 −r2

N −2

Pretty simple. Once you have obtained your t 
value from the sample statistics (we often call this 
the obtained t), use a t table to find the critical t 
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(with N −2 degrees of freedom) and compare the 
two. If the obtained t is greater than the critical t, 
then we say the sample correlation is significant 
(note: the previous term is statistician slang) and 
conclude that the hypothesis is supported. If our 
hypothesis specified a positive direction, then we 
would conclude that the population correlation is 
greater than zero.

Regression Introduction

First off, we need to address this word regres-
sion. Regression analysis is only vaguely related to 
the regular words regression or regress. The name is 
not important. They could have named it with a 
nonsense word like shniffle. Or omegnacruz. Quav-
elcon analysis sounds pretty cool. Names aside, re-
gression is a statistical procedure that describes 
the relationship between two variables (like corre-
lation) and allows us to use this relationship to 
predict a person’s score on Y given their score on 
X (unlike correlation). To reiterate: Correlation is 

a measure of association between two variables, 
whereas regression provides measures of associa-
tion and a method for predicting scores on one 
variable given scores on another. With regression, 
you get the bonus plan.

A few miscellaneous issues. First, regression 
and correlation are so closely related that it’s hard 
to tell which one is derived from which (i.e., 
which came first?). I like to conceptualize it as re-
gression is an extension of correlation – it starts 
with correlation’s function and takes it to a new 
level. That’s how I like to think of it, but it doesn’t 
matter a whit. Next, in this chapter, we won’t ad-
dress the sample versus population form of a statis-
tic anymore. It was fun and all, but we’re done 
with that. We’ll just assume everything is a sam-
ple and present our equations accordingly. And 
you know enough by now that, if you had to gener-
ate a population version of any of these equations, 
you could figure it out without breaking a sweat. 
Finally, a note about terminology. We’ll start with 
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a discussion about something that is often called 
simple regression. The full, proper name for what is 
described in the next few sections is bivariate linear 
regression. Simple regression is a shorter name, and 
it fits well because bivariate linear regression is 
the simplest form of regression. Bivariate means 
two variables (X and Y). Linear means linear (as 
in, the regression line is a straight line). And re-
gression means, well, nothing helpful, as men-
tioned a few paragraphs ago.

Regression Basics

To get the basics down, consider the equation 
in simple, ordinary least squares regression in 
which Y is the dependent variable and X is the in-
dependent variable:

Y′� = bX + a

Where: 
b is the regression coefficient; the slope of the 
regression line; the weight applied to scores 
on X to get the best possible prediction of Y.
a is the y-intercept; a constant needed for scal-
ing purposes.
Y′� is the predicted value of Y; note that this 
isn’t Y (a person’s actual score on Y), but 
rather our prediction for Y for that person.
X is the person’s score on X; substitute a per-
son’s score on X to get their predicted value 
for Y.

An example should help. Let’s say that we know 
that b = 1.3 and a = 8.2. Don’t worry about how 
we obtained these numbers. In this case, 
Y′� = 1.3X + 8.2 (or you could say Y′� = 8.2 + 1.3X). 
For the following dataset, we can compute Y′� for 
each person by inserting each person’s X score 
into the above equation.
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Person X Y’

Hal 5 14.7
Fred 2 10.8
Eddie 6 16.0
Joe 8 18.6
Charles 2 10.8

That’s it in all its glory. Predicting a person’s Y 
score with a regression equation is a simple alge-
braic exercise (this is referred to actuarial or statisti-
cal prediction; in contrast there is clinical prediction 
which is a judgmental method). Note that the 
same X will always result in the same predicted Y 
(see Fred and Charles). Our opinions don’t count. 
Just the equation and the data.

Now let’s say that somehow we know each 
person’s actual score on Y. We can compare these 
actual Y scores to our predicted Y scores.

Person X Y’ Y

Hal 5 14.7 16
Fred 2 10.8 9
Eddie 6 16.0 10
Joe 8 18.6 22
Charles 2 10.8 14

As we can see, our predictions were pretty close 
for some of the people (Hal and Fred) and were 
way off for the others (Eddie, who did a lot worse 
than we predicted, and Joe and Charles, who did a 
lot better than we predicted). The difference be-
tween the actual Y and the predicted Y is called 
the residual, and it shows the amount of error in 
the prediction of Y for each person. Also note that 
Fred and Charles had the same predicted Y but 
had very different scores on actual Y. This Fred/
Charles situation illustrates how the same scores 
on X will always result in the same predicted Y; 
however, their actual scores on Y will likely turn 
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out to be different (unless our prediction is per-
fectly accurate).

Person X Y’ Y (Y – Y’)

Hal 5 14.7 16 1.3
Fred 2 10.8 9 -1.8
Eddie 6 16.0 10 -6.0
Joe 8 18.6 22 3.4
Charles 2 10.8 14 3.2

I hope that it is obvious that we like it best when 
there are no errors of prediction. Such a situation 
would indicate that our predictions were perfectly 
accurate. But that doesn’t happen in real life.

Let’s talk about the accuracy of predictions 
made with regression analysis. Anyone can make 
predictions. We want to make predictions when 
we have a good chance of being accurate. How can 
we know whether these predictions will be accu-
rate? That’s where correlation enters the picture. 

Stronger correlations between X and Y lead to 
more accurate predictions. (In the above dataset, 
r = .65.) A perfect correlation (+1 or -1) would 
give us perfectly accurate predictions (0.0 residu-
als for all people). Of course, perfect correlations 
don’t happen in the real world, but you get the 
idea.

Now seems like a good time to learn whence b 
and a are derived (i.e., where they come from).

b = rXY( SY

SX
)

a = Ȳ −bX̄

That’s it. You only need five very basic statistics to 
generate a regression equation and start predicting 
Y: the means of X and Y, the standard deviations of 
X and Y, and the correlation between X and Y. 
Fairly simple.
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A Regression Thought Experiment

An examination of the equation for b reveals 
something interesting: The most important part of 
b is the correlation between X and Y. The standard 
deviations are just scaling terms. (Consider that if 
the data are transformed to z scores, then SX and 
SY both equal 1.0 and are irrelevant.)

Here’s an interesting thought experiment: 
What happens if rXY = 0? In this scenario, we 
won’t even have to standardize our data. It can be 
raw data. Using the above equations, when 
rXY = 0, b = 0 (because anything multiplied by zero 
is zero). And if b = 0, a = Ȳ −0X̄, which simplifies 
to a = Ȳ. And, thus, the regression equation is 
Y′� = 0X + Ȳ, which simplifies nicely to Y′� = Ȳ. To re-
state: if rXY = 0, then the regression equation is 
Y′� = Ȳ. Thus, predicted Y is the mean of Y for all 
scores on X. It doesn’t matter what your score on 
X is, we predict the mean of Y for you. Why? Be-
cause there is no association between X and Y. 

Thus, why should I care about your X score in my 
prediction of Y? That zero correlation tells us X is 
irrelevant. Earlier, we said that b tells us how 
much to weigh scores on X to get the best possible 
prediction of Y. If rXY = 0, then X doesn’t matter, 
and I should give it no weight in my prediction of 
Y (hence, b = 0 in this scenario).

To the converse, what if rXY = 1.0? To make 
matters easy on ourselves, let’s also make X and Y 
standardized data so that the means are 0.0 and 
the standard deviations are 1.0. Inserting these 
numbers into our equations for b and a yields 
b = 1.0 and a = 0. (Try it, you’ll see.) Thus, our re-
gression equation is Y′� = 1X + 0, which simplifies 
to Y′� = X. With this equation, if X is 2.3, then Y′� is 
2.3. And if X is -1.9, then Y′� is -1.9. Predicted Y is 
exactly as high or low as X.

Conclusions from our little thought exercises: 
The relationship between X and Y strongly deter-
mines the types of predicted Y scores generated 
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from a regression equation. If rXY = 0, then all pre-
dicted Y values are the same, regardless of the 
score on X. If rXY is weak, then all predicted Y val-
ues are close to mean, even for people with ex-
tremely high or low scores on X. If rXY is strong, 
then people with extremely high or low scores on 
X will have very high or low predicted Y values.

The Regression Line

Remember that line of best fit in the correla-
tion graph? It was also called the regression line. 
It graphically represents Y′� values for all scores on 
X. You can draw the line by plugging all possible 
values of X into the regression equation, obtaining 
Y′� for each X, and graphing each of the X, Y′� 
points. Or you could just draw the line using the 
regression coefficient b as the slope and the a as 
the y-intercept. Our most recent dataset is 
graphed in Figure 10, and it includes the regres-
sion line. Note that the error of prediction (or re-
sidual) is indicated graphically by the vertical dis-

tance between each point and the regression line. 
Bigger distances mean worse prediction (more er-
ror). Let’s examine Joe’s data. Joe has a score of 8 
on X. His predicted Y is 18.6. His actual Y is 22. 
Thus, his error of prediction is +3.4. That is, he 
performed 3.4 points better than we predicted. By 

Joe’s Actual Scores

Predicted Y for Joe

Error of Prediction

FIGURE 10 Actual Y, Predicted Y, and Errors of Predic-
tion (e)
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comparison, Hal has a much smaller error of pre-
diction (1.3). Someone with scores located right 
on the regression line would have an error of pre-
diction of zero. The old rule from correlation-land 
is relevant again: Stronger associations (which 
lead to more accurate predictions) are those with 
points closer to a straight line. Correlation and re-
gression, two sides of the same coin. Or maybe 
they are the same side of the same coin.

A quick note on interpreting the regression co-
efficient. The regression coefficient, b, tells us 
something useful, and unique, about the relation-
ship between X and Y. For simple regression, b in-
dicates the expected change in Y given a one point 
change in X. Here’s an example. Let’s say we con-
duct an experiment where we assign people to 
varying levels of study time and then measure 
their test performance. We regress test scores (Y) 
on study time (X, measured in hours) and obtain 
the regression equation Y′� = 22X + 11.5. In this 
equation, b is 22. Using our interpretive rule, for 

every one hour increase in study time, we expect 
to see a 22 point increase in test scores. We may 
find this information to be very useful in evaluat-
ing the relationship between study time and test 
performance. Also, the effects of b are cumulative; 
a three hour increase in study time will be ex-
pected to lead to a 66 point increase in test per-
formance. Nice.

So the regression coefficient can be a useful in-
dicator of the strength of the association between 
two variables. Just like correlations. Sometimes a 
regression coefficient can be every bit as useful (ar-
guably more so) than a correlation. When is that? 
It all depends on whether the dependent variable 
is expressed in a meaningful metric. What kind of 
metrics of measurement are meaningful? Any-
thing that has real world relevance, such as time 
(e.g., to complete a task), number of something 
(e.g., mistakes), dollar value (e.g., of items sold), 
and so on (e.g., and such and forth). Let’s say that 
the dependent variable is expressed in dollars. If 
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the regression coefficient is 50, then for every one 
point change in X, we expect Y to increase by $50. 
Based on the nature of the experiment, it will be 
easy to interpret whether $50 is a meaningful 
change (and thus, a strong relationship) or a triv-
ial one.

As long as we’re discussing strength of associa-
tion, remember how we mentioned in our discus-
sion of correlation that we shouldn’t use the slope 
of the line on the scatterplot as an indicator of the 
strength of the association? Mostly because the x- 
and y-axes can be easily manipulated to produce 
the appearance of a strong slope. Remember that? 
Well, here’s the thing. Even though it’s unwise to 
use apparent slope of the regression line on the 
scatterplot as an indicator of the strength of asso-
ciation, it is fine to use the regression coefficient 
as an indicator of the strength of association. How 
is that OK, you’re thinking? I once had a percep-
tive student ask me this very question. Well, we 
know why a visual inspection of the slope of the 

line on the scatterplot is a bad idea. But wait, 
didn’t we just learn that the regression coefficient 
is the slope of the regression line? How then is 
the regression coefficient useful? The answer is 
that it’s not as easy to manipulate the regression 
coefficient. You can’t just change the scale on the 
axis of some graph and get the desired effect. You 
would have to change the scale of the data itself 
(e.g., multiply all of the scores on the dependent 
variable by 10). Such a change would be obvious. 
In short, if one wants to produce the appearance 
of a strong relationship, it’s more difficult to ma-
nipulate the regression coefficient than it is to ma-
nipulate the apparent slope of the regression line 
on the scatterplot. The former is a number. The lat-
ter is a visual representation of that number.

To show how a regression has a real-world use-
fulness, let’s pretend that we are in charge of ad-
missions of a certain college. We’ll call it Enor-
mous State University (or ESU). At ESU we are 
considering using the ACT for freshman admis-
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sions. Somebody somewhere (maybe at arch-rival 
Enormous Tech) did a study and found a .5 correla-
tion between ACT scores and college GPA. Based 
on that correlation, we decide to use the ACT at 
ESU. Naturally, we also need the means and stan-
dard deviations of X and Y to set up our regression 
equation. Once we get these data, we obtain a re-
gression equation of Y′� = .1X + .5. For every high 
school student that applies, we plug his or her 
ACT score into our equation, which generates a 
predicted Y for each person. If the predicted Y is 
high enough (say, greater than 2.0), then we ad-
mit the student. If not, then we send him the 
other letter.

Significance Testing in Regression

Significance testing just won’t go away. Signifi-
cance testing in regression is very similar to signifi-
cance testing in correlation, with a twist. First off, 
the rXY we obtain from a regression analysis is the 
same as the rXY we obtain from a correlation analy-

sis (except that it can’t be negative). That much 
should be clear by now. Technically speaking, re-
gression gives us r2

XY (yes, it’s just the correlation 
squared), but rXY is just a square root button on 
the calculator away. As these correlations are the 
same magnitude, it should not be a surprise that 
the outcomes of the significance tests are the 
same. Again, with a twist.

In regression, the significance test we conduct 
is actually a test of r2. The equation is as follows.

F = r2
XY /k

(1 −r2
XY)/(N −k −1)

Where:
r2
XY is the squared correlation between X and Y.

k is the number of independent variables.
N is the sample size.

Because this is simple regression, there is only 
one independent variable, meaning k = 1. This test 
is an F test with k, N −k −1 degrees of freedom. 
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Here’s the cool part: The F test of r2 is identical to 
the standard t test of r as long as the t test is a 
two-tailed test. Don’t forget that last part: These 
two significance tests yield the same result if the t 
test is a two-tailed test. (Note: There is no tailed-
ness to an F test. A clue to this can be found by no-
ticing that, quite obviously, r2 cannot be negative – 
a positive relationship between X and Y and a nega-
tive relationship between X and Y of the same mag-
nitude will result in the same r2.)

So that was pretty easy. There are other signifi-
cance tests in regression analysis, but we won’t 
worry about them. For a more thorough treatment 
of this topic, consult my book, Fundamentals of Cor-
relation and Regression.

Understanding Strength of Association in Regres-
sion

In this chapter, we’ve mentioned three ways to 
assess the strength of association in regression 
analysis: r, r2, and b. All three have their own sig-
nificance tests. But strength of association isn’t sig-
nificance testing. In using these statistics to under-
stand strength of association, all three statistics 
have their merits. All have weaknesses in this area 
as well.

As mentioned earlier in the chapter, Cohen’s 
(1992) standards provide useful guidelines for as-
sessing the strength of a regular (i.e., un-squared) 
correlation. We also have discussed the use of the 
regression coefficient as an index of the strength 
of association (earlier in this chapter). The regres-
sion coefficient is very useful, arguably more use-
ful than a correlation, if the dependent variable is 
in a meaningful metric, such as time, money, num-
ber of accidents. As discussed earlier, the regres-
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sion coefficient can be interpreted as follows: For 
every one point change in scores on X, we expect 
score on Y to change by b points. For example, the 
equation Y′� = 35X + 130 tells us that for every one 
point change on X, we expect scores on Y to in-
crease by 35 points. If Y, the dependent variable, 
refers to days spent working, then this b of 35 has 
real meaning. We expect someone who scores a 10 
on the test to work 35 days longer than someone 
with a score of 9.

Finally, let’s discuss the use of r2 as an index 
of the strength of association. No doubt about it, 
r2 has a cool name: coefficient of determination. 
And it has an impressive definition: r2 indicates 
the percent of variance in Y explained or ac-
counted for by X. So if X and Y are correlated .5, 
then r2 is .25. This r2 means that 25% of the vari-
ance in Y is explained by scores on X. Fans of sim-
ple math will note that this also means that 75% 
of the variance is not explained by X. Our .5 corre-
lation (which Cohen describes as “strong”) 

doesn’t sound so strong anymore. Them’s the 
breaks when you square numbers between 0 and 
1. They get smaller.

It appears that we have a conundrum. A .5 cor-
relation is strong, so says Cohen. But a .5 correla-
tion fails to explain 75% of the variance in Y, so 
says r2. A relationship can’t be strong and weak at 
the same time. What’s going on? The answer is 
hiding in plain sight. The definition of r2 states 
that r2 indicates “the percent of variance in Y ac-
counted for by X.” The word variance is where the 
problem occurs. As we learned in some previous 
chapter, variance is in squared units (e.g., squared 
ACT points). Thus, if ACT scores are correlated .5 
with GPA, the r2 method of assessing relationship 
strength is saying that “differences among squared 
ACT points explain 25% of the differences in 
squared GPA points.” This is not at all helpful. 
What we want is a way to understand how two 
variables are related to each other while retaining 
the regular metric of measurement (i.e., un-
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squared points). Brogden (1946) demonstrated 
that the regular, un-squared correlation is linearly 
related to how well one variable predicts another. 
Using our example, a variable correlated .5 withY 
predicts Y half as well as a variable perfectly corre-
lated with Y. A variable with a .4 correlation is 
40% as efficient at predicting Y as is a variable 
with a 1.0 correlation. And so on.

Before I take any criticism from the gallery for 
my disdain for r2 as an index of the strength of as-
sociation between X and Y, let me say the follow-
ing. I understand that predictive efficiency isn’t 
relevant to every discussion regarding strength of 
association. However, when predictive efficiency is 
relevant, “percent of variance accounted for” is 
wholly inappropriate for understanding the 
strength of association. That said, even for regres-
sion analyses not focused on prediction (i.e., 
causal research), interpreting r, instead of r2, is 
still the better way to understand strength of rela-
tionship. A correlation of .5 is 50% as strong as a 

perfect relationship. An interpretation of r2 would 
lead you to believe that it is only 25% as strong be-
cause X only accounts for 25% of the variance Y.

Conclusion: r2 may have a cool name and a 
definition that sounds useful, but it is not the best 
way to understand how well two variables are re-
lated to each other. Stick to statistics that remain 
in the original metric of measurement: r and b.

Regression Analysis Summary

Regression analysis extends the concept of cor-
relation and applies it in new ways. A correlation 
coefficient simply describes the relationship be-
tween two variables. Like correlation, regression 
analysis describes the relationship between two 
variables. This description can be done with any of 
three different measures of association: r, r2, and 
b. Unlike correlation, regression analysis can be 
used to predict scores on the dependent variable 
based on scores on the independent variable. 
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These predictions are made based on the associa-
tion between X and Y (and the means and stan-
dard deviations of both variables), and the accu-
racy of these predictions depends on the strength 
of the association between X and Y.

Multiple Regression Introduction

I know this chapter seems like it will never 
end, but we’re almost done. The correlation and re-
gression topics we just learned all involved two 
variables: X and Y. What is the relationship be-
tween this one independent variable and this one 
dependent variable? Many interesting research 
questions can be explored using just one X vari-
able and one Y variable. But why stop there? Why 
not use, oh I don’t know, two independent vari-
ables? (Note: We’ll always have just one depend-
ent variable.) Maybe we would find a stronger rela-
tionship if we used two independent variables. 
Well, we can do that. And why stop at two? Why 
not use three? No problem. Or four? Can do. Or 

five? Slow down. Let’s just use two independent 
variables for now.

Multiple Regression Basics

Just for fun, let’s take a stroll down memory 
lane and examine the simple, bivariate linear re-
gression equation.

Y′� = a + bX

How do we turn this into a multiple regression 
equation, capable of using scores on two independ-
ent variables to predict Y? We’ll just have to add a 
second X to the equation. And, of course, this new 
variable will need it’s own regression weight.

Y′� = a + b1X1 + b2X2

Just like simple regression, there is just a single y-
intercept. So no change there. What is different is 
that each independent variable gets its own regres-
sion coefficient, which we will call a partial regres-
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sion coefficient. These partial regression coeffi-
cients weigh each predictor. Bigger partial regres-
sion coefficients mean greater weights.

Let’s explore a multiple regression equation 
with a data example. A regression of Y on X1 and 
X2 results in the following equation: 
Y′� = −6 + 6.1X1 + 2.5X2. As you can see from this 
equation, the coefficients are -6 for a, 6.1 for b1, 
and 2.5 for b2. Listed below are the scores on X1 
and X2 for this sample. (I have scores on Y too, but 
I’ll keep those hidden.) When we apply these pre-
dictor scores to the regression equation, we com-
pute predicted Y scores for each person.

Person X1 X2 Yʹ
John 7 10 61.7
Molly 9 10 73.9
Neil 9 20 98.9
Chris 5 16 64.5
Jordan 6 11 58.1

Thus, computing Y′� for each person in multiple re-
gression is just a simple algebraic exercise. It’s not 
much more complicated for equations with more 
than two predictors. Just a little more algebra. 
Five predictors? No problem. Just a regression 
equation with an a and five partial regression coef-
ficients. Plug in scores on the five variables and 
solve. No surprises.

We need an index of the strength of the rela-
tionship in multiple regression. Some sort of a 
multiple correlation. That sounds like a good 
name. The symbol for multiple correlation is R 
(capital R instead of lower case r from bivariate 
correlation days). R is just like r except that it 
ranges from 0 to 1. No negative values. It’s impor-
tant to understand subscripts in the multiple corre-
lation coefficient. For our example, the multiple 
correlation symbol is RYX1X2

. For multiple correla-
tions, always list the dependent variable (i.e., Y) 
first, followed by the independent variables. Some-
times people put a dot between the two, but 
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there’s no reason to do that. Finally, double sub-
scripting can get a little tedious, so it’s not un-
usual to write the previous multiple correlation as 
RY12. In the case of our current dataset, RYX1X2

 is 
.78. How did I know it was .78? I let the computer 
figure it out.

Linearity

No chapter on correlation and regression 
would be complete without a discussion of the 
most important assumption of these analyses, line-
arity. As your patience with this chapter is wearing 
thin, I’ll keep it brief. As before, you can find a 
more detailed discussion of correlation and regres-
sion assumptions in my book, Fundamentals of Corre-
lation and Regression.

It should come as no surprise that something 
called simple linear regression has, as does correla-
tion, an assumption of linearity. Linearity means 
that the rate of increase (or decrease) for scores 

on Y remains the same across the range of scores 
on X. Another way of stating linearity is that the 
best fitting trend line is a straight line. Yet another 
way of stating the linearity assumption is that the 
most accurate summary of the observed relation-
ship between X and Y is also the simplest: Higher 
scores on X are associated with higher scores on Y 
(or lower, if it’s a negative relationship). Contrast 
that statement with the following: Higher scores 
on X are associated with higher scores on Y until a 
certain point at which scores on Y no longer in-
crease. That statement is considerably more com-
plicated, both mathematically and grammatically.

So linear regression has an assumption of line-
arity. What happens if this assumption is violated? 
If the linearity assumption is violated, a linear re-
gression will underestimate r2 (and r and b), and 
the regression equation will not accurately model 
the relationship between X and Y. Consider the fol-
lowing dataset and its scatterplot (Figure 11).
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Person X Y

Gretchen 18 59
Steven 17 42
Jane 20 79
Mike 21 70
Brandon 23 32
Wendy 22 66
Pete 19 74

This relationship can be described as follows: Low 
scores on X are associated with low scores on Y, 
medium scores on X are associated high scores on 
Y, and high scores on X are associated with low 
scores on Y (note the complexity of this sum-
mary). Figure 11 shows a strong relationship be-
tween X and Y – that relationship just happens to 
be something other than a linear relationship.

As mentioned, a linear regression underesti-
mates the strength of the relationship when the 
linearity assumption is violated. Back at the begin-

ning of the chapter, we stated that for a scatter-
plot, the strength of the relationship is demon-
strated by how close the points are to the regres-
sion line. Well, let’s apply that principle to Figure 
11. No matter where you draw a straight line on 
it, at least half of the points will have a large verti-
cal distance between those points and the line. In 

86

FIGURE 11 Nonlinear Trend Scatterplot
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this case, a linear regression of Y on X results in 
an r2 of .008 (r = .09). Thus, a linear regression of 
these data indicates an extremely weak relation-
ship between X and Y when there is in fact a 
strong relationship between X and Y.

In closing, a linear model does not properly de-
scribe a non-linear relationship. That’s the bad 
news. The good news is that there is a way to con-
duct a regression analysis that doesn’t require a 
linearity assumption. The even better news (for 
you) is that non-linear regression analysis is far be-
yond the scope of this book.

Closing Thoughts on Regression

At the beginning of this chapter, we men-
tioned that correlation and regression have much 
in common. They both express the relationship be-
tween two variables through various indices of as-
sociation (r for correlation, r2 and b for regres-
sion). Given the same data, their significance tests 

produce the same result (the F test of R2 yields 
the same result as the two-tailed t test of r). Be-
yond these similarities, regression analysis offers a 
regression equation, which we can use to predict 
scores on Y given scores on X. In multiple regres-
sion, the regression equation shows the unique re-
lationship between each independent variable and 
Y.

There is one other difference between correla-
tion and regression, and it’s more of a theoretical 
difference. Correlation describes how well two 
variables are related and nothing else. Regression 
treats the dependent variable as something to ex-
plained. To be specific, regression analysis breaks 
the dependent variable into two parts: a part re-
lated to X (or the various independent variables) 
and a part unrelated to X. Going back to our Venn 
diagram (Figure 9), the part of Y overlapped by X 
(i.e., the yellow part) is the part of Y explained by 
X; the part of Y not covered by X (i.e., the white 
part) is the part not explained by X.

87

figure:4082363F-A23F-4E4F-AE54-1247CC71974D
figure:4082363F-A23F-4E4F-AE54-1247CC71974D


All very obvious, you say. Let’s add a bit more 
to this. Remember the residual (Y −Y′�)? It reflects 
the error of prediction. The residual quantifies, for 
each person, the lack of relationship X has with Y. 
How do we know this? Well, if X was perfectly re-
lated to Y, then the residual scores would be zero 
for each person – the predicted Y (i.e., Y′�) would 
be a perfect match to the actual Y. So there’s the 
unrelated part. What about the related part? 
That’s just predicted Y (i.e., Y′�). How do we know 
this? For the same reason – if X and Y are perfectly 
related to each other, then all scores on Y′� would 
be a perfect match to Y (once again, giving us re-
sidual scores of zero for all people in the dataset). 
Moreover, predicted Y comes from the regression 
equation (Y′� = bX + a), which is the equation used 
to weight scores on X to obtain the best possible 
prediction of Y.

Let’s write it out. In regression analysis, 
scores on Y are divided into a part related to X (Y′�) 

and a part unrelated to X (Y −Y′�). In equation 
form, it looks like this:

Y = Y′� + (Y −Y′�)

There, that’s really the end of the chapter. 
Sorry it was so long.
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4 It may not look like much, 
but it has it where it counts.

Classical Test Theory



Introduction

To determine if we have a good measurement 
device, we need a definition of good. There are a 
number of definitions of good measurement. Clas-
sical Test Theory, Generalizability Theory, and 
Item Response Theory are all theories of measure-
ment that define good measurement in slightly dif-
ferent ways. This chapter covers Classical Test The-
ory. I’d like to talk about the other two, but the ti-
tle of the chapter won’t allow me to do it.

Measurement Errors

Before we talk about specific theories of meas-
urement, we need to have a serious discussion 
about error. There are many kinds of errors, guess-
ing, cheating, and accidentally writing down the 
wrong answer when you know the right answer, to 
name a few. Errors include all situations in which 
someone earns undeserved points or fails to earn 
points that they do deserve. Thus, being good at 

taking multiple choice tests (called test wiseness) 
is an error of measurement because the test taker 
will get more points than he deserves. Being a lit-
tle sick on the day of the test is an error of meas-
urement because presumably the test taker will un-
derperform and fail to earn points that she de-
serves. Poorly written test items are another 
source of error because they cause confusion 
among test takers. This confusion causes different 
test takers to interpret the same question in differ-
ent ways, and thus fail to respond in the way the 
test giver intended. You can think of these errors 
of measurement in two ways: temporary (e.g., 
guessing, accidentally writing down the wrong an-
swer when one knows the right one) or repeatable 
(e.g., test wiseness, poorly written items).
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Measurement Theories

Theories of measurement explain: (a) how 
people obtain the scores that they receive on a test 
and (b) help us evaluate the quality of this meas-
urement. We’ll address the first issue first. You 
can think of it in two ways: Why do different peo-
ple obtain different scores on a test? Or: Why does 
the same person receive different scores when he 
takes the same test multiple times?

Classical Test Theory

Classical Test Theory (CTT) is the oldest the-
ory of measurement; its development dates to the 
work of Charles Spearman in his 1904 paper. The 
philosophy of CTT is that a test score can be un-
derstood as being composed of a stable compo-
nent and a random component. That’s it. That’s 
the whole theory. Of course, the implications of 
this simple model are numerous.

So a test score is composed of a stable compo-
nent and a random component. As you might 
guess, the stable part stays the same every time a 
given person takes the test, whereas the random 
part doesn’t. The test score is called observed 
score and is given the symbol X. The stable compo-
nent is called true score (with symbol T), and the 
random component is called error (with symbol 
e). For reasons that will be discussed later, both 
the term true score and error are unfortunate names 
in that they suggest too much; always remember 
them as describing a stable component and a ran-
dom component.

Using these symbols, we can specify the CTT 
model for a test score in equation form.

Xit = Ti + eit

That’s not so bad. The subscripts in the equation 
are for a given person (i) at a given time (t). So, 
Xit, the observed score, is just the score that a per-
son gets on the test. If the test is the ACT and per-
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son i gets a 22 at time t, then Xit for that person at 
that time is 22. That’s the observed score. Con-
tinuing with the model, we see that a given per-
son’s observed score at a given time (Xit) is a func-
tion of his or her true score (Ti) and his or her er-
ror score at that time (eit). Right away we note 
that observed scores and error scores are specific 
to a given time, meaning that they change over 
time, whereas true scores are not. So for a given 
person, the true score is a constant; the reason 
that the observed score changes over time is be-
cause the error score changes over repeated meas-
urements. Stated another way, the reason that a 
given person gets two different observed scores 
when measured at two different times is because 
of the error score in the CTT model. Had the error 
score been zero each time (or even the same score 
each time), this person would have received the 
same observed score both times. Of course, the 
reason why two different people get two different 
observed scores is because, well, they are different 

people (the i subscript) who have different true 
scores (the error scores are probably different as 
well).

Just to make sure we have it stated clearly, 
here again are the two fundamental tenets of CTT:

1. The true score (T) for a given person is con-
stant across measurements.
2. The e score is random.

Now for an example.

Person X T e

Holly 15 16 -1
John 16 14 2
Hans 6 6 0

Consider the case of Holly. Holly gets a score of 15 
on a multiple choice vocabulary test; her observed 
score is 15. Holly knew the answer to another 
question, but accidentally circled “C” when she 
meant to circle “B”. That’s an error of measure-
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ment. A random error, to be specific. According to 
CTT (Xit = Ti + eit), we could describe her score as 
15 = 16 + -1. That’s a true score of 16 and an er-
ror score of -1. Now John takes the same test and 
scores a 16. But John guessed correctly on two 
questions he really didn’t know. His observed 
score of 16 breaks down to a true score of 14 and 
an error score of +2. It should be clear by now 
that errors can raise or lower a person’s observed 
score. The final case is Hans. Hans scores a 6 on 
the test. He never guessed correctly and he never 
missed any questions that he actually knew. His 
score of 6 breaks down into a true score of 6 and 
an error score of 0. So the final point is that the ob-
served score equals the true score when there are 
no random errors of measurement.

Finer Points of CTT

CTT is simple so far, but we have to gum it up 
with a few details. As mentioned, e is defined to 
be a random component. Because we are not try-
ing to measure randomness, any random compo-
nent of a test score must be considered an error of 
measurement. Thus, e refers to random error. A 
better name for the e term would be random error 
(and we could use re as the symbol). But that ship 
has sailed. It’s too late for renaming the parts of 
the CTT model. Back to e. There are plenty of 
sources of random errors (e.g., guessing, acciden-
tally marking the wrong answer on the answer 
sheet), but there are plenty of non-random errors 
as well. More on those later.

On to true scores. First off, true score is a terri-
ble name. The name implies that it represents 
“the truth” about the person. As in the person’s 
true standing on the construct. Nothing could be 
further from the truth. The true score is defined as 
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the part of the observed score that is not e (liter-
ally, Tit = Xi −eit), meaning that the true score is 
the part of the observed score that is not random 
error. To restate, the true score is just what is left 
after removing e, (random error) from the ob-
served score. The definition of true score is one of 
those, “here’s what it’s not” definitions. As in, 
“Clouds are the part of the sky that are not blue.” 
These definitions do not really tell us what some-
thing is, just what it is not. So we’ll have to figure 
out what true scores are ourselves.

We can solve the mystery that is the true 
score by identifying every factor that influences a 
test score. There’s construct standing. We like 
that. That’s what we’re trying to measure. Too bad 
that’s not the only part. There’s random error. Not 
a big fan of that. The only other thing left is some 
kind of error that is non-random (or systematic) 
error. These are errors that occur in the same way 
over time. We could write this out as follows:

Test Score = Construct Standing + Systematic 
Error + Random Error

Here’s the bad news. The CTT model is 
Xit = Ti + eit. And because CTT defines e to be a ran-
dom variable, e can only include random errors. 
Guess where the non-random errors go? There’s 
only one other spot, and it’s T. Thus, true scores 
include standing on the construct and non-random 
(or systematic) errors. That is the major limitation 
(or weakness) of CTT.

To summarize, CTT says a person’s test score 
(X) is the sum of a random error component (e) 
and a component that is not random error (T), 
which includes other types of errors. This appears 
to be a serious flaw. The good news is that even 
though the CTT model seems almost absurdly sim-
plistic, it is also very useful.

A further discussion of e, which CTT assumes 
is a random variable, is in order. What is a random 
variable? A random variable does not have a sys-
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tematic relationship with any other variable (or 
even with itself) over multiple measurements (i.e., 
scores on a random variable measured twice will 
not correlate). A good example is the roll of a die. 
All six values are equally likely to occur. Moreover, 
there is no relationship between the person rolling 
the die and the score they obtain. In fact, the score 
on the die is unrelated to anything. But over time 
the high scores should offset the low scores, result-
ing in a predictable mean score of 3.5 
(1+2+3+4+5+6 divided by 6 = 3.5). The ran-
dom error component of CTT behaves in the same 
manner. The positive errors (like guessing cor-
rectly) should cancel out the negative errors (like 
writing down the wrong answer to a question that 
you actually knew) resulting in an average error 
score of zero. Thus, if the same person were to 
take the same test repeatedly (say 100 times) with 
no memory of the previous times (just go with me 
on this one), the error scores should cancel out 
and the average of the observed scores equals the 

true score. (Remember, the true score stays the 
same. The observed score only changes because 
the error part is changing randomly.)

Problems with CTT

The problems with CTT concern its two basic 
principles: true scores are constant over time for a 
given person and e is a random variable. As to the 
first, very few constructs remain perfectly constant 
over time for a given person. Some constructs can 
change rather quickly (for example, mood), 
whereas others change slowly (e.g., adult intelli-
gence). Let’s take a simple one: weight. Does the 
weight of an adult human stay perfectly constant 
over the span of a year? A month? A week? A day? 
Of course not. A person will not likely weigh the 
same from one year to the next, and the difference 
is not due to any random factor. There is a real 
change in the person’s standing on the construct. 
Are there problems with the fact that this assump-
tion is not supported? The answer is “not much” 
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as long as: (a) the construct does not change rap-
idly and (b) the time between measurements is 
not long. Even small problems are still problems, 
though. Changes in the standing on the construct 
will change the observed score, which may make it 
appear that the test is not working well (more on 
this later).

The second tenet of CTT, that e is a random 
variable, is a far greater problem. As we discussed 
earlier, errors can be grouped into two broad cate-
gories: those likely to recur over time (non-
random, like test-wiseness) and those that are one 
time events (random, like guessing). The fact that 
e includes only random errors means that the non-
random (or systematic) errors must be assigned to 
the only other term in the equation: T (the true 
score). Thus, a person’s true score contains sys-
tematic error. Thus, a person’s true score in CTT 
does not simply indicate his or her standing on 
the construct, it also contains his or her net stand-
ing on the construct and the collection of system-

atic errors. In summary, don’t think of true score 
as meaning “the truth,” or a person’s score free 
from errors of measurement. It is nothing more 
than a person’s score free from random errors of 
measurement (as mentioned above, Ti = Xit −eit).

Reliability

Now we get to a new major issue: reliability. 
Reliability (symbolized as rXX ) can be thought of 
as consistency. If you want it defined in three 
words, it’s consistency of scores. To illustrate, con-
sider the example of the scale measuring weight. 
The scale is a test (measurement device). Obvi-
ously, the scale is different from the tests that we 
traditionally use in psychology, but all of the prin-
ciples are the same. Now what if you get on the 
scale and it says you weigh 160 pounds. Then you 
get off for a second and get back on again and it 
says 160 pounds again. So far, everything appears 
normal – the scale has given you the same score 
both times you stepped on it and clearly your 
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weight did not change between the two measure-
ments. That’s consistent scoring. If a test gave a 
bunch of inconsistent scores (imagine stepping on 
the scale and getting weights of 160, 76, 123, 
452), then you would say, “What’s wrong with 
this scale?” Inconsistent scores (when they should 
be consistent) are the result of random error. If 
you want to see an equation for computing reliabil-
ity, first let’s remember that in CTT the observed 
score equals the true score plus random error (
Xit = Ti + eit). For unimportant reasons, that equa-
tion can be written in terms of variance in which 
the variance of the observed scores equals the vari-
ance of the true scores plus the variance of the er-
ror scores: S2

X = S2
T + S2

e . This equation can be 
stated as: Across a group of people, differences in 
observed scores (i.e., variance) is the sum of differ-
ences in true scores plus differences in e scores. Be-
cause e is a random variable, more e in people’s 
scores means more e variance. Using this variance 
version, CTT models reliability as:

rXX = S2
T

S2
X

Thus, CTT defines reliability as the ratio of true 
score variance to observed score variance. When 
all scores are measured without random error, the 
e term in X = T + e becomes zero (X = T + 0), and 
thus, the variance of e will be zero (S2

X = S2
T + 0) – 

which makes the true score variance equal the ob-
served score variance. In such a case, the reliabil-
ity is 1.0. Not sure? Let’s say the observed vari-
ance is 10 units. If there are no random errors of 
measurement, then X = T + 0 for everyone, and 
S2

X = S2
T + 0 (10 = 10 + 0). When you plug it into 

the equation above, rXX = 10/10, which is 1.0. In 
summary, when you measure something without 
any random errors of measurement, rXX = 1.0.

What about the opposite case, what if all you 
measure are random errors (think back to our die 
rolling test)? In such a case, X = T + e would mean 
that whatever T is, it is the same for everyone. 
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And if everyone has the same T, then the variance 
of T is zero. Thus, all of the variance in X is due to 
variance in e. Plug this into the reliability equation 
and you find that rXX = 0. So, CTT reliability tells 
us how much random error we are measuring. Or, 
to be more accurate, how much random error we 
are not measuring. I like to think of reliability as 
describing freedom from random error. This can 
be illustrated with a simple rewrite of our reliabil-
ity equation. 

rXX = 1 −S2
e

S2
X

You can interpret this as follows. The reliability co-
efficient tells you the percent of observed score 
variance that is not random error. See, more ran-
dom error will lead to a lower reliability coefficient 
and less random error will lead to a high reliability 
coefficient.

Now let’s talk about the symbol for reliability: 
rXX. Notice how we’re using the correlation sym-

bol r, but we are subscripting the same variable 
twice. It’s almost as if we’re saying that reliability 
is the correlation between variable X and variable 
X. In the next chapter, you’ll see that we’ll be do-
ing just that.

Finally, recall that we defined the reliability co-
efficient as indicating a test’s freedom from ran-
dom error. Why couldn’t we make our definition 
shorter and simply say that reliability is freedom 
from error (as in all errors, both random and sys-
tematic)? The answer goes back to the second prin-
ciple of CTT. Namely, that the e term is a random 
variable. As we discussed, there are many non-
random errors, and they become part of the true 
score (T). What does all of this mean to us? It 
means that reliability doesn’t really tell us as 
much as we want. This is the major limitation of 
CTT. We may want an index of how much error 
(of all types) is involved in our test, but we aren’t 
going to get it. The best that CTT has to offer is a 
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coefficient telling us how much random error is 
measured by our test.

One last detail. There is another statistic 
called the reliability index. The reliability index is 
computed as the square root of the reliability coef-
ficient. The reliability index is almost never men-
tioned, but in case you see it, realize that it is not 
the same as the reliability coefficient (although it 
is very easy to transform one to the other).

A Reliable Test Is Not Necessarily a Good Test

I hope that it is clear by now that an unreli-
able test is bad. It measures nothing but random 
error. But is the converse true? Is a reliable test a 
good test? The answer is a solid maybe. To ex-
plain, let’s substitute the word valid for good. Is a 
reliable test a valid test? Maybe. In Chapter 10 
we’ll learn that validity means that we have evi-
dence to support the interpretations we draw from 
test scores. What are these interpretations? If the 

test measures schizophrenia and someone has a 
high score, the interpretation would be that the 
person is suffering from schizophrenia. If the test 
is the ACT and someone has a low score, the inter-
pretation would be that this person will not suc-
ceed in college. Thus, there are many possible in-
terpretations that we can draw from test scores. 
We’ll have evidence to support only some of these 
possible interpretations. For example, I’m not 
aware of any evidence to support the following in-
terpretation: People with high ACT scores are 
likely to suffer from schizophrenia. Now back to 
reliability. A reliable test (like the ACT) may be 
valid for some purposes (like predicting college 
performance) but not for other purposes (like iden-
tifying various personality disorders). It all de-
pends on what we have evidence to support. Of 
course, there are many reliable tests for which we 
don’t have any validity evidence for any purpose. 
So to sum up, an unreliable test cannot be valid 
for any purpose (it measures random error which 
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is uninterpretable as being anything other than 
randomness). A reliable test may be valid for a 
given purpose, depending on where the evidence 
lies.
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5 We can never know the 
actual reliability of a test, 
but we can make a decent 
estimate.

Some of the time.

Estimating Reliability



A Brief Review of Classical Test Theory

In the previous chapter we learned that CTT 
defines a test score (X) as the sum of a true score (
T) and error (e) with the simple equation 
Xit = Ti + eit. Also, the variance of each term works 
in the same fashion: S2

X = S2
T + S2

e . Reliability is de-
fined as the ratio of true score variance to ob-
served score variance (rXX = S2

T / S2
X). Thus, to com-

pute the reliability coefficient (rXX), all we need to 
do is gather data from a group of people, compute 
their observed scores, compute their true scores, 
compute the variance of both terms, and divide. 
Piece of cake. Easy as pie. Anyone getting hungry?

A cloud forms on the horizon. Computing the 
observed scores is easy enough, but how do we 
compute the true scores for each person? CTT de-
fines the true score as being the part of the ob-
served score that is not random error. OK, so we’ll 
need to know the observed score (easy enough) 
and the error score for each person. Big problem: 

We can never know the error score for a person. 
Which means we can’t compute the true scores 
and can’t compute the reliability coefficient. The 
whole house of cards comes crashing down. (Side 
note: All of the examples involving true scores and 
error scores in Chapter 4 were constructed to illus-
trate CTT principles. None were real data because 
none could be real data.) Let me assure you that 
this whole thing wasn’t just a waste of time. We 
will continue to use these CTT terms and princi-
ples.

There is a second definition of CTT reliability 
which states that reliability can be computed as 
the correlation between parallel tests. And parallel 
tests are two forms of a test that:

1. Measures the same construct(s) with differ-
ent items.
2. Are equal in quality.

Equal in quality is further defined as having the 
same means, standard deviations, and correlations 
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with external variables. Which pretty much means 
equal in every way a person can imagine. And I 
can imagine a lot. Now we’re not saying that both 
versions of the test have to be perfect, just equal 
in quality. If one version is bad, the other version 
must be equally bad for it to be a parallel test.

Now how does this new definition (correla-
tion between parallel tests) fit with the old one (ra-
tio of true score variance to observed score vari-
ance)? Are we just making up something to get 
ourselves out of a tight spot? Not at all. Both defi-
nitions are interchangeable. Here’s how. First we 
need to remember that a random variable will not 
correlate with anything. That’s the nature of ran-
domness. Randomness is inherently unsystematic 
– no patterns, no trends, nothing. And something 
unsystematic can’t have a systematic relationship 
with anything. That means a random variable will 
have a zero correlation with any other variable. 
Think about our die rolling test. If a large group of 
people (say, 1000) all rolled a die and then took an 

intelligence test, would we expect to find a non-
zero correlation between our two tests? Do 
smarter people roll higher scores? Or could it be 
that it is the slower people who roll the higher 
scores? Of course not. The correlation would be 
zero. That’s the way it is with random data.

Back to the definitions. You know from Chap-
ter 4 that when we measure nothing but random 
error, there is no true score variance, and thus, the 
ratio of true score variance to observed score vari-
ance is zero. When our measurement has no ran-
dom error, all variance is true score variance and 
the ratio is 1.0. Given what we know about correla-
tions and random error, we can safely say that 
when our parallel tests are full of random error, 
the resultant correlation will be zero. When our 
parallel tests have no random error, the correla-
tion between them will be perfect. In short, we get 
the same result from both definitions of reliability. 
I hope this has put your mind at ease over the mat-
ter.
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Reliability is a correlation between parallel 
tests. To compute reliability we’ll give a group of 
people one version of the test (which we’ll call 
Form A). When they finish it, we’ll give them the 
other version of the test (Form B) and correlate 
the scores. All very simple. If the person with the 
highest score on Form A also has the highest 
score on Form B, and the person with the second 
highest score on Form A also has the second high-
est score on Form B (and so on down the line), 
then we’ll likely get the perfect correlation and 
we’ll conclude that our test has perfect reliability (
rXX = 1.0). (Side note: Now does the symbol for re-
liability, rXX, make sense? We literally are correlat-
ing a test with itself.)

It should be obvious that it will be difficult to 
actually have parallel tests. In fact, we’ll dispense 
with any optimism and say that parallel tests are a 
hypothetical entity that will never be found in prac-
tice. And although we may seem stuck, we’re now 
close enough to reality that we can make a small 

jump from the real world of data to the fantasy 
world of parallel tests. Here’s how: We’ll just 
cheat on the definition of parallel tests. Unfortu-
nately, cheating comes with a price. We’ll never 
really know the real reliability of our test, we’ll 
just get an estimate of its reliability. This estimate 
might be high quality, or it may be low quality. A 
high quality estimate, although not spot on, can 
still be very useful.

Alternate Forms Reliability

When I mentioned that parallel forms do not 
actually exist, you might have said something like, 
“Let’s just make two versions of a test and pretend 
that they are parallel!” First off, I salute your en-
thusiasm. Second, we can do that, but let’s be hon-
est about it and call these tests alternate forms in-
stead of parallel forms. Because you know that 
we’ll never be able to come up with two different 
versions of a test that satisfy part two of the paral-
lel test definition (equal in quality). With alter-
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nate forms reliability we’ll do our best to make 
them as close as possible in quality, but no matter 
how hard we try, one of them will be a little more 
difficult than the other and/or correlate with some 
other variable (like college GPA) a little more 
strongly than the other.

Other than that issue, alternate forms reliabil-
ity works just like the parallel tests way of comput-
ing reliability. First, we’ll give Form A to a group 
of people. Next, the same people will complete 
Form B. Finally, we’ll correlate the scores. It’s just 
that simple. We’ll give this correlation a special 
name (in addition to the more generic reliability co-
efficient). We’ll call it the coefficient of equivalence. 
Sounds important. The only reason to ever call it 
by its special name is that when we tell people 
that our coefficient of equivalence is .8 (or what 
have you), they know that we estimated reliability 
with an alternate forms study.

From a theoretical level, the only problem 
with alternate forms reliability is the obvious is-
sue: What if our tests are not anywhere close to 
equal in quality? That is, what if Form A contains 
a bunch of well written questions but Form B is 
full of a bunch of terrible and confusing ques-
tions? In such a situation, it should be obvious 
that our correlation will be affected. (Remember, 
randomness doesn’t correlate, and Form B is full 
of random error.) Whether it’s too high or too low 
is a matter of perspective. It will underestimate 
the reliability of Form A (the good test) and will 
overestimate the reliability of Form B (the bad 
one). Because we don’t know in reality which test 
is the good one, there is no way for us to know 
whether the reliability is over or underestimated. 
(Just to take an extreme example of this problem 
in action, let’s say that Form B is complete ran-
dom error. Reliability is zero for From B. In this 
case, Form A could have perfect reliability, and the 
correlation between the two would still come out 
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to be zero. Sure, a reliability estimate of zero is 
correct for Form B, but not for Form A. For Form 
A, it’s a severe underestimate.)

This brings up other unpleasant issues in alter-
nate forms reliability. Namely, we have to make 
two complete versions of our test. It’s hard 
enough to develop one good test, let alone two. 
And as discussed above, developing one and a half 
good ones is not enough. Finally, imagine you are 
one of the people in our alternate forms reliability 
study. You finish taking a test – maybe it was long 
and exhausting. Now, we ask you to take another 
test, just like the first one. Not a pleasant pros-
pect. Even if you decide to participate, fatigue may 
affect your performance and confound our results. 
What if we gave our test takers a break between 
testing sessions? That’s a good idea, one that will 
be addressed later.

Split-Half (or Internal Consistency) Reliability

I think we’re in agreement that developing 
two different versions of a test is twice as much 
work as we want to do. There must be another 
way to make this work out without doing any real 
work. What if we took just one version of a test 
and split it into two equal halves? That might 
work. We could give people a score on the first 
half and another score on the second half, then cor-
relate the scores. We’ll let each half of the test 
serve as the two forms for our parallel tests. That 
might work.

Here is how we do the split-half reliability 
study (Interactive 1 demonstrates this process). 
We give our test to a group of people (remember, 
we don’t have an alternate form – we only have 
one version of our test), when they finish the test, 
we say “goodbye,” we then split the test questions 
into two groups, compute a total score for each 
half of the test, and correlate the scores. Just like 
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always, we want a strong correlation (which we’ll 
get if the person with the highest score on the 
first half of the test also has the highest score on 
the second half, and so on…). We’ll call this corre-
lation the coefficient of internal consistency. (Side 
note: Split-half reliability studies are often called 
internal consistency reliability studies for obvious 
reasons – in these studies we are examining the 
consistency of scores from one part of the test 
with the other.)

Now let’s do an example. Let’s say we have a 
test with four questions and we give our test to a 
sample of six people. This test is a multiple choice 
test with four options. We’ve scored the data in 
the normal fashion so that a correct answer is a 1 
and an incorrect answer is a 0. Here are the data:

Person Item 1 Item 2 Item 3 Item 4

Augustus 1 0 0 0
Ellis 1 1 1 0
Cedric 1 1 1 1
Dennis 1 1 0 0
Jimmy 0 1 0 1
Randy 0 0 0 0

Now if this was regular test situation, we 
would assign everyone a total score (Augustus 
would have a 1, Ellis would have a 3, Cedric 
would have a 4, etc.). But this is not a regular 
situation, we need to divide the test in half and 
compute two scores for each person – one for each 
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half. We’ll do a simple first half (Items 1 and 2) 
versus second half (Items 3 and 4) split.

Person Item 
1

Item 
2

Item 
3

Item 
4

First 
Half

Second 
Half

Augustus 1 0 0 0 1 0
Ellis 1 1 1 0 2 1
Cedric 1 1 1 1 2 2
Dennis 1 1 0 0 2 0
Jimmy 0 1 0 1 1 1
Randy 0 0 0 0 0 0

At this point, all we have to do is correlate the 
scores. In our case the correlation is .50. That’s it. 
That’s the coefficient of internal consistency. 
That’s the whole split-half reliability study. Pretty 
simple. Just give the test like you would any other 
test, score the test in two parts, and correlate the 
scores. Lather, rinse, repeat. What could be sim-
pler?

Well, here’s the problem. Three of them, actu-
ally. Ready? Here we go. The first problem is that 
when we compute a split-half reliability, we are 
getting a reliability for a half-length test. A half-
length test is one that is only half as long as the ac-
tual test. Think about it this way, how many items 
are on our test? Four. And if we did an alternate 
forms reliability, how many items would be on 
Form A? Four. And Form B? Four. And in an alter-
nate forms reliability study, we correlate our four 
item total score on Form A with our four item to-
tal score on Form B to get the reliability coeffi-
cient. But in our split-half reliability study, how 
many items are on the first half? Two. And the sec-
ond half? Two. So the reliability coefficient in our 
split-half reliability study is based on the correla-
tion between two two-item subtests. In short, in a 
split-half reliability study, we are getting a reliabil-
ity estimate for a test that is only half as long as 
the actual test. Here’s why this half-length test 
thing is a problem: Other factors being equal, 
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longer tests are more reliable (and shorter tests 
are less reliable). Thus, our split-half estimate of 
reliability will be lower than the actual reliability. 
Remember, this wasn’t a problem with alternate 
forms reliability because we never cut that test in 
half – we created two complete versions of the 
test.

Now that we know what the first problem is 
(and before I tell you the solution to it), allow me 
to digress and explain why longer tests are more 
reliable. First, recall that reliability means freedom 
from random error. Playing our “what if” game, 
what if we had a one-item test? Say it’s a multiple 
choice math test. One question, that’s all. Your 
score is either a 0 or 100. No chance for partial 
credit. What if you know the answer but acciden-
tally write down the wrong answer? That’s an er-
ror of the random kind. What if you don’t know 
the answer but you guess correctly? Another ran-
dom error. In both cases, the impact of these ran-
dom errors is huge: Your score goes from the high-

est possible to the lowest possible value (or vice 
versa). Now what if we had a two-question test 
and you make a random error on one of the ques-
tions? In this case, the magnitude of the error (50 
points) is not as great. Moreover, there is a chance 
that we’ll make two complimentary random errors 
that reduce their ultimate impact to zero. Huh? 
Let’s say that we don’t know Item 1 but guess cor-
rectly (we get 50 points that we don’t deserve) 
and we do know Item 2 but write down the wrong 
answer (we lose 50 points that we should have 
earned). Our final score is 50, which is exactly 
what it would have been if we hadn’t made any 
random errors. Essentially, the positive error was 
offset by the negative error. Now I’ll be the first to 
admit that this offsetting error situation in a two-
item test is ridiculously unlikely, but it can happen 
for a two-item test and could never happen in a 
one-item test. The longer the test, the less the im-
pact of a single random error (on a 100-item test, 
a single random error is worth only a single point) 
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and the increased likelihood that the random er-
rors will cancel out for a given person. To restate, 
other things being equal, longer tests are more reli-
able. What are these “other things?” The “other 
things” refer to the quality of the questions. If we 
have a ten question test composed of very good 
items and add to it another ten very bad ques-
tions, our test, though longer, is not more reliable.

Now that we have that straight, here’s the so-
lution to the half-length test problem. A simple 
formula called the Spearman-Brown Prophesy for-
mula (coolest equation name ever) will tell us 
what the reliability for a test would be given our 
current reliability and any changes in test length. 
In other words, it’s a “what if” formula. And it is 
quite obvious that it is the perfect equation for 
our half-length test problem. The equation is 
given below.

rXXSB = k ⋅ rXX

1 + (k −1)rXX

Where:
rXX is the reliability estimate computed in our 
study.
rXXSB is the new corrected reliability estimate
k is the factor by which we are lengthening or 
shortening the test.

It’s important to note that k is not the number of 
items on the test. k is a ratio. If we are doubling 
the length of the test, then k is 2. If we are tripling 
the length of our test, k is 3. If we are cutting our 
test in half, k is .5. We can compute any of these 
what if scenarios with Spearman-Brown, but the 
one that is most relevant to us is the doubling sce-
nario. Remember that a split-half reliability study 
gives us a reliability estimate for a half-length test, 
which is lower than the real reliability of the test. 
So we want to correct for the half-length problem. 
We want to raise it up to its original full length. To 
get one half back to one, we double it. Thus, k will 
be 2. When we plug our .50 reliability coefficient 
(obtained from previous dataset) into Spearman-
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Brown with a k of 2, we get a corrected value of 
.67. This .67 estimate should be closer to the real 
reliability.

Just to remind you that Spearman-Brown can 
be used for other purposes, let’s say that we got a 
coefficient of equivalence (remember that?) of .7 
and we want to know what our reliability would 
be if we tripled the length of each version of the 
test. A quick calculation tells us that the new reli-
ability would be .88. A mighty fine number. 
Prompted by this pleasing forecast, we get to work 
writing a bunch of new items.

Finally, the “other things” qualification applies 
to Spearman-Brown projections as well. In the pre-
vious example where we explored what would hap-
pen if our test length was tripled, we would only 
obtain this new reliability of .88 if the new items 
that we write were equal in quality to the items 
that we had already written. In short, we can’t add 

a bunch of garbage to our test and expect good re-
sults simply because the test is longer.

Problem number one took forever. I’m 
drained. Here’s problem number two. For a split-
half reliability study, we split the test into two 
halves. In our example from above, we split the 
test in a first-half versus second-half fashion. 
That’s not the only way we could have split it. We 
could have split it in an odd (Items 1 and 3) ver-
sus even (Items 2 and 4) fashion. In fact, let’s do 
that.

Person Item 
1

Item 
2

Item 
3

Item 
4 Odd Even

Augustus 1 0 0 0 1 0
Ellis 1 1 1 0 2 1
Cedric 1 1 1 1 2 2
Dennis 1 1 0 0 1 1
Jimmy 0 1 0 1 0 2
Randy 0 0 0 0 0 0
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When we correlate the scores from an odd/
even split we get a correlation of .25. Wait a sec-
ond, the first time we did this, we obtained an un-
corrected correlation of .50. Now, it’s .25. The 
original data are the same, the only thing we 
changed is how we split the test. That’s a big 
change over what seems to be a minor detail. You 
know what, we could split this test another way: 
Items 1 and 4 versus Items 2 and 3. Let’s see what 
happens when we do that.

Person Item 
1

Item 
2

Item 
3

Item 
4 1 & 4 2 & 3

Augustus 1 0 0 0 1 0
Ellis 1 1 1 0 1 2
Cedric 1 1 1 1 2 2
Dennis 1 1 0 0 1 1
Jimmy 0 1 0 1 1 1
Randy 0 0 0 0 0 0

When we correlate the splits this time, we get 
a .70 correlation. That’s three different splits, 
three different correlations. Which one is the cor-
rect one? Do we chose the highest? The lowest? 
The middle-est? Some kind of average? Do we just 
go with whichever one we got the first time? I 
hope that you can see that if we do just one split, 
we might get an exceptionally good split (rXX = 
.70), a bad split (rXX = .25), or something in be-
tween (rXX = .50). In our example with a four 
question test, there were only three ways to split 
it, and thus, only three possible reliability coeffi-
cients. What if our test had 20 items? In that case, 
there would be over 92,378 possible splits, yield-
ing 92,378 different reliability coefficients. Would 
our chances of getting one of those extreme splits 
increase? I honestly don’t know, but let’s not 
chance it.

So what’s the solution to the “how do we 
make the split problem?” The answer is to do 
them all. Every split. Do every split, compute each 
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of the reliability coefficients, and then compute 
the average of them. As a final bonus, we’ll use 
the Spearman-Brown correction on this average 
correlation. Before you say, “That sounds like 
work,” there is a formula which will do all of this 
work for us. It’s called coefficient alpha (or Cron-
bach’s alpha), and it is remarkably simple.

α = k
(k −1) [1 − ∑ S2

items

S2
total ]

Where:
k is the number of items on the test (a differ-
ent k from before)
S2

items is the variance of each test item
S2

total is the variance of the total score

I am amazed at just how much work coefficient al-
pha does. Everything mentioned in the previous 
paragraph using just three terms, k and two vari-
ance terms. As mentioned, k in coefficient alpha re-
fers to the number of items on the test, which was 

not the case in Spearman-Brown. Same letter. Dif-
ferent meanings. Don’t get mad at me – I don’t 
make this stuff up.

So, to compute coefficient alpha, we compute: 
the variance of each item (which we then sum 
across items), the total score on the test for each 
person, the variance of the total scores, and the 
number of items. Plug in and compute. The an-
swer that we get will be (almost) the same as the 
number we would have obtained had we com-
puted all possible splits, computed the correla-
tions from all possible splits, averaged this correla-
tion, and corrected this average with the 
Spearman-Brown prophesy formula. All that work 
in one simple equation.

Thus, with coefficient alpha we no longer have 
to actually split our test. We just compute the vari-
ance of each item and the variance of the total 
score. Much easier. And it solves our “How do we 
make the split?” problem. At this point, you may 
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be thinking, “Why did we spend all of that time 
learning about split-half stuff when all we needed 
was coefficient alpha?” Good question. The an-
swers are twofold. First, coefficient alpha makes 

more sense if you understand an old fashioned 
split-half reliability study. Second, there are situa-
tions in which there is so much missing data (i.e., 
we don’t have a score for Item 12 for a given test 
taker), that we cannot compute coefficient alpha 
and must compute the old split-half reliability.

There are some other equations which do the 
same thing as coefficient alpha. The most popular 
are Kuder-Richardson 20 and Kuder-Richardson 
21 (also called KR-20 and KR-21). Both of these 
can be best described as simpler (and in the case 
of KR-21, less accurate) versions of coefficient al-
pha. They are simpler in that they require less 
work to compute. In the computer age, however, 
the amount of work needed to compute an answer 
is a trivial issue, rendering both KR-20 and KR-21 
quite inconsequential.

Regardless of whether we estimate internal 
consistency with an old fashioned split-half study, 
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More Thoughts on Coefficient Alpha

When I introduced coefficient alpha I stated that 
coefficient alpha equals the mean of all possible 
split-half correlations with a Spearman-Brown cor-
rection. Well, that’s not entirely true. They only 
work out to be the same if all of the items have 
the same variance, which they won’t. But even 
though it is not exactly the same, it’s very close.

Another way to think about coefficient alpha is 
that alpha is the mean correlation between each 
pair of items (with a Spearman-Brown correction 
thrown in at the end). This means you correlate 
every item with every other item on the test – 
that’s a pile of correlations. Then take the average 
of those correlations. And then give the average 
correlation the Spearman-Brown treatment. But 
this new way of thinking about coefficient alpha 



coefficient alpha, KR-20, or KR-21, we still call the 
end product a coefficient of internal consistency.

Finally, we can get around to the third prob-
lem with all internal consistency estimates of reli-
ability. All internal consistency reliability esti-
mates will be downwardly biased if the test is mul-
tidimensional (i.e., measures more than one con-
struct). That is, our internal consistency estimate 
of reliability of will be lower than it should be if 
our test is multidimensional. In a nice twist, we’ll 
use this problem to our advantage when we get to 
item analysis (short version: we’ll throw out items 
which cause coefficient alpha to be low). That 
said, if our goal is to get an unbiased estimate of 
reliability and we suspect that our test is multidi-
mensional, we should not use an internal consis-
tency strategy. How can we estimate reliability in 
such a situation? Use the previously mentioned 
method, alternate forms reliability, or use the next 
method, test-retest reliability.

Test-Retest Reliability

Recall that CTT reliability is defined (among 
other things) as a correlation between parallel 
tests. And parallel tests are two forms of a test 
that (a) measure the same construct with different 
items and (b) measure the construct equally well. 
What if we simply gave the test twice? That is, a 
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Final Thoughts on Internal Consistency Reliability

Whether we compute internal consistency with a 
split-half correlation or with coefficient alpha, the 
general point is that a correlation among items (or 
halves of test) is an index of reliability.

Why? Why is it that the correlation among items 
on a test works as a reliability estimate? Let’s an-
swer that question with another question: Why do 
items fail to correlate with each other? Items fail 
to correlate for two reasons: These items measure 
too much random error, or these items measure 
different constructs. Remember that randomness 
doesn’t correlate. So if any one item is full of ran-
dom error, then it won’t correlate with any other 



group of people takes the test one time and then 
takes the exact same test a second time? We 
would be using the test as its own parallel form. 
That could work. You might say that this is a short-
cut on the alternate forms method. Instead of tak-
ing the time to develop a second form, we’ll just 
get lazy and use the same form at both testing ses-
sions. Of course there is a price to be paid. Will 
both versions of the test be equal in quality? They 
should since they are the exact same questions. 
Are we measuring the same construct with differ-
ent items? No, it will be the same items. Thus, as 
with alternate forms reliability and split-half reli-
ability, we are satisfying one part of the parallel 
tests definition, but not the other. As usual, we 
will end up with a biased reliability estimate.

Our basic procedure for a test-retest reliability 
study is as follows: (a) administer test to a group 
of people, (b) wait some amount of time (called 
the intertest interval or ITI), (c) administer the 
same test to the same group of people, and (d) cor-

relate the scores from the first time they took the 
test with the scores from the second time they 
took the test. This correlation is our reliability esti-
mate and we’ll call it the coefficient of stability as 
it describes how stable the scores are from Time 1 
to Time 2. Ideally, everyone would have the same 
scores both times, and, thus, the person with the 
highest score at Time 1 would also have the high-
est score at Time 2 (and the second highest per-
son at Time 1 would be second at Time 2, and so 
on). The main issue with a test-retest reliability 
study is how long we wait between administering 
the test (the ITI). We could wait as little as a sec-
ond (i.e., give the test a second time as soon as 
the finish it the first time) or as long as a lifetime 
(not recommended).

You may have already guessed where the bias 
comes from. It’s due to the fact that we are admin-
istering the same set of items twice and people 
have a habit of remembering things if it hasn’t 
been too long since they first saw the items. It 
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should be obvious that the big issue is how much 
time is enough for people to forget the items? The 
answer is no one has the faintest idea. Speaking 
on an anecdotal level, I recall remembering a ques-
tion on a third grade standardized test that I had 
first seen on the second grade standardized test. 
That’s an ITI of one year, but I hadn’t forgotten it. 
(Of course, it was only one item of many on the 
test, and I didn’t remember the other dozens of 
items. But still...)

Now let’s talk about the impact of the ITI. If 
the ITI is short and people remember a bunch of 
the questions from Time 1, their scores will likely 
be more similar than they should be (bear in mind 
that with a test-retest reliability study, we are in-
terested in how similar the scores are from Time 1 
to Time 2). Notice that I italicized the word likely. 
It won’t be that way for everyone on every type of 
test, but there are two important principles that 
make scores more similar than they should be: lazi-
ness and a desire to appear consistent.

Laziness first: If I worked for a while on a 
tough math problem and came up with an answer 
of 4 the first time I took the test, and I see the 
same math problem again (and remember that I 
answered 4 the first time), what are the chances 
that I’ll do all of the work again? Not much. I’ll 
just put 4 and move on without a second thought. 
By doing this, if I made a random error the first 
time, I am dooming myself to make the same error 
the second time. Thus, my random error has just 
become not so random. (Conversely, if my answer 
of 4 the first time was correct and I put the same 
answer the second time from memory, I am depriv-
ing myself of the opportunity of making a random 
error the second time.) My score is more stable 
than it should be because I recalled the question 
and my answer at Time 2. The correlation between 
scores at Time 1 and Time 2 is higher than it 
should be, and thus, reliability is overestimated.

The desire to appear consistent (or avoid look-
ing wishy-washy) becomes relevant on measures 
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of personality or attitudes. Let’s say you ask a per-
son at Time 1 how they feel about cats, and this 
person likes them a little bit. Some time between 
Time 1 and Time 2, they have a slight change of 
mind and dislike cats a little. When you ask a 
group of such people the same question at Time 2, 
many people (but not all) who remember their an-
swer from before will put the same answer again 
even though they feel differently about cats. Why? 
People are aware that society frowns on capri-
cious, wishy-washy behavior and try to avoid 
showing this behavior to others. Even on a confi-
dential personality test. The impact of this is just 
like before: Responses are more consistent than 
they should be (i.e., if people remembered noth-
ing) and thus, reliability is overestimated.

At this point, you’re thinking, “Here’s an easy 
solution. Just use a really long ITI so that no one 
remembers squat.” That approach will eliminate 
the problem of the previous paragraph, but it will 
create a new one. People change over time. To use 

CTT terminology, we would say that their true 
scores change over time (recall that true scores in-
clude a person’s standing on the construct as well 
as non-random errors). But CTT assumes that 
true scores stay constant. Well, on a long enough 
timeline, everyone’s true scores will change for 
just about any construct. The changes might be 
big, they might be small, but there will be 
changes. Because CTT assumes that true scores re-
main constant, any change is considered error. The 
correlations between scores at Time 1 and Time 2 
are lowered, and the test looks less reliable than it 
really is. An example should help clear this up. 
Let’s say the construct we want to measure is a 
person’s weight in pounds. And let’s say that we 
happen to have a perfect scale. The scale is our 
test and let’s not ask how we know it’s perfect. 
For the sake of this example, that’s not important. 
So imagine that we have a group of 100 people 
and we weigh them at Time 1, wait 10 seconds, 
and weigh them again (Time 2). The correlation of 
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scores from Time 1 and Time 2 is our test-retest 
reliability coefficient. Obviously, in 10 seconds, 
there has been no change in anyone’s real weight. 
Thus, their true scores have not changed. Now 
let’s do it again, only this time the ITI is five years. 
Now you know that over five years, there will be 
some real changes in people’s weight. Their stand-
ing on the construct (which is part of the true 
score) has changed. When we weigh them at Time 
2, the observed scores have changed a lot, not be-
cause our measurement device is bad (remember, 
it’s perfect), but because these people have 
changed. What happens to our correlation? It’s 
lower. Thus, this test appears to be less reliable 
than it really is. Bear in mind that in reality we 
don’t know whether our test is good. So when we 
do a test-retest reliability study with a long ITI 
and obtain a less than desirable reliability coeffi-
cient, we have to wonder: Is the test actually unre-
liable (rotten with random error) or is the ITI caus-

ing the low reliability coefficient through changes 
in the standing on the construct?

So, a short ITI is bad because it overestimates 
reliability and a long one is bad because it underes-
timates reliability. What is the right ITI? What is 
the ITI that is not too short or too long? It would 
have to be long enough that no one remembers 
the test, but short enough that no one has 
changed their standing on the construct. Well, it’s 
complicated, and there hasn’t been enough re-
search on the issue. I only found one study, and it 
wasn’t conclusive. Moreover, the answer to this 
question would depend on the type of construct 
measured. A mood related construct would 
change rapidly whereas an intelligence construct 
would change very slowly for an adult population. 
So the answer is, there is no answer. It is easy to 
find a number of recommendations. Suggestions 
range from two weeks (Pedhazur & Schmelkin, 
1991) to six months (Nunnally, 1967) between 
test administrations. It appears that the sugges-
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tions are based on the authors’ preferences to 
avoid one of the two problems with intertest inter-
val length. Some researchers believe that the draw-
backs from long intervals between tests have more 
impact; thus they suggest a shorter interval (Ped-
hazur & Schmelkin) or recommend that the inter-
val not exceed six months (Anastasi, 1982). Con-
versely, there are researchers who believe that the 
impact of a short interval is greater and who thus 
suggest a longer interval (Nunnally). Unfortu-
nately, these are mere recommendations and are 
not based on actual data. One thing that is easy to 
determine is what ITIs researchers are actually us-
ing. In an analysis of 276 test-retest reliability 
studies, the median (and modal) intertest interval 
was a mere 14 days (Brown & Cromwell, 2005). 
(On the positive side, the mean was 66 days – 
much longer due to a few outliers that skewed the 
distribution. Another lesson in means versus medi-
ans.) Fourteen days is pretty short, essentially 
guaranteeing that people will recall a non-trivial 

amount of information, which will influence their 
answers in ways we discussed earlier. That said, if 
you are conducting your own test-retest reliability 
study and want to do what everyone else is doing, 
use an ITI of 14 days.

Knowing what we know about the relation-
ship between ITI and the resultant estimate of 
test-retest reliability, we can draw some clear infer-
ences in some cases. Let’s say you see that Dr. Dur-
den reports a coefficient of stability of .54 for a cer-
tain personality test in a study in which he waited 
two days between test administrations. In such a 
situation (short ITI), we should obtain a high cor-
relation, but clearly we got a low one. It is pretty 
easy to conclude that this test has reliability prob-
lems. If a person’s score isn’t very consistent 
across two days (when he likely remembered a 
great deal of information from the first administra-
tion), this test is probably measuring a lot of ran-
dom error. Hopefully that made sense. If not, go 
back a page and start over. New example of the 
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same issue. You run across a study from a Dr. Jack 
(not sure whether Jack is his first or last name – or 
even if it is his real name) in which the ITI is five 
years and the coefficient of stability is .86. Wow. 
Impressive. In this situation, the ITI is working 
against us (people have real changes over a time 
span of five years), and yet Dr. Jack obtained a 
high correlation. Must be a reliable test.

There are still more problems with a test-
retest reliability, but these are easier to under-
stand. The first problem is one of motivation. Will 
the test-takers be as motivated to take the test a 
second time? Not that this isn’t a problem with 
parallel forms, but it is likely to be a bigger prob-
lem here. The second is that it is often difficult to 
get every person to take the test a second time. 
You may start out with 100 people at Time 1, but 
at Time 2 only 58 show up. Guess what your sam-
ple size is. That’s right, 58. Moreover, we don’t 
know how the results would have turned out had 

all 100 returned. Would the reliability have been 
higher? Lower? Same-er? No one knows.

Alternate Forms and Test-Retest Reliability

What if we combined the alternate forms reli-
ability strategy with the test-retest strategy? That 
could be cool. We would give Form A of the test 
to a group of people at Time 1, wait, and then give 
Form B to the same group of people at Time 2. 
Now we’ve got all of the hassle of developing two 
forms of the test along with the irritating ITI in-
volved with a test-retest study. We’ll call the corre-
lation a coefficient of equivalence and stability. 
What good would this do? Why is this needed? 
Clearly no one will remember questions from 
Time 1, because they won’t see the same items at 
Time 2. But there will be familiarity with the item 
types. And familiarity breeds contempt. Rather, 
the practice associated with seeing the same types 
of items a second time could help one’s perform-
ance. If this is a real concern to us, then we should 
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wait long enough for this familiarity to wear off. 
Hence the ITI. Essentially, we are tweaking the ba-
sic alternate forms strategy to eliminate a poten-
tial confound. But now we introduce a new prob-
lem. A problem with which we are familiar. What 
if we wait so long between Time 1 and Time 2 that 
the test takers’ standings on the construct change? 
If you can remember back from two or three para-
graphs ago, you know how this goes. We don’t 
want to wait too long. How long is long enough? 
See previous page for the non-answer to this ques-
tion.

Which Way Is the Best Way?

At this point, you may be wondering which 
method of estimating reliability is the best: alter-
nate forms, split-half, test-retest, or alternate 
forms and test-retest. If you’ve been paying atten-
tion, then you know that the answer is: There is 
no answer. Every one of the methods are flawed in 
some way, rendering a biased estimate of reliabil-

ity. Which is why the title of this chapter is “Esti-
mating Reliability” and not “Computing Reliabil-
ity.” All of these studies will give us a number that 
is hopefully fairly close to the true reliability of the 
test, but due to flaws in the design of the studies 
(none are actual correlations between parallel 
tests), we’ll never know the true answer. All we’ll 
get is an estimate. There are some conclusions 
that we can draw, however. First, if you can’t cre-
ate two different versions of a test that are equal 
in quality to your eyes (of course, they will never 
be truly parallel), then anything involving alter-
nate forms isn’t for you. Second, if you think that 
there is any chance that your test is even a little 
multidimensional, then split-half isn’t for you. Fi-
nally, if you don’t have a long enough ITI (at least 
two months in this author’s opinion – yet another 
unfounded recommendation), don’t use a test-
retest strategy.
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The Strange World of Interrater Reliability

There is a final reliability term that you may 
hear at some point: interrater reliability. Interrater 
reliability is a whole different animal from the 
ones above. In fact it is so different, that it is not a 
real method for estimating reliability (according to 
CTT) and doesn’t deserve to have the word reliabil-
ity in its name. In fact, some researchers have advo-
cated changing its name to interrater consistency (Ko-
zlowski & Hattrup, 1992). Be we’re getting far 
ahead of ourselves. First, what is this thing that 
some call interrater reliability?

Consider a typical reliability scenario: a group 
of people complete the same test (say, an intelli-
gence test) twice (test-retest reliability). The test 
taker is the source of most of the data (scoring is-
sues aside). That is, who provides Marla’s data at 
Time 1? Marla. And at Time 2? Marla. And the 
same for Bob, and so on. Interrater reliability is dif-
ferent. With interrater reliability, two raters are pro-

viding ratings for each of the people. Let’s say the 
raters are managers who rate the job performance 
of a group of workers (the ratees). Of course, the 
ratings should be based on what the worker actu-
ally do on the job but the potential for the rater to 
influence the final rating is much greater here 
than for a multiple choice test graded with a key.

Here’s an example. Let’s say a small group of 
five workers have their job performance evaluated 
on a 5-point scale by two managers (Rater 1 and 
Rater 2, no relation).

Worker Rater 1 Rater 2

Michael 5 5
Andrew 3 2
Brian 3 3
Ian 4 5
Bill 4 4
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The ratings are then correlated. We get a strong 
correlation when the person that Rater 1 rates 
highest is also rated highest by Rater 2 (and so 
on). This correlation is then treated as our reliabil-
ity estimate. Here’s what makes the interrater reli-
ability model different from regular reliability: 
Who provides the score for Ian? Not Ian directly, 
but the managers. It is their evaluation of Ian that 
becomes his scores. One could argue that this 
really isn’t all that different from every other way 
of estimating reliability (tests have to be scored by 
someone), and there is an element of truth to 
that. The difference is one of degree. The scorer of 
an intelligence test has an influence on the ob-
served score of the test taker. The rater has much 
greater influence on the observed score of the 
ratee. Moreover, the rater may not even be aware 
of how she or he is influencing the rating. The net 
result of all of this is that with rating data, the ra-
ter is a new and greater source of random and sys-

tematic error, and any correlation between rating 
data will be affected by these errors.

Interrater Reliability Is/Is Not a Real Reli-
ability. CTT says reliability is a correlation be-
tween parallel tests. Although raters assume the 
role of tests, they will never meet the definition of 
parallel tests. In short, raters are not parallel tests, 
which means that interrater reliability is not a real 
reliability according to CTT. Which is why some 
have stated that the correlation between ratings 
from two (or more) raters should be renamed in-
terrater consistency. The correlation does tell us 
how consistent the ratings are, but any inferences 
regarding CTT reliability are ill-advised. All that 
said, if you want to say that these complainers are 
just being pedantic because although the raters 
are not tests (and thus, not parallel tests), they are 
scorers of tests, just like real tests, which makes a 
correlation between their scores is a real CTT reli-
ability, there’s probably no way I can talk you out 
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of that position. So there, I just argued it both 
ways. I don’t feel good about it.

Interrater Agreement

The twin cousin of interrater reliability is inter-
rater agreement. With interrater agreement, there 
is no pretense of a connection with CTT. So the 
conceptual problems listed above are problems no 
more. To reiterate, interrater agreement has noth-
ing to do with CTT. I only mention it here because 
it contrasts with interrater reliability, which we 
just discussed. With interrater agreement, we are 
simply describing the consensus among the raters. 
That is, do they assign the exact same rating? To 
contrast, with interrater consistency we examined 
the pattern of the ratings (with a correlation). The 
ratings might be very different in an absolute 
sense, but as long as the person rated highest is 
the same for both raters, you get a strong correla-
tion. Well that’s not the case with interrater agree-

ment. Three sample datasets illustrate the differ-
ences.

Ratee Rater 1 Rater 2

Michael 5 5
Andrew 3 3
Brian 2 2
Ian 4 4
Bill 1 1

This first dataset should be easy to under-
stand. Both raters assign the exact same ratings to 
every person. Thus, agreement is perfect – they 
never disagreed. If you run the correlation, you’ll 
find that it is 1.0, perfect interrater consistency.
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Ratee Rater 1 Rater 2

Michael 5 3
Andrew 4 2
Brian 3 1
Ian 4 2
Bill 3 1

With this second dataset, things start breaking 
down. The raters disagree by two points on every 
single person rated. On a 5-point scale, two points 
is huge – it’s the difference between saying some-
one is average (3) versus great (5). Interrater con-
sistency for this dataset is perfect (r = 1.0). Why? 
The person rated highest by Rater 1 is also rated 
highest by Rater 2 (and so on). See Chapter 3 for 
more explanation on how correlations work if this 
feels rusty. It is this scenario which causes so 
many problems for measurement people. If our ra-
ters are consistently disagreeing by two points, we 
have a real flaw in the ratings and we shouldn’t ig-
nore it. 

Ratee Rater 1 Rater 2

Michael 5 5
Andrew 3 4
Brian 3 4
Ian 4 3
Bill 4 3

This third dataset shows us that we can have 
good agreement (the two raters are never more 
than one point apart in their ratings), but have 
poor interrater consistency due to a limited range 
in the ratings (r = .29). This is a rare scenario, but 
it can occur. It is not, however, a troubling sce-
nario. As the second dataset demonstrated, agree-
ment is more comprehensive (and more difficult 
to achieve) than consistency. As such, if we ob-
serve good interrater agreement, we likely care not 
that interrater consistency is poor.

How, you might ask, do we compute interrater 
agreement? Unfortunately, you have just asked a 
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complicated question. Well it’s a simple question 
with a complicated answer. The answer depends 
on a number of factors including the number of ra-
ters, the type of rating they make (nominal versus 
interval), the number of targets rated, and 
whether you care about agreement at the individ-
ual target level or across all targets. The good 
news is that we won’t worry about these issues at 
this juncture. Just learn the stuff above and we’ll 
move on.

The Standard Error of Measurement

We have spent quite a bit of time discussing 
reliability. Maybe too much time. But what does re-
liability do for us? As I’ve said before a reliability 
coefficient tells us how free our measurement is 
from random error. We can take this knowledge 
and use it to estimate the role random error plays 
in an individual score. At this point, it would be 
customary to discuss standard error of measure-
ment. And I would if it were not for the common 

misunderstanding of standard error of measure-
ment (identified by Dudek, 1979). So how about I 
just list the equation and move on to the far more 
useful statistic that actually does the job that ill-
informed people (a group that formerly included 
me) think standard error of measurement does?

Here it is, the standard error of measurement 
(SEM).

SEM = SX 1 −rXX

So, it is pretty simple. It’s just the standard devia-
tion times the square root of one minus the reli-
ability. It’s a shame that it’s not as useful as it 
seems. (The one bona fide use for the standard er-
ror of measurement involves setting cutoff, or pass-
ing, scores for tests. More information on how the 
SEM is used for this purpose is given in its glos-
sary entry.) Let us never speak of it again.
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The Standard Error of Estimation

The standard error of estimation (SEE) actu-
ally does the job that most people think SEM does 
(again, see Dudek, 1979). And what is that job? 
We’ll use an example to illustrate.

Let’s say a person has an observed score of 80. 
As we know, odds are extremely high that this 
score includes some random error. Maybe it con-
tains two points of random error in the positive di-
rection (which raised the score to 80). Or maybe it 
contains negative five points of random error 
(which lowered the score to 80). It is unfortunate 
that we don’t know specific values for specific peo-
ple. But, if we know the reliability of the test, we 
can estimate the expected magnitude, in terms of 
points on the test, of random error. Yes, some test 
takers will have more or less random error in their 
observed scores than others, but this will be the 
average number of points. We can then take this 
estimate and use it to place a confidence interval 

around the observed score. The confidence inter-
val tells us the likely location of the person’s true 
score, which, as you know, is the part of the ob-
served score that is free from random error.

You have heard the term standard error before. 
The reason you’ve heard it is that there are many 
different kinds of standard errors. There’s a stan-
dard error of the mean, a standard error of a corre-
lation, and the not so useful standard error of 
measurement. This is the standard error of estima-
tion, a name given by Lord and Novick (1968).

SEE = SX rXX(1 −rXX)

So, it is pretty simple. It’s just the standard devia-
tion times the square root of the reliability times 
one minus the reliability. The standard error of es-
timation tells us the expected magnitude, in terms 
of points on the test, of random error. By inserting 
the SEE into another equation, we can find out 
the likely location of the person’s true score. We 
can never know the exact location, but we can be 
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95% sure that it is in a certain range. To compute 
a confidence interval giving the likely (95% is the 
traditional standard) value of a person’s true 
score, we take the SEE, multiply it by 1.96, and 
add and subtract it to the person’s modified ob-
served score. (Side note: 1.96 is what makes this a 
95% confidence interval. In a normal distribution 
95% of the scores are within 1.96 standard devia-
tions from the mean.)

To summarize, we know a test taker’s ob-
served score. This observed score is affected by 
random error. We would like to know the test 
taker’s true score, a score that doesn’t include ran-
dom error. Although we can’t determine the test 
taker’s actual true score, we can compute a range 
of values (the confidence interval) that likely in-
cludes the true score. The only information re-
quired to do this is the test taker’s observed score, 
the reliability of the test (an index of the amount 
of random error on the test), and the standard de-
viation of the test.

One might think that this confidence interval 
equals the observed score plus or minus 1.96 
times the standard error of estimation. That per-
son would be wrong. As mentioned before, this 
confidence requires a modified version of the ob-
served score. Modified in what way? The technical 
term for this modification is that it is being given 
a regression to the mean (RTM) adjustment. 
Don’t let the terminology scare you; it’s a simple 
adjustment requiring only the reliability and mean 
of the test.

XRTM = X̄ + rXX(X −X̄ )

Now we have everything we need to form a confi-
dence interval giving a range of scores that likely 
includes the true score for a given test taker. The 
equation for the 95% interval is as follows.

CI95 = XRTM ± 1.96(SEE)

Where:
CI95 is the 95% confidence interval.
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This tells us the likely (to 95% certainty) location 
of the true score. We can never be 100% confi-
dent. If you want to be 99% confident, multiply 
the SEE by 2.58 instead of 1.96.

Let’s run through an example. Our test taker 
scored an 80 (that’s the observed score). The stan-
dard deviation of the test is 10, the mean is 60, 
and the reliability has been estimated to be .90. 
We’ll start with the the standard error of estima-
tion. Plugging into the standard error of estima-
tion equation, we obtain a SEE of 3.0 (
SEE = 10 .90(1 −.90)). Next, we need to compute 
the RTM adjusted observed score. Given our test 
taker’s observed score of 80, the test mean of 60, 
and the reliability of .90, the RTM adjusted ob-
served score equals 78 (XRTM = 60 + .90(80 −60)). 
To finish the confidence interval, we plug the SEE 
and RTM adjusted observed score into the confi-
dence interval equation and obtain a high value of 
83.88 (Upper CI = 78 + 1.96 × 3) and a low value 
of 72.12 (Lower CI = 78 - 1.96 × 3). We can say 

with 95% confidence that this person’s true score 
(T) is between 72.12 and 83.88.

Notice that we did not say we are 95% confi-
dent that this person’s observed score (X) is be-
tween 72.12 and 83.88. We know this person’s ob-
served score. It’s 80. We can say that with 100% 
confidence (for this test administration). We want 
to know the value of the true score because the 
true score doesn’t contain random error. Just as 
with standard errors, there are many kinds of con-
fidence intervals (for mean, variance, correlations, 
etc). This confidence interval allows us to identify 
the likely location of the true score for a given test 
taker.

Just for fun, let’s do one more example. We’ll 
keep most of the numbers the same (X = 80, SX = 
10, X̄ =60), but the reliability will be a perfect 1.0. 
In this case, the SEE is 0.0 (SEE = 10 1(1 −1.0)), 
the RTM adjusted observed score is 80, and the 
95% confidence interval is 80 +/- 0, which means 
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that we can be 95% sure that this person’s true 
score is between 80 and 80 (which really means 
that we can be 100% sure that the true score is 
80). Why? The reliability of the test is perfect (rXX 
= 1.0). Thus, this test is completely free from ran-
dom error. Which means that the observed score 
is completely unaffected by random error. And be-
cause X = T + e, the observed score equals the true 
score (X = T + 0). Fascinating, no?

The Standard Error of the Difference

This is very similar to the standard error of es-
timation. Here, the issue is whether two people’s 
scores are so far apart from each other that ran-
dom error can be ruled out as the cause of the dif-
ference. For example, if my score is 89 and yours is 
90, what are the chances that your true score is 
really higher than mine? (Note that we can say 
with complete confidence that your observed 
score is higher because 90 is indeed greater than 
observed score of 89. But who cares about that?) 

Stated another way, is your observed score higher 
because of random error? Unless the test has near 
perfect reliability or a very small standard devia-
tion, we can’t state with any confidence that your 
true score is higher than mine. This one point dif-
ference could easily be due to random error. New 
example. What if your score is a 90 and my score 
is a 50? Can we say with any confidence that your 
true score is greater than mine? Again, it will de-
pend on the reliability and standard deviation of 
the test. The concept is called the standard error 
of the difference (SED). The good news is that the 
SED equation is very simple. The bad news is that 
until recently it was designed using the wrong key 
component (see Gaperson, Bowler, Wuensch, & 
Bowler, 2013). The general form of the equation 
for standard error of the difference is listed below.

SED95 = 1.96(SE?) 2

Where:
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SED95 is standard error of the difference (95% 
confidence)

SE? is the standard error of something.

Let’s cut to the source of the confusion, the stan-
dard error term that I called SE?. Psychometrics 
textbooks of all kinds will tell you to use the stan-
dard error of measurement (SEM). That’s right, 
the standard error that earlier we stated was bor-
derline useless. Our friends Gasperson et al. 
(2013) did us a favor by extending Dudek’s 
(1979) arguments about the appropriateness of 
SEE over SEM to the standard error of the differ-
ence equation. The short version is that in order 
to determine the minimum difference between 
two observed scores that allows us to conclude 
that the respective true scores are likely different, 
we should be computing SED using the standard 
error of estimate. In short, the equation should 
look like this:

SED95 = 1.96(SEE) 2

Where:

SEE is the standard error of estimation.

So that’s it. Just multiply the SEE by 1.96 and 
the square root of two for 95% confidence. If the 
difference between the two scores exceeds the 
SED, then we can be 95% confident that the per-
son with the higher observed score has a higher 
true score than the other person. Stated differ-
ently, we can state that it is unlikely that random 
error is the source of the difference between the 
two observed scores. As an example, let’s say you 
score a 90 and I score an 80 (rXX = .90 and SX = 
10). The SED is 8.32. Because my observed score 
is 10 points lower than yours and this 10 point dif-
ference is greater than the SED, we can state (with 
the usual 95% confidence) that your true score is 
greater than mine. (The technically correct version 
of the preceding statement is: The 95% confidence 
interval for the difference between our scores is 
less than the observed difference.) Conversely, we 
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could state that it is unlikely your observed score 
is greater than mine simply because of random er-
ror.

Let’s do one last example where everything is 
the same (my score is 80, your score is 90, SX = 
10), but the reliability is perfect (rXX = 1.0). As we 
saw earlier, the SEE equals zero, which means the 
SED equals zero. Which means that we can be 
completely confident that your true score is 
greater than mine. In fact, even if my observed 
score was an 89 (only one point behind yours), we 
could still be completely confident that your true 
score was greater. Why? Perfectly reliable test. No 
random error of measurement. You get the idea. 
But don’t forget: True scores include systematic er-
rors. Maybe that’s why you did better. (Gotta pro-
tect my ego somehow.)
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6 “I have made this letter 
longer than usual, only 
because I have not had 
time to make it shorter.”

-Blaise Pascal

Item Writing and Test 
Construction



Introductory Remarks

How are tests made? The answer to that ques-
tion is a long and interesting story. And here it is.

As mentioned in Chapter 1, we measure be-
haviors on a test in order to infer a person’s stand-
ing on a construct. If we are trying to identify who 
is smart, we are measuring the construct of intelli-
gence. If we observe a person answering a large 
number of difficult math and verbal questions cor-
rectly (the responses to the questions are the be-
haviors), we infer that this person is smart (i.e., 
has a high standing on the construct of intelli-
gence). Second, tests are composed of one or more 
items. What’s an item? In short, an item is a syno-
nym for a question. For more detail on this, see 
Chapter 1.

Can we have a one-item test? Yes, we can, but 
we probably don’t want to. The reasons are three-
fold. First, from the test-taker’s perspective, test 
takers would not like a one-item test as the chance 

of scoring a zero is too big to be palatable. Sup-
pose I offer you a chance to take one item, chosen 
randomly, from my 50 item final exam. If you an-
swer it correctly, you get a 100. Miss it, and you 
get a zero. Would you do it? I’ve made that offer 
(and have been in classes where that offer was 
made), and I have never seen anyone take it. Be-
cause even if you study thoroughly for the test and 
know 95% of the material, if the one question is 
from the 5% you don’t know, you could wind up 
with a gigantic zero staring you in the face for the 
final exam grade. If you recall from the first chap-
ter, a test is a sample of behavior. Based on this 
sample of behavior, we infer your standing on the 
construct. If the test has only one item, that is a 
poor sample of behavior. Any inference based on 
this single behavior is likely to be wrong.

This issue concerns the content validity (also 
called domain sampling adequacy) of the test. The 
purpose of some tests is to generalize performance 
from the test (e.g., the road part of a driver’s test) 
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to something larger than the test (actually driving 
a car). The written driver’s licensing test is an-
other example, in this case, it’s knowledge based. 
We need to know if a person knows what to do at 
a four way intersection, a three way intersection, 
when you need to use the turn signal, and so on. 
Now imagine that you take the written test and 
there is only one question: What does a flashing 
yellow light mean? Your thought probably would 
be, “What about all of that other stuff? They never 
even asked me about any of the issues related to 
right of way. How odd. I should alert my measure-
ment professor.” After a while, it might occur to 
you that there will be a whole bunch of drivers on 
the road who don’t have a clue about how they are 
supposed to drive. All because the state used a 
one-item test for licensing. Getting back to this 
content validity thing. It should be obvious that a 
one-item test will have a hard time asking about 
all of the important issues that we want people to 
know. And their performance on this one item will 

not be representative of their standing on the con-
struct.

There is another reason for avoiding one-item 
tests. Namely, the role of random error is too big. 
In a one-item test, a person who guesses correctly 
(and thus deserves a zero), gets a 100. That means 
that 100% of his or her observed score is due to 
random error. Similar problems apply to the per-
son who actually knew the correct answer and acci-
dentally wrote down the incorrect answer. Ouch! 
And this whole time you’ve been thinking that the 
one question was a well-written one. Imagine if it 
happens to be a poorly written, hard to under-
stand question. Not good. Now if we have two 
items instead of one, there is at least an opportu-
nity for a random error in one item to offset a ran-
dom error on the second item (i.e., I miss Item 1 
when I actually knew the answer, but guess cor-
rectly on Item 2 when I didn’t know the answer – 
thus, my overall score ends up being correct: 
50%). This may sound like a long shot, and it is, 

136



but at least that possibility is there. With three 
items, I have even more opportunities for random 
error to cancel out (and of course, the magnitude 
of a single random error is reduced). With four 
items, even more, and so on. This is an illustra-
tion of the principle behind the Spearman-Brown 
prophesy formula (see Chapter 5). Given items of 
equal quality, longer tests are more reliable.

So one-item tests are to be avoided. Moving 
on, another point from Chapter 1 that bears re-
peating is that we can measure multiple con-
structs on a given test. Now I’m quoting here, “Im-
portant point: We’re used to thinking of a test as 
what we can fit on a few sheets of paper – one test 
booklet, one test. But the number of distinct tests 
(as indicated by the number of constructs meas-
ured) is determined by the number of ways we 
score the questions on the paper. One test booklet 
may contain as many tests as you like” (myself, 
this book, somewhere in Chapter 1). Also, as men-
tioned in Chapter 1, we typically, but not always, 

want our tests to be unidimensional. That is, each 
test measures a single construct. If I want to meas-
ure five constructs, I make five tests. I may even 
put them on the same piece of paper, but they are 
still five unidimensional tests.

Now that we have that out of the way, I can 
tell you how we make tests. It’s a ten step process. 
Why ten steps? It’s a nice, round number.

Step 1: Why? Define the Purpose of Testing

Why are we testing? Is it for licensing pur-
poses or because we want to separate and identify 
the individuals with high standings on the con-
struct from those with average and low standings? 
This is a big issue and determines what type of 
item analysis (see Chapter 9 for item analysis) we 
favor. Who is the target population? If our test 
will be given to a low ability population, then we 
need to write easy questions. What about reading 
level? Unless our test is a measure of reading abil-
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ity, we need to consider the reading level of our 
target population and make sure that all written in-
structions, prompts, and questions are written at a 
level that is safely below that of our target audi-
ence (remember reading level describes the per-
formance of an average person at that level – half 
of the people at that age or grade will not be read-
ing at that level). A popular tool in industrial-
organizational psychology was unintentionally 
written at a reading level far in excess of its target 
audience. As a result, the test cannot be directly 
given to employees for them to answer on their 
own. Rather, a consultant has to interview the in-
cumbent and answer the questions for him or her. 
A better strategy would have been to rewrite the 
test at an appropriate reading level, but for rea-
sons known only to them the test developers went 
their own way.

Step 2: What? Identify What Will Be Measured

We’ll move from the construct to the behav-
iors. Remember that constructs are assumed to 
cause our behaviors. And on a test, the behavior is 
the response to the test item. So, the main ques-
tion is: What construct will we measure? Once 
you have chosen your construct, it’s time to nar-
row matters. Some constructs are broad and some 
are specific. If we want to measure intelligence, 
that’s a pretty broad construct. There are many as-
pects to intelligence. Which ones do you want to 
measure on your test? All of them? Just the main 
two or three? Just the ones for which there is gen-
eral agreement in the field? What we are doing is 
identifying subconstructs, which are nothing more 
than more specific subcategories of our main con-
struct. If our construct is intelligence, then our 
subconstructs might be math, verbal, spatial, and 
memory. Thus, it helps to define these subcon-
structs. Now we have a much better idea of what 
we want in our test and what we want out of it. Of 
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course, some constructs are already so narrow 
(like attitudes about Coke versus Pepsi) that iden-
tification of subconstructs isn’t possible.

The next step is to further narrow matters and 
define the content domain. The content domain is 
the set of all behaviors and/or information rele-
vant to the purpose of the test. And for most tests, 
the purpose is to measure an unobservable con-
struct. (There are also tests that are designed to 
simply measure a set of behavior with no refer-
ence to unobservable causes. For more informa-
tion, see the discussion of the definition of con-
struct in Chapter 1.) It is here that for most tests 
we make the leap from the unobservable (the un-
observable construct) to the observable (behav-
iors). Imagine that we are trying to measure de-
pression. The content domain consists of all possi-
ble behaviors related to depression. Things like a 
lack of energy, a change in sleeping and eating hab-
its, and so on. Obviously, listing all possible behav-
iors is going to be a big job. In some cases (e.g., 

math) it will be an impossible job. But we need to 
do it. For something like depression, we can con-
sult professional manuals (e.g., the DSM) for help. 
For math, we can never make a list of all possible 
relevant information due to the nature of the num-
ber line, which I hear goes on forever, though I 
haven’t checked. We can however, define limits to 
our domain. That is, what is in and what is out. 
We might decide that addition, subtraction, multi-
plication, and division are in, but calculus is out. 
Geometry is in, but trigonometry is out. Bear in 
mind that ideally, we would list all of the relevant 
behaviors and/or information. We’ll settle for iden-
tifying the limits when a complete listing is impos-
sible. One final example of defining the content do-
main: What is the content domain for a test in a 
social psychology class? It would be every piece of 
material that was covered in the lectures plus eve-
rything assigned in the book and/or other materi-
als. Thus, it is fairly easy to define the content do-
main for some tests (e.g., a test in a social psychol-
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ogy class) and more difficult for other tests (e.g., 
math).

Once we define the content domain, we have 
to realize that we won’t be able to have a test ques-
tion for everything in the domain. Even for a test 
from a relatively limited content domain (like a 
test in a social psychology class), we can’t ask 
about everything, or we would have a test around 
a hundred questions, an impractical length. Now 
consider a broader construct like depression or 
math, and you’ve got a test with hundreds, or 
thousands, of items. Not practical. Thus, our tests 
must sample from the content domain. We want 
the items on our tests to be a representative sam-
ple from the behaviors/information in our content 
domain.

The final issue is to introduce a tool to help us 
write items. Item production rules (IPRs) are sim-
ply rules that we make to guide the writing of our 
test items. An example of an IPR for a math item 

would be: A three digit number divided by a two 
digit number for which there is not a remainder. 
Consider how this IPR would help us. We can 
come up with dozens of items that fit this rule 
very easily. Everyone can understand the IPR and 
the items that they generate will be roughly equal 
in difficulty. Very helpful. But that wouldn’t be the 
only IPR for our test. We would have other IPRs 
to help us write other items. Another IPR might 
be: A three digit number divided by a two digit 
number for which there is a remainder. A slightly 
different kind of item with a different difficulty, 
but still easy to generate. Naturally, our math test 
would need plenty of IPRs to cover all of the differ-
ent items in our content domain.

The math test IPRs I just cited were fairly spe-
cific. Other IPRs will be less structured. Consider 
a test of depression. Our IPRs won’t be content 
based, rather they will indicate the general struc-
ture of the item. Here is an example: Each item 
will consist of a behavioral statement (not a ques-
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tion) followed by a three-point response scale indi-
cating agreement in some way. Now consider the 
following two items.

1. Do you feel sad?1. Do you feel sad?
A. No
B. Maybe
C. Yes

2. I often lack energy.2. I often lack energy.
A. Disagree
B. Neutral
C. Agree

It should be clear that the first item does not fit 
our IPR (it’s a question, not a statement) whereas 
the second one does. It is unfortunate that our 
IPR can’t cover the content of the construct like 
our math IPR, but that is just the nature of the 
construct. The content domain we defined earlier 
will help supply the content of the items.

Step 3. How? Which Items Will Be on the Test?

We need to write a plan for our test. Really, 
it’s like an outline. How many of each type of item 
will we have on our test? These plans are called 
test specifications. Following are some examples 
of test specifications.

I. The test will consist of 50% multiple choice 
and 50% short answer.
II. The test will have 25% addition, 25% sub-
traction, 25% multiplication, and 25% divi-
sion questions.
III. The test will consist of 38 vocabulary ques-
tions and 12 reading comprehension ques-
tions.

In every case, the above test specifications 
help us plan our test. The first test spec is a struc-
ture one, it tells about the format of the items, 
whereas the last two are content specs, they refer 
to certain parts of the content domain.
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What are test specs good for? They tell us 
how many items we need to write of each kind. 
They help us determine if we have sampled appro-
priately from the content domain. They tell us if 
we need to write more items of a given type in or-
der to sample appropriately from the content do-
main. And finally, if given to test takers, they help 
test takers study for a given test by directing their 
effort to the appropriate areas.

Step 4. Write Items

Finally, we get to put pen to paper and write 
some items. This process will be a world easier if 
we have (a) defined the content domain (or at 
least the boundaries to the content domain), (b) 
written IPRs, and (c) written test specifications. 
Writing items is, in large part, a creative process. 
This is where good, original ideas can pay off in a 
big way.

Step 5. Edit Items

Once written, the items, like any project, need 
to be edited. We should review our items to make 
sure that they are: (a) accurate, (b) clear, (c) have 
correct grammar and punctuation, (d) written at 
the appropriate reading level, (e) maintain a con-
sistent tense, and (f) minimize negatives (e.g., 
“Which of the following is not true.”). Addition-
ally, optimal performance items should have an 
even allocation of correct (or keyed) answers across 
alternative positions. Some computer programs 
that assist with test construction will randomize 
the order of the alternative answers. Inventory 
type tests should have the stems written in a mix 
of both positive (e.g., “I like candy.”) and nega-
tively oriented statements (“Candy makes me 
sick.”). 

A few things to avoid in item writing are: (a) 
inequities in alternative length, (b) double nega-
tives, (c) universals (e.g., always, never), (d) syn-
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onymous or implausible distracters (distracters 
are the wrong answers in optimal performance 
multiple choice items). Finally, one should avoid 
measuring two constructs on the same item (re-
ferred to as a double-barreled item). If you want 
to measure two constructs, write two different 
items (or better yet, two different tests).

Step 6. Item Tryouts

At this point we have a set of items that we 
think are written well. It’s time to get an out-
sider’s opinion. In fact, we don’t want just any out-
sider, we want the opinions of the same type of 
people who will be taking this test. If our test is 
designed to be given to high school seniors, we 
want to get a small group of high school seniors to 
review the items. (It should be obvious there are 
some ages for which this plan will not work; in 
those cases we can get opinions from those close 
in age.) We want our item tryout group to take the 
test and tell us any problems they see with item 

wording or design. We are most interested in 
knowing if they interpret the items in the way in 
which we intended. One way to conduct item try-
outs is to give our test takers a tape recorder and 
have them verbalize their thoughts as they take 
the test. As should be obvious, we will not be able 
to handle a large group of people for our item try-
outs as we will have a great deal of data to exam-
ine for each person. One thing that we do not care 
about are the scores of the people in our item try-
out sample. That’s a separate issue and will be dis-
cussed next. Here, our major concern is whether 
the items were written appropriately.

Step 7. Item Analysis

Item analysis is the phase of test development 
in which we collect actual data from test takers, 
analyze the data, and decide which items to keep 
in our test. Unless you like having bad items on 
your test, you will not keep all of the items. Thus, 
you should enter the item analysis phase with 
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more items than you will ultimately need. Item 
analysis will be discussed in detail in Chapter 9. 
So that’s something you may look forward to (to 
which you may look forward?). It is important to 
note the difference between item tryouts and item 
analysis. With item tryouts, we want the qualita-
tive opinions of the test takers regarding their un-
derstanding of the items. Item tryouts are judg-
mental steps that usually involve editing the 
items. In item analysis, we examine the answers 
that test takers give to the questions (i.e., the ac-
tual quantitative data). It’s a statistical analysis 
which usually leads to our deleting bad items.

Step 8. Reliability Analysis

We’ve already covered how we estimate reli-
ability with classical test theory. You will recall 
that the reliability of a test indicates the test’s free-
dom from random error. If you do not recall this, 
you might want to give Chapter 4 another run. 
The importance of finding out whether our test is 

riddled with random error should be obvious to 
all. If you want to estimate reliability with the al-
ternate forms method, go back to Step 4 and write 
a second version of the test. Other than that, just 
follow the instructions in Chapter 5 for estimating 
reliability. One important concern is that our item 
analysis and our reliability analysis should be con-
ducted with separate samples of data. If not, we 
will likely obtain a biased estimate of reliability 
(particularly if we perform an internal consistency 
based item analysis followed by an internal consis-
tency estimate of reliability).

Step 9. Validity Analysis

In addition to simply being reliable, a test 
should be valid for the purpose for which it is 
used. Thus, we need to establish the validity of 
the test. This is another long topic which will be 
discussed later (Chapter 10). Do we need a new 
sample of data yet again? No, if you’re talking 
about the reliability and validity studies – they can 
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share the same sample of data. Yes, in that our va-
lidity sample needs to be different from out item 
analysis sample (particularly if we conducted an 
empirical keying item analysis). A big picture is-
sue to keep in mind is that item analysis is an 
analysis of individual test items whereas reliability 
and validity studies are about the test as a whole. 
The test is in its finished form when we start our 
reliability and validity analysis.

Step 10. Write Test Manual, Administration 
Guidelines, and Scoring Procedures

At this point, we have a test that is in its final 
form and is useable. Thus, the research stage is 
over and it’s time to put the test in operational 
use. That’s just a fancy way of saying we can use 
the test. Depending on the type of test, the labor 
of a scientist is no longer needed. Many tests can 
be administered and scored by a clerical worker. 
Or even a ten-year old. For this to happen, we 
need to take the final step and write administra-

tion and scoring guidelines. Furthermore, we need 
to write a report of our test development process, 
with a heavy emphasis on the reliability and valid-
ity results.

Concluding Thoughts on the Steps

And that’s that. As an aside, because we ulti-
mately care more about validity than reliability, 
one could skip the reliability study and go straight 
to the validity study. However, given how easy it is 
to compute a coefficient alpha estimate of internal 
consistency reliability, there’s not much reason to 
skip it. Moreover, let’s say your test is riddled with 
random error and you don’t know it because you 
got lazy and skipped the reliability step, you could 
be unknowingly wasting your time with the valid-
ity study because an unreliable test (once again, 
unreliable means random error) can never be a 
valid measure of anything (except randomness, I 
suppose).
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Challenges in Item Writing

One factor which makes it difficult to write 
good items are time and space constraints – a test 
has to be completed in a limited amount of time, 
and the test item must be as brief as possible. This 
is a challenge because given unlimited space we 
could clarify ourselves so that the test taker under-
stands what it is that we are asking. However, in a 
limited amount of space we don’t have the luxury 
of explaining what we do and do not mean in de-
tail. We have to clearly communicate an idea in a 
limited number of words. That is a serious chal-
lenge (see the quote at the beginning of this chap-
ter).

The result of these space constraints is that 
we often write items that make perfect sense to 
us, the item writer, but are confusing to the test 
taker. We weren’t trying to make them confusing, 
but because we couldn’t explain ourselves fully, 
ambiguity was introduced. (Side note: I once had a 

professor attempt to clarify his test question by 
reading it aloud to the class with a pause at a cer-
tain spot in the sentence. He thought this was 
helpful. I did not. And yes, I remember this only 
because I ended up missing the question. At least 
I got a good story out of it.)

Given this challenge, we must work even 
more diligently on our writing and editing to mini-
mize the number of times that we end up with am-
biguous items. We must also make use of item try-
out information to identify and revise these poorly 
written items. It’s work, but it must be done.

Further Thoughts on Item Difficulty in the Item 
Writing Process

When a test taker answers a right/wrong 
item, two outcomes can occur: a correct or incor-
rect response. Yeah, that’s obvious. But we must 
consider whether they deserved to make the cor-
rect or incorrect response. We understand that ran-
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dom errors influence this result. Sometimes you 
guess correctly when you didn’t know, and some-
times you miss something that you did know sim-
ply because you wrote “A” when you meant “B”.

Poorly written items also result in these two 
errors. Items that include too much information 
(i.e., they give away too much) or have poorly writ-
ten distractors help test takers answer correctly 
when they should have missed it. Items that trick 
test takers out of making correct responses cause 
them to miss those items when they should have 
answered them correctly. Writing intentionally con-
fusing items is no badge of honor for test develop-
ers – they have purposefully created measurement 
errors. It should be seen as a mark of shame. Giv-
ing away the answer and confusing test takers so 
that they make the wrong answer are both bad out-
comes. Chart 1 illustrates the various scenarios 
that can occur when a test taker answers an item.
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Test Taker Does 
Not Have Enough 
Ability

Test Taker Has 
Enough Ability

Test 
Taker’s 
Response 
is 
Incorrect

Test taker should 
have answered 
incorrectly and did 
(this is a desirable 
scenario)

Test taker should 
have answered 
correctly but 
missed it; trick 
(or ambiguous) 
question (not 
desired)

Test 
Taker’s 
Response 
is Correct

Test taker should 
have missed it but 
answered correctly; 
item gave away 
helpful information 
(not desired)

Test taker should 
have answered 
correctly and did 
(this is also a 
desirable 
scenario)

CHART 1 Possible Measurement Outcomes

figure:FD5C6BF9-440B-419A-BD33-96AC67A69811
figure:FD5C6BF9-440B-419A-BD33-96AC67A69811


You don’t have to look at the chart for long to 
think, “Isn’t this just common sense?” The answer 
is yes. But these rather obvious issues should al-
ways be in mind during the item writing process. 
Consider this the fundamental philosophy of item 
writing: write items that will only be answered cor-
rectly by those who have sufficient ability or 
knowledge and will only be missed by those with-
out sufficient ability or knowledge. Given the exis-
tence of random errors, we know that this out-
come will be impossible to achieve, but it is the 
goal to which we aspire.
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7 Limitless options.

Infinite possibilities.

And two very popular item 
types.

Item Types



Introduction

This chapter will illustrate several common 
item types, though more exist than we’ll cover. 
We’ll spend a little extra time on Likert items be-
cause they are used extremely frequently.

Optimal Performance Items

We’ll just mention the basic multiple choice 
and true/false designs. One thing to note about 
these kinds of items is that they are almost always 
scored in a dichotomous fashion. That is, there are 
only two possible scores, usually 0 and 1. A multi-
ple choice item may have five alternatives (A 
through E). But once it is scored, there are only 
two numbers. If C is the correct answer, then a C 
response gets a 1 and all other responses get a 0. 
Most of the other issues were covered in Chapter 
6, so we’ll move on to other item types.

Ranking. What follows is an example of a 
ranking item.

Rank the importance of the following objects to 
your survival on a camping trip gone awry.
Rank the importance of the following objects to 
your survival on a camping trip gone awry.

______ Canteen

______ Map

______ Compass

______ Cellular Phone

______ Landshark Repellent Spray

______ Bag of Donuts

Our job is simple. We’ll use the numbers 1 to n to 
describe how important each of these items are to 
our survival. Scoring this test will require a key. 
How we obtain the answer key, that is, the correct 
ranking, is another issue, but once we have the 
key, we compare the obtained numbers to the num-
bers on the key. Let’s say the answer key says the 
Canteen of Water is “2”. If we answered “3”, we 
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would be a point off and thus, receive a point. 
Now let’s say the keyed answer for Map is 1 and 
we put 1. No points here. It’s a perfect match. We 
repeat and sum up to get a total score. Just like 
golf, the lowest score wins. Closely related to rank-
ing is point allocation.

Point Allocation. Here’s an example of a 
point allocation item.

Describe how important the following objects are 
to your survival on a camping trip gone awry. You 
have a total of 100 points to assign. More points 
indicate greater importance. You may assign 
points in any way you like as long as the sum of 
the points equals 100.

Describe how important the following objects are 
to your survival on a camping trip gone awry. You 
have a total of 100 points to assign. More points 
indicate greater importance. You may assign 
points in any way you like as long as the sum of 
the points equals 100.

______ Canteen

______ Map

______ Compass

______ Cellular Phone

______ Landshark Repellent Spray

______ Bag of Donuts

How do these two methods differ? With ranking, 
we can only show relative differences in impor-
tance. I might say that the Map was more impor-
tant than the Canteen of Water, but I couldn’t 
show just how much more important I considered 
it. This is the old ordinal versus interval level of 
measurement issue. With point allocation, I can 
give the Map 90 points, the Canteen 10 points, 
and everything else 0 points. Now you can see 
that I strongly value the Map. Scoring is just like 
before, the closer my point totals match the keyed 
answers, the better my score. Here’s something to 
think about: Is point allocation interval or ratio 
level measurement?
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If a test taker wants to get cute, they might do 
something like this:

20  Canteen

30  Map

-10  Compass

50  Cellular Phone

0  Landshark Repellent Spray

10  Bag of Donuts

This is a problem. It would be a good idea to add a 
“no negative numbers” clause to the instructions. 
Besides, if zero means not important at all, then 
there really is no way to have an option for some-
thing less than that.

One final thought on point allocation. What if 
the list of items is long, and our test taker isn’t 
the biggest fan of math?

Items for Measures of Attitude and Personality

Forced Choice. Which of the following de-
scribes you better?

Talkative Shy
A B

This item is really a slight variation of a true/false 
question applied to attitudes/personality. You get 
a point for picking the keyed response, and you 
get nothing for any other response. No allowance 
is made for in-between responses.

Semantic Differential. Which of the follow-
ing describes you better?

Talkative Shy
A B C D E

With a semantic differential item, we’ve taken a 
forced choice item and stretched it out to a five 
point scale. If I feel completely neutral on the 
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item, I can pick C. If I feel that I am a little shy, I 
can pick D. And so on. Scoring is the same as Lik-
ert items, which are next, so we’ll just move on to 
them.

Likert. With these items, we will make a state-
ment or ask a question and offer a multipoint re-
sponse scale. The two most common response 
scale types (frequency and agreement) are offered 
below. An infinite variety of other types are possi-
ble. There’s this kind, in the form of a question.

How often do you hear voices?How often do you hear voices?
1. Never
2. Sometimes
3. Often
4. Always

And this kind, in the form of a statement.

I like to hug total strangers.I like to hug total strangers.
1. Strongly Agree
2. Agree
3. Neither Agree Nor Disagree
4. Disagree
5. Strongly Agree

Scoring is simple. Pick a keyed direction for each 
item. Let’s take our “hugging” item. Let’s say that 
we want high scores to mean that people like hug-
ging. As it stands now, high scores mean that peo-
ple don’t like hugging. We need to reverse code this 
item. To reverse code, all we need to do is invert 
the coding. We’ll change the numbers so that a 1 
will now be a 5, 2 will now be a 4, 3 is still a 3, 4 
is a 2, and 5 becomes a 1. Once we’ve done this, 
the scores on this item are now consistent with 
our desired interpretation: Higher scores indicate 
greater fondness for hugging strangers. That’s it. 
Notice that we do not have dichotomous scoring 
(only two possible values) here. We have multi-

153



level scoring in which there are more than two pos-
sible values. In this case there are five.

Another issue with Likert items concerns the 
anchors. How many anchors should we have? 
Should we have a middle anchor, allowing a neu-
tral opinion? There has been much research over 
those issues and as long as there are not more 
than nine anchors, nothing much matters as re-
gards those two issues. An issue that is of primary 
importance is what we use for our anchors. Can 
we leave anchors unlabeled (also called unan-
chored points)? We can, but it is a bad idea. To un-
derstand why, let’s discuss why we have anchors. 
Imagine that you see this item.

I like to hug total strangers.I like to hug total strangers.I like to hug total strangers.I like to hug total strangers.I like to hug total strangers.
1 2 3 4 5

I’m the test taker, and I don’t like to hug strangers 
at all. How do I make my response to indicate my 
attitude? They are not giving me a lot of informa-

tion to work with here. Maybe bigger numbers 
mean I like hugging strangers more. Maybe not. 
How do I pick a response to indicate my attitude? 
I understand the question and I know how I feel 
about it, but how do I respond to indicate my posi-
tion?

It should be clear that we use anchors to help 
people make a response that indicates what they 
are thinking, feeling, or do. Now look at this item.

I like to hug total strangers.I like to hug total strangers.I like to hug total strangers.I like to hug total strangers.I like to hug total strangers.I like to hug total strangers.
1 2 3 4 5 6 7

Agree Disagree

If I am the test taker, I now have more information 
to use when making my response. Greater num-
bers mean I dislike hugging strangers. But what if 
I only sort of dislike hugging strangers? Do I pick 
4, 5, or 6. Maybe not 4 as it appears to be a neu-
tral position. (Why didn’t they just label it as “neu-
tral”?) So, will it be 5 or 6?
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Again, our test taker doesn’t have enough in-
formation. Unanchored scale points create ambigu-
ity and allow for more error and bias in the re-
sponses. And the last thing we need is more oppor-
tunity for error and bias. (As an aside, this issue 
speaks against semantic differential items, al-
though the process there is slightly different.)

Finally, it is not enough to label the anchors 
with just anything, we need to have clear, under-
standable anchors. Look at this item.

How often do you hear voices?How often do you hear voices?
1. Never
2. Seldom
3. Occasionally
4. Often
5. Constantly

Now look at this one.

How often do you hear voices?How often do you hear voices?
1. Never
2. Occasionally
3. Seldom
4. Often
5. Constantly

Does one look obviously right and the other obvi-
ously wrong? I switched the second and third op-
tions. If those were clearly defined, well chosen op-
tions, then one should look obviously wrong. The 
fact that neither one does is a sign that the an-
chors are not clearly defined. We want a clear dif-
ference between anchors from two different scale 
points, and we don’t have it. What follows is an 
improved (but by no means perfect) version of the 
same item.

155



How often do you hear voices?How often do you hear voices?
1. Never
2. Occasionally
3. About Half of the Time
4. Often
5. Constantly

Still a better version would be:

How often do you hear voices?How often do you hear voices?
1. Never
2. No more than once a year
3. No more than once a month
4. No more than once a week
5. Many times each week

Closing Thoughts

And that’s just the tip of the iceberg when it 
comes to the different types of items that exist in 
standardized testing. Sure, the classic multiple 

choice and the standard Likert item are the most 
popular formats, but the possibilities are limitless.
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8 Throw a rock over your 
shoulder, and you’ll hit a 
composite variable.

Or two.

Composite Variables



Introduction

We discussed one-item tests before. Given the 
problems with one-item tests, it’s clear that we 
want tests with multiple items. Here’s something 
to consider: How do you report the scores on a 
multi-item test? Let’s say someone takes a ten 
question spelling test. Do we report his score as 
ten individual scored responses (e.g., 1, 1, 0, 1, 0, 
0, 1, 1, 0, 1)? Of course not. We form a total 
score, a mean score, or some other combination of 
the individual item scores (using the data from 
the previous example, we would report a 6, or 
60%, or something like that). Any combination of 
scores on individual items into some number is a 
composite variable (or composite score).

Composite variables have some useful proper-
ties, some of which we have already discussed. 
One property was mentioned in the above para-
graph; that is, composite variables are convenient 
summaries of performance on multi-item tests. 

Another desirable property was covered in Chap-
ter 5. In the explanation of internal consistency re-
liability in that chapter, one of the things we saw 
was that, other things being equal, longer tests are 
more reliable. How does this relate to composite 
variables? It should be clear that a total score 
across ten items is more reliable than ten single-
item scores (assuming test items of equal quality). 
So, the long and short of it is we like composite 
scores. We use composite scores almost all of the 
time. Let’s dig into two important characteristics 
of composite variables.

Mean of a Composite Variable

This one is fairly obvious. How do you think 
individual item means relate to the mean of a com-
posite (let’s say a simple total score) of these 
items? If I told you that I had a 10-item test and 
each of these ten items was answered correctly 
only twenty percent of the time, what do you 
think each test taker’s total score would be? High? 

158



Medium? Low? Obviously, low. And of course the 
mean of these total scores would be low. You 
knew that. It’s obvious. If all of the test takers are 
missing the test questions like crazy, then there is 
no way for the mean of the total scores of these 
test takers to be anything other than low.

New example. It’s a 10-item test, and every 
item is answered correctly by every person. What 
do you think the mean of the total test score will 
be? Let’s see, every person answered all ten ques-
tions correctly. It sounds like each person will 
have a total score of 10. And if each person has a 
total score of 10, then the mean of these compos-
ite scores will be 10. There’s no way for it to be 
anything else.

What can we conclude from our little exer-
cise? We conclude that the mean of a composite 
variable is directly linked to the means of the 
items. If the composite variable happens to be sim-
ple total score, then we can summarize the rule in 

this handy fashion: The mean of a sum equals the 
sum of the item means.

You want an example? OK, here’s an example. 
Each item in the example below is scored with 
one point for a correct answer and zero points for 
any other answer. The composite score is the sim-
ple sum of the correct responses. The last row is 
the percent of people who answered the item cor-
rectly.

Person Item 
1

Item 
2

Item 
3

Item 
4 Total

Mary 1 0 1 1 3
Beth 1 1 1 0 3
Billy 1 0 1 0 2
Mr. Mentalino 0 1 0 0 1
Harry 0 0 0 0 0

Percent Correct 0.6 0.4 0.6 0.2 -

159



Now that we have our data, let’s check the 
rule we mentioned (the mean of a sum equals the 
sum of the means). The percent correct for a 
dichotomously scored item is the item mean. (If 
you’re not sure, let’s look at the Item 1 data to 
check this. The sum of the scores divided by the 
number of scores equals .6.) The item means are 
.6, .4, .6, .2. These four values sum to 1.8. So 
that’s the sum of the means part. What about the 
mean of the sum part? The total scores are 3, 3, 2, 1, 
and 0. The mean of these five scores is 1.8, the 
very same 1.8 we obtained before. Why did we go 
to all of this trouble? To illustrate that the mean of 
a composite variable is directly linked to the mean 
responses to the individual variables that form 
that composite.

Variance of a Composite Variable

The second important characteristic of com-
posite variables is variance. Let’s think back to 
some concepts from the first few chapters. First, 

variance is about differences in scores. A set of 
scores with a variance of zero means that everyone 
has the same scores. Second, variance is good. We 
want the scores to be different. Why? Because we 
assume that different people have different stand-
ings on the construct, and the test should accu-
rately reflect these differences. A test that gives 
everyone the same scores has failed in its job. (Ei-
ther that, or everyone actually has the same stand-
ing on the construct, an unlikely scenario.) Also, 
we hate tie scores. Third, given a constant level of 
measurement precision, bigger differences be-
tween scores allow us to be more confident about 
the differences between the scores.

What determines composite score variance? 
It’s not as simple as what we saw with the mean 
of a composite variable. Part of the equation is 
item variance. No big surprise there. Other things 
being equal, more item variance means more com-
posite score variance (aside from a very weird ex-
ceptional case). What kind of items have a lot of 

160



variance? Items that are average in difficulty. 
Why? An item answered correctly by everyone has 
no variance (all scores are the same; e.g., 1, 1, 1, 
1). The same applies to an item that everyone 
misses (e.g., 0, 0, 0, 0) – no variance. It should be 
clear that item variance is maximized when half of 
the test takers miss it and half answer it correctly. 
But there’s more to composite variance than just 
the item variances. What else? Something like the 
correlations between the items.

The exact statistic involved is covariance. Re-
member covariance from some earlier chapter? I 
don’t either. I found this equation. Maybe this will 
help.

cXY = rXY ⋅ SX ⋅ SY

So it appears that covariance is just correlation 
multiplied by the standard deviations (and stan-
dard deviation is just the square root of variance).

Every item has a variance. Every pair of items 
has a covariance. Put those together to get the 
composite score variance equation: The variance 
of a sum equals the sum of the item variances plus 
two times the sum of the covariances between 
each pair of items. That wasn’t so bad. The only 
weird part is that we are supposed to multiply the 
sum of the item covariances by two. Why do we 
have to multiply by two? You just do.

(If you’re familiar with something called the 
variance/covariance matrix, the composite score 
variance equation can be stated as follows: The 
variance of a sum equals the sum of all of the ele-
ments in the variance/covariance matrix.)

Here is an example to show the calculations. 
In this dataset, we have a two-item test taken by 
four people. Both items are answered correctly by 
half of the test takers. The item variances are .33 
for each (feel free to check this using the sample 
variance equation from Chapter 2). The correla-
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tion between Items 1 and 2 is 1.0. Using the co-
variance equation, we find that the covariance is 
.33.

Person Item 1 Item 2 Total

Ricky 1 1 2
Blake 1 1 2
Shelley 0 0 0
George 0 0 0

Now to the computation of composite score 
variance. Variance of a sum equals the sum of the 
item variances plus two times the sum of the item 
covariances. In this case, that would be .33 + .33 
+ 2(.33), which equals 1.33. Can we check this 
number? Yes, we have the actual total scores for 
each test taker, let’s just compute the variance of 
these scores (2, 2, 0, 0) to check. A quick calcula-
tion of the variance of the total scores shows us 
that we were correct; the variance is 1.33. So the 
equation is accurate.

The only remaining issue is, why? Why is the 
relationship between the items important to com-
posite score variance? Here are two sets of scores: 
2, 2, 0, 0  and 1, 1, 2, 0. Which set has greater vari-
ability? If we run them through the variance equa-
tion, we find that the first set (2, 2, 0, 0) has a vari-
ance of 1.33, whereas the second set (1, 1, 2, 0) 
has a variance of .67. (If you find this outcome a 
little confusing, here’s why the first set has greater 
variance. Variance is all about how far the scores 
are from the mean. The mean of both sets is 1.0. 
In the first set, none of the scores are at the mean; 
they are all one point away from the mean. In the 
second set, half of the scores are at the mean, and 
the other half are one point away from the mean. 
Thus, there are fewer differences from the mean in 
the second dataset.)

Back to our two sets of scores. If these are to-
tal scores on a two-item test, and if we fix it so 
that every item is answered correctly by half of the 
test takers (to make for a fair comparison), how 
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do you end up with total scores of 2, 2, 0, 0? 
There’s only one way, and it requires our variables 
to be correlated 1.0. If you would like to see what 
that data would look like, just check the previous 
dataset. What about the other set of scores (1, 1, 
2, 0)? Given the conditions governing this demon-
stration, there’s only way for a two-item test to 
yield these total scores. And it looks like this:

Person Item 1 Item 2 Total

Steven 0 0 0
Lloyd 0 1 1
Rachel 1 1 2
Ron 1 0 1

The correlation between Item 1 and Item 2 is 
0.0. Are you starting to see why the correlation 
among the items matters to composite score vari-
ance?

Before I jump ahead to the explanation, one 
last dataset: 1, 1, 1, 1. What’s the variance of 

these scores? Zero. No variability at all. Every 
score is at the mean. If, as before, these are total 
scores from a two items test, with each item an-
swered correctly by half of the test takers, then 
there’s only one way the the data can yield these 
total scores.

Person Item 1 Item 2 Total

Elmore 0 1 1
Hubert 1 0 1
Johnnie 0 1 1
Willie 1 0 1

And the correlation is... wait for it... -1.0. 
What’s the lesson? A strong, negative relationship 
between the items causes the item variance to can-
cel out when the items are summed to a total 
score. The composite score actually has less vari-
ance than the individual items.

Let’s see if we can summarize these observa-
tions in a meaningful way. A negative inter-item 
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correlation causes the total score to have less vari-
ance than the individual items. A zero inter-item 
correlation causes the total score to have the same 
amount of variance as the individual items. A posi-
tive inter-item correlation causes the total score to 
have more variance than the individual items. Vari-
ance is about differences in scores. Positively corre-
lated items allow the differences between people 
on individual items to accumulate when these 
items are combined to form a total score.

Final Thoughts

It would appear that the ideal test would be 
composed of a large number of items average in 
difficulty and correlated perfectly with each other. 
Data from such a test would look like this:

Person Item 
1

Item 
2

Item 
3

Item 
4 Total

Alex 1 1 1 1 4
Neil 1 1 1 1 4
Garrett 1 1 1 1 4
Leonard 0 0 0 0 0
Quendra 0 0 0 0 0
Sean 0 0 0 0 0

But is this really an ideal situation? How 
could you make it happen? Here’s a way: Write 
one item average in difficulty and repeat it four 
times. Such a test would have the appearance of 
being desirable due to the high variance in the to-
tal score, but it’s obvious that we’re just kidding 
ourselves. To use a sports metaphor, it would be 
playing for the stats and not for the win. Each 
item on a test is supposed to provide, in part, 
some unique information. That is clearly not the 
case when you repeat items. Also, this approach 
leads to a lot of tied scores.
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So we want positively correlated items, but we 
don’t want perfectly correlated items. What about 
the difficulty part? Do we want all of our items to 
be exactly average in difficulty? The answer to that 
question can be found in the next chapter.
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9 Test day for the test items.

Item Analysis



Introduction

Item analysis is the process of identifying the 
good items in our item pool. We do this any time 
we write new tests (as we learned in Chapter 6). 
We also do this when we take an existing test and 
modify it to make it perform better. One of the 
most widely used personality tests is the MMPI. 
For over forty years every item was the same as 
the day it was published. Eventually the MMPI 
was revised; some poorly-performing items were 
deleted and replaced by new items. The revised 
version was given the clever name of MMPI-2.

Let’s remember that a test is a collection of 
items, an item is a single response to a single 
stimulus, and we would rather not have one-item 
tests. These issues were addressed in Chapters 1 
and 6.

We can accomplish a number of objectives 
with an item analysis. The two most common ob-
jectives are (a) to increase the unidimensionality 

of our test and (b) to make our test a better predic-
tor of some external variable. Other objectives in-
clude the deletion of biased items, adjustment of 
test difficulty (making the test harder or easier to 
better fit the test takers’ abilities), and establish-
ment of the content validity of the test.

Norm-Referenced Versus Domain-Referenced Test-
ing

We have previously discussed how meaning is 
given to a test score (see Chapter 2). The most 
common method is normative inference in which 
a person’s score is compared to the scores from 
other test takers (we’ll give normative inference 
another name: norm-referenced testing). There is 
a different method for giving meaning to test 
scores called domain-referenced testing (also 
called criterion-referenced testing, but we’ll avoid 
using that name because it’s wretched). Thus, you 
could say that we have norm-referenced testing 
and domain-referenced testing. With domain-
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referenced testing, a person’s score is compared to 
an objective standard, quantified with a cutoff 
score. An example of this is the licensing exam. 
With a licensing exam, all that matters is whether 
a person’s score is greater than the cutoff score. If 
the score is greater than the cutoff score, we infer 
that the person can perform the job (e.g., driving a 
car, performing brain surgery, etc.) at an accept-
able level. Unlike norm-referenced testing, we 
don’t care how well this person’s score compares 
to everyone else’s score. His score may be the low-
est score we see that whole month, but if it is 
greater than the cutoff score, the person passes 
and we infer that he is qualified. This issue of how 
we interpret the score (domain-referenced versus 
norm-referenced) is important because it deter-
mines which type of item analysis we perform. 
Chart 1 shows all of the major item analysis tech-
niques.

A note on the chart. We are not limited to per-
forming just one type of item analysis. We can do 

two, three, or four different item analyses on one 
set of items. However, odds are strong that one is-
sue (e.g., unidimensionality, content validity, pre-
diction of external variable) is the primary con-
cern. Enough with the preliminaries, let’s get 
down to business.
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Difficulty-Based Item Analysis

The goal of a difficulty-based item analysis is 
to match the difficulty of the test to the ability of 
the test taker. That is, if we have low ability test 
takers, we want our test to be composed of easy 
items. If we have high ability test takers, our test 
should be composed of difficult items. And of 
course, we want items of average difficulty for peo-
ple of average ability. Why do we want this match? 
We’ll answer that question by exploring another 
question: What if there is a mismatch of ability 
and item difficulty? If we give a hard item to a low 
ability person, two things can happen (the re-
sponse will either be correct or incorrect), and nei-
ther are very informative. If the person misses the 
item, that doesn’t tell us much, because he was of 
low ability and it was a difficult item – it is what 
we expected. But what if the person gets it right? 
That also is not informative, given that we know 
the item is difficult and the person is low in ability 
– he likely guessed correctly. It goes the other way 

too. What if we give an easy item to a high ability 
test taker? If he misses it, it was probably a ran-
dom error. If he gets it right, it tells us he’s not 
low ability, which we already knew.

To understand the importance of matching the 
difficulty of the item to the ability of the test taker, 
let’s see what happens when we give two versions 
of a test to a group of test takers whose abilities 
range from average to well above average. We will 
call these two versions of our test Version 1 and 
Version 2. Version 1 has items ranging in difficulty 
from fairly easy to extremely difficult. The me-
dium ability test takers would miss most of the dif-
ficult items (due to lack of ability) and have the low-
est scores of the group. The high ability test takers 
would answer almost all of the items correctly and 
have the high scores. Random errors would occur, 
but they play a minor role in why some people 
have low scores and others have high scores. This 
is how things should go.
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Version 2 of our test contains only easy items. 
It should be obvious that all of the test takers have 
enough ability to answer every one of these items 
correctly – and they will, except for items they 
miss due to random errors. As a result, just about 
every test taker will have a high total score on the 
test. Worst of all, most of the differences among 
the scores will be due to random error and not 
due to ability differences among the test takers. 
The highest scoring test takers have the highest 
scores not because they had the highest abilities 
but because they were lucky in the random error 
department. I hope this sounds bad, because it is. 
Think back to Chapter 1. One of the goals of test-
ing is to give people with different ability levels dif-
ferent scores. Version 2 of the test has failed to do 
that. All because of a poor match between item dif-
ficulty and test taker ability.

You might be wondering, how did we know 
the ability of these test takers before they took the 
test? (And if we already knew their ability level, 

why are we bothering giving them the test?) Well, 
most of the time we don’t know the ability of the 
test takers. But there are some occasions when we 
can make an imprecise approximation of their abil-
ity level. If we have a group of first grader stu-
dents, odds are good that they are of low ability 
on just about everything compared to general soci-
ety. Similarly, a group of advanced college students 
would be of high ability for just about everything 
in the academic realm as compared to general soci-
ety. What if we don’t know squat about the ability 
of our test takers? The best items would be of 
mostly average difficulty with some hard and some 
easy questions added to the mix. That is, we’ll as-
sume the ability of the test takers is normally dis-
tributed, mostly average, with a small amount of 
high and low ability people as well. The right 
items for these people will be similarly distributed 
in terms of difficulty.

Now let’s talk statistics. We only have one to 
deal with and that’s the difficulty of the item, 
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called p value. Now this p value isn’t the same as 
the p value from statistics class which related to 
testing the null hypothesis with significance tests 
like t tests and ANOVAs. This p value simply tells 
us the percent of people who answered the item 
correctly (i.e., in the keyed direction). Very simple 
to compute. (Interesting note: I didn’t use the 
term p value in Chapter 8, but the concept, in the 
form of percent correct, was used repeatedly. Go 
back and see if you can find it.) Obviously, p val-
ues are limited to dichotomously scored items 
(i.e., scored as right or wrong, or stated more gen-
erally, answered in the keyed direction or not). If 
our items have more than two possible scores, like 
the common multi-point Likert item (e.g., “I like 
cats.” “Strongly Disagree, Disagree”, etc.), we 
won’t be able to compute p values. In that case we 
can compute the item mean and use it for the 
same purpose. High means indicate attitudes with 
which most agree and low means indicate atti-
tudes with which most disagree. It’s just not as 

cool. Getting back to dichotomously scored items, 
let’s compute some p values for the data below.

Person Item 1 Item 2 Item 3

Carla 1 1 0
Michael 1 0 0
Jane 1 1 1
Roger 0 0 0
Bertrand 1 1 0

In order to compute p values the data must al-
ready be scored. And this dataset has been scored. 
How do I know? I made it up, and I’m saying it 
has been scored. Now to compute the p values for 
first item, we note that 4 out of 5 people answered 
correctly. Thus the p value is 4/5 or .8. It’s an easy 
item. Most people are answering it correctly. For 
Item 2, 3 out of 5 answered correctly, so p = .6. 
Close to average difficulty. Finally, Item 3 is diffi-
cult. Only one person answered correctly, p = .2.
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How do we use these p values for item analy-
sis? If you wrote a test a large number of items 
with high p values (let’s say, 1.0), then these items 
are not separating your test takers. They all get 
them correct (same problem if the p values are all 
0.0 – everyone missed the items). It’s like adding a 
constant to everyone’s score. That doesn’t help 
you assess their standings on the construct. 
Moreover, you can’t correlate a constant with any-
thing. So performance on these items is irrelevant 
to other variables. Here’s another thing: Items 
with 1.0 or 0.0 p values have zero variance (zero-
variance items is sort of a nickname for these 
items). Let’s put all this together. Remember com-
posite variables from the previous chapter? The 
two determinants of the variance of a composite 
variable are (a) the variance of the items that com-
prise the composite and (b) the item intercorrela-
tion. Items with p values of 1.0 or 0.0 have zero 
variance and don’t correlate with the other items. 
Which is a long way of saying what we already 
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Question 1 of  4
What is the p value of an item that is answered in-
correctly by 82 out of 100 test takers?

A. .82

B. .18

C. Something else



said: Items with 1.0 p values or 0.0 p values do 
very little for us as far as determining a person’s 
standing on the construct.

OK, you say. I’ve got it. We don’t like items 
with p values of 1.0 or 0.0. But those must be rare. 
What about items with .93 or .02 p values? The an-
swer is that the problem is the same, just to a re-
duced degree. Those items do very little for us in 
terms of measuring a person’s standing on a con-
struct.

There you go, that’s difficulty-based item 
analysis in all its glory. Now the best application 
of this will ultimately be computer adaptive test-
ing, but we’ll save that talk for another day. There 
is one other issue related to this that we will dis-
cuss a bit later in this chapter. That’s coming 
when we get to item analysis for domain-
referenced tests.

Internal Consistency and Empirical Keying Item 
Analysis Overview

The next two types of item analysis have some-
thing in common. For both empirical keying and 
internal consistency item analysis a good item is 
one that correlates well with some variable. The 
only issue up for grabs is: What is this variable 
with which we are correlating the items? That’s 
where the two methods differ. Empirical keying 
correlates items with a variable independent of the 
test, whereas internal consistency correlates items 
with the other items on the test.

Internal Consistency Item Analysis

With an internal consistency item analysis, a 
good item is one that correlates well with the 
other items on the test. This method of item analy-
sis has everything in common with internal consis-
tency estimates of reliability. Recall from Chapter 
5 that the basic split-half procedure involved divid-

173



ing the items on a test into two groups, getting a 
total score for each half of the test, and correlating 
the scores. Things were good if the correlation 
was strong, meaning that (a) there was little ran-
dom error and (b) the factors that caused people 
to get high scores on one half of the test were the 
same factors that caused people to get high scores 
on the other half. That is, each half of the test 
measured the same thing. Ultimately, we used co-
efficient alpha to compute split-half reliability esti-
mates because it solved most of our problems. Get-
ting back to internal consistency item analysis, 
we’ll keep items that correlate well with the other 
items. Doing so will have the ultimate effect of giv-
ing us a high coefficient alpha (and alpha is sort of 
like an average correlation among the items).

Our statistic of choice will be the corrected 
item-total correlation. Forget the corrected part for 
a second. An item-total correlation is the correla-
tion between the scores on a given item (let’s say 
Item 1) and the total score on the test. A strong, 

positive item-total correlation indicates that peo-
ple who do well on Item 1 also do well on the 
other items (and vice versa). No guarantees here, 
but this also suggests that Item 1 may be measur-
ing the same construct as the other items. We call 
this statistic a corrected item-total correlation be-
cause when we correlate Item 1 with the total 
score on the test, we don’t want Item 1 to be a 
part of the total score. If Item 1 was a part of the 
total score, it would be a part of both sides of the 
correlation, inflating the correlation. Thus, on a 
20-item test, a corrected item-total correlation for 
Item 1 is the correlation of Item 1 with the total 
score on Items 2 through 20. If Item 1 has a low 
corrected item-total correlation (say, equal to 0.0), 
then we don’t want it on our test. If its item-total 
correlation is strongly negative (r = -.4 or so), we 
really don’t want it on our test unless we can de-
termine that a scoring error led to the negative 
sign. In such a case, we would fix the scoring error 
and rerun the analysis. But that’s just Item 1. 
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What about the rest of the items? We need to com-
pute corrected item-total correlations for Item 2-
20. The corrected item-total correlation for Item 2 
would be the correlation between scores on Item 2 
and the sum of Items 1 and 3-20. In short, you 
could say that a corrected item-total correlation is 
the correlation between Item k and the total score 
of the rest of the items (i.e., all but Item k).

Let’s talk about an item that has a 0.0 cor-
rected item-total correlation. As I said, we don’t 
we want it on our test. But why? There are two 
possible reasons why our item could have such a 
low correlation with the other items. The first is 
that the item is full of random error. As you recall, 
randomness doesn’t correlate. So that would ex-
plain the low correlation. The other reason is that 
maybe the item is mostly free from random error, 
but it measures a different construct from the rest 
of the test. Given that this item analysis technique 
is about internal consistency, we don’t want to 
keep items that measure other constructs. (I know 

I said that there were two reasons, but there is ac-
tually one more possibility. Maybe our item 
doesn’t have a random error problem, but the rest 
of the items do. Consider a 20-item test with 19 
unreliable items and one reliable item. The one re-
liable item wouldn’t correlate with the total score 
on the other 19.)

Now when we do our analysis, we start with 
all of the items and delete them one at a time. 
Why not two at a time? Because every time we de-
lete just one item, the list of “other items on the 
test” has just changed. For example, the corrected 
item-total correlation for Item 4 is the correlation 
between Item 4 and the sum of Items 1-3 and 5-
20. But if we delete Item 2 because it’s a loser, the 
corrected item-total correlation for Item 4 is now 
the correlation between Item 4 and the sum of 
Items 1, 3, and 5-20. 

As mentioned earlier, the effect of deleting 
items that fail to correlate well with the other 
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items is that coefficient alpha for the test will be 
maximized. So we need to check alpha during this 
analysis. We should do this at every step because 
ultimately, there will be a point where the deletion 
of additional items no longer increases alpha by a 
substantial amount. It’s that second to last word 
substantial that’s important. We can almost always 
get alpha a little higher. A trivial bit higher. But 
we have to ask ourselves, is it worth deleting an-
other item just to get alpha .0001 higher? The an-
swer is no. What if we can get alpha to go from 
.60 to .65 by deleting Item 3? In that case, I would 
delete the item. I recommend a .04 or .05 thresh-
old. If coefficient alpha will increase by at least .04 
or .05 (depending on how strict you want to be), 
then throw out the item. Anything less, and we’ll 
keep the item.

Enough talk, let’s see some data in action. 
What follows are the results from an analysis of 
an eight-item test. The items have been scored 
and the initial coefficient alpha is .24. The cor-

rected item-total correlations and a column titled 
“Alpha if Item Deleted” (which, as the name sug-
gests, tells us what coefficient alpha will be if we 
delete the item) are below. We can use this to de-
termine if we should bother deleting the item. Re-
member that we are starting with an alpha of .24.

Item Corrected Item-
Total Correlation

Alpha if Item 
Deleted

1 0.05 0.24
2 0.15 0.18
3 0.23 0.13
4 -0.23 0.37
5 0.27 0.09
6 -0.05 0.32
7 0.10 0.22
8 0.25 0.12

Clearly, there are big problems with Items 4 
and 6. They both have negative corrected item-
total correlations. I’ve checked, and there aren’t 
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any scoring errors. Thus, these are the first items 
we will target for deletion. Remembering that we 
do this one item at a time, we pick Item 4 first be-
cause it is more strongly negative than Item 6. 
Also note that if we throw it out, alpha will in-
crease to .37. That’s quite a bump up.

So, Item 4 is gone, here are the new results. 
Our coefficient alpha has increased to .37, just like 
they promised.

Item Corrected Item-
Total Correlation

Alpha if Item 
Deleted

1 0.05 0.40
2 0.13 0.35
3 0.23 0.30
4   –   –
5 0.34 0.22
6 -0.04 0.46
7 0.18 0.33
8 0.31 0.25

Now Item 6 has the worst corrected item-total cor-
relation. Deleting it will raise alpha to .46. Out it 
goes.

Item Corrected Item-
Total Correlation

Alpha if Item 
Deleted

1 0.10 0.49
2 0.21 0.43
3 0.26 0.40
4   –   –
5 0.40 0.31
6   –   –
7 0.16 0.45
8 0.25 0.40

Alpha did indeed increase to .46. Which item 
has the worst correlation with the other items? 
Item 1 you say. Should we delete it? No, you say. 
Why, I ask? Because, you say, if we delete Item 1, 
our coefficient alpha will increase by only .03 units 
(from .46 to .49). Good call, I say. Then our inter-
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nal consistency item analysis is done. We have an 
eight-item test that is as internally consistent as 
we could get it to be. Although a coefficient of in-
ternal consistency of .46 is fairly lousy, it is the 
best we could do for these items. That’s the way it 
goes sometimes.

Empirical Keying Item Analysis

In an empirical keying analysis, a good item is 
one that correlates well with an external variable. 
What is an external variable? It is any variable that 
is not a part of the item pool. Let’s say that we 
wrote 43 items measuring math ability. An exter-
nal variable is any variable other than these 43 
items. And it could even be on the same piece of 
paper. We could ask people when they finish the 
test to write their ACT Math Composite score at 
the bottom of the test. Our item analysis would 
simply be the correlation of each item with the 
ACT scores. We would keep the items that corre-
late with ACT scores. At the end of this process, 

we would have a test that is associated with ACT 
scores and could be used to predict ACT scores if 
we so desire.

Really, that’s all there is. As before, it would 
be wise to score our items before we start our 
analysis. Also, if we encounter a strong negative 
correlation (when the rest of the correlations are 
positive), we should check to see if our scoring 
was correct. Of course, if we have one positive cor-
relation among a field of negative ones, we need to 
check the accuracy of the scoring of the one posi-
tive correlation. Here we go. Let’s say that we 
have a five-item test consisting of knowledge 
about some movie. It could be any movie. Just 
imagine that it’s your favorite movie. (I’m imagin-
ing that it’s Citizen Kane. It’s not really my favorite 
movie – I just tell everyone that it is.) The external 
criterion is a measure of how often they have seen 
the movie. Clearly, people who have seen the 
movie multiple times should know a great deal of 
information about the movie.
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Item Correlation with External 
Criterion Variable

1 -0.29
2 0.55
3 0.55
4 0.37
5 0.07

We note that Item 1 has a fairly strong nega-
tive correlation. We check for scoring errors and 
can’t find any. Thus, Item 1 is out. (Unlike inter-
nal consistency item analysis, we can delete multi-
ple items at once with an empirical keying item 
analysis.) We also note that Item 5 has a very 
weak correlation and decide to throw it out. These 
two items were no-brainers. What standard do we 
use to determine whether a correlation is strong 
enough? There are a number of answers to that 
question that depend on a number of issues. We’ll 
use a fairly liberal .2 standard. That is, any item 
with a correlation weaker than .20 will be deleted. 

In our case, we are done deleting items as Items 2-
4 all are greater than .20. So, the final version of 
our test consists of three items (Items 2-4), all of 
which predict the external criterion variable fairly 
well. How well does our three-item test as a whole 
predict the criterion variable? By that, I mean, 
how well does the total score on our three-item 
test predict? To answer that, I formed a total score 
consisting of the total of scores on the good items 
(Items 2-4). The correlation of the total score with 
the external criterion variable is .62. That’s some 
pretty good prediction. Now, we’ll still need to do 
a validity study with a new sample of data to ver-
ify this, but we’re obviously off to a good start. 
You know what’s interesting? The single best item 
(Item 3) had a correlation of .554. But when we 
added Items 2 and 4 to it to form the total score, 
the correlation of the total was .62. That is, a col-
lection of good items works better than any one 
item by itself. Yet another reason to not have one-
item tests.
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Item Analysis for Domain-Referenced Tests: Con-
tent Validity

Overview. Just as a reminder, the point of a 
domain-referenced test is to determine if a per-
son’s score meets a set standard. The score is not 
compared to other people’s scores, but rather to a 
set performance level, as quantified by a cutoff 
score. If the test taker’s score is greater than the 
cutoff score, then the test taker passes the test. If 
not, they don’t.

Although it’s possible to draw a domain-
referenced interpretation of a score from any type 
of test, it’s a bad idea for tests other than content 
valid tests. What’s a content valid test? A test is 
content valid if the behaviors measured on the test 
are a representative sample of the behaviors in the 
content domain. And the content domain is the 
set of all behaviors relevant to the purpose of the 
test. So the test is the small thing, and the content 
domain is the big thing. The test taker’s perform-

ance on the test is  generalized from the small 
thing (the sample of behaviors on the test) to the 
big thing (the content domain). As an example, if 
you can perform the twenty or so behaviors on the 
road part of  the driver’s test, then we infer that 
you can perform all of the behaviors involved in 
driving a car. Does this actually work? It does if 
the test content is a representative sample of the 
content domain and if the content domain has 
been defined correctly. Thus, the goal of our item 
analysis procedure is to develop a test that is con-
tent valid.

Content validity will be discussed in detail in 
Chapter 10. For the present purposes of item 
analysis, we’ll just discuss the basics. Further-
more, let’s limit the application of the content va-
lidity strategy to tests designed to determine a per-
son’s performance on a narrowly defined set of ob-
servable behaviors (like driving a car). Application 
of the content validity strategy to tests of unob-
servable constructs like depression will also be dis-
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cussed in Chapter 10 (Spoiler alert: The content 
validity strategy doesn’t work well for tests of un-
observable constructs).

Procedure. A content validity study proceeds as 
follows.

I. Define the content domain.
II. Make the test.
III. Establish that the behaviors and/or infor-
mation measured on the test are a representa-
tive sample of the content domain.

How is this done? The content domain is defined 
by a careful analysis of the target of the test. If it’s 
a driving test, then we study driving. We docu-
ment not only the behaviors performed but also 
the information required to drive. That’s the first 
step. For the second step, consult Chapter 6. The 
final step (and this is the item analysis part) uses 
an expert judgment process. Experts render their 
opinion regarding the representativeness of the 
test content in the final step.

How do the experts decide the issue? They 
simply compare the content of the test with 
what’s in the content domain, then ask three ques-
tions. Is there something in the content domain 
that is not on the test? (If so, then write an item 
to measure that behavior.) Is there something on 
the test that is not a part of the content domain? 
(If so, then drop the item.) Are the items on the 
test a representative sample of the content do-
main? (If not, then write additional items to ad-
dress the underrepresented content areas. Or de-
lete items from overrepresented content areas.) 
There’s your item analysis.

In summary, our goal is to develop a test that 
tells us how well a person can perform a given ac-
tivity (or how much they know about a narrowly 
defined topic). We list all the behaviors and/or in-
formation associated with that activity (the con-
tent domain). We write a test that contains a repre-
sentative sample of these behaviors. This test is in-
tended to be a miniature version of activity we 
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want to measure. As long as the content domain 
has been accurately and comprehensively defined 
and if the test is a representative sample of this do-
main, then we can validly generalize from test per-
formance to performance on the larger domain.

Final Thoughts on Content Validity. If you’re like 
me when I learned about content validity, there’s 
still something bothering you. Where are the cor-
relations? There aren’t any. What statistics do we 
have for content validity? Mostly, we have agree-
ment statistics, which quantify how well our ex-
perts agree whether a given test item measures a 
behavior in the content domain.

Final Thoughts on Item Analysis

So that’s four kinds of item analysis, which if 
independently performed on an item pool, would 
yield four different collections of items. Their 
goals are different; thus, the items that they retain 
are different. Chart 2is a handy summary of the 

various definitions of a good item for each of the 
item analysis techniques.
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CHART 2 The Nature of a Good Test Item According to 
Various Item Analysis Techniques

Item Analysis 
Technique A good item is...

Difficulty-
Based

...one with a difficulty that matches 
the ability of the test taker.

Internal 
Consistency

...one that correlates with the other 
items.

Empirical 
Keying

...one that correlates with a variable 
independent of the test.

Content 
Validity

A good set of items are those that 
are a representative sample of the 
content domain.
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10 Interpretations and more 
interpretations.

Validity



The Definition of Validity

We said it in Chapter 4, and we’ll say it again: 
A reliable test may be a good test. An unreliable 
test (which measures nothing but random error) 
is clearly bad. OK, so a reliable test does not meas-
ure random error, but does it actually do what we 
want it to do? That is the validity question. What 
is validity? Well here’s the definition offered by 
The Standards for Educational and Psychological Testing 
(AERA, APA, & NCME, 1999, p. 9):

Validity is “...the degree to which accumulated 
evidence and theory support specific interpre-
tations of test scores entailed by proposed 
uses of a test.”

That’s a long way of saying that validity is all 
about having evidence to support the interpreta-
tions we draw from test scores. It is not about the 
test itself, or the scores. It’s about how we inter-
pret the scores (many people state this as “infer-
ences we draw from the scores,” that’s fine). What 

are some interpretations? Let’s say that we take a 
test that is supposed to be an IQ test. And we get 
a high score. What is the interpretation of the 
score? We interpret it to mean that we are smart. 
Good for us. Now let’s say we take the ACT, a test 
designed to predict college performance, and we 
get a high score. In this case, the interpretation is 
that we will succeed in college. Now let’s say that 
we take an integrity test. An integrity test has 
questions that ask you if you have stolen from pre-
vious employers. Now let’s say we get a low score 
(and low is bad). The interpretation is that we will 
steal from our potential employer. Or we could 
take a driver’s licensing test and get a high score. 
The interpretation is that we will be able to drive a 
car at some minimum level of competence.

There are many possible ways to interpret a 
test score. We could interpret a high ACT score to 
mean that a person is smart. We could interpret a 
low score from an integrity test to mean a person 
is depressed. We could interpret a high score on 

184



an IQ test to mean that a person will be a good 
driver. But do we have any evidence to support 
these interpretations? If not, then those interpreta-
tions are not valid.

So how do we gather evidence to support a 
given interpretation of a test score? We do a valid-
ity study. There are three types of validity studies, 
a criterion-related validity study, a content validity 
study, and a construct validity study. Note that 
these are not three types of validity, but rather 
three different ways we can gather evidence to sup-
port the validity of the interpretations of scores 
that we draw.

Criterion-Related Validity

Criterion-related validity is all about predic-
tive inferences. Do scores on this test predict 
some criterion variable? This is how the ACT is 
used. ACT scores are used to predict college per-
formance. Thus, we interpret a high ACT score to 

mean that a person will succeed in college. The ba-
sic plot of a criterion-related validity study is fairly 
simple. First, determine what it is you want to pre-
dict (college performance, job performance, driv-
ing performance, relapse rate, etc.). Second, give 
the test to a group of people. Third, measure per-
formance on some criterion variable for these 
same people. Finally, correlate the scores on the 
test with scores on the criterion variable. If we 
have a strong and significant correlation, we have 
evidence that our test predicts performance on 
this variable and can interpret a high score to 
mean that a person will succeed.

There are two experimental designs for a 
criterion-related study: the predictive design and 
the concurrent design.

Predictive Design. With a predictive study, we 
give the test to a group of people who have not 
had any experience at the thing we want to pre-
dict. For example, if we are trying to predict col-
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lege performance, our sample will be composed of 
people who have not yet attended college. High 
school seniors make for a fine group in this case. 
After they take the test, we give them some experi-
ence at the thing we are trying to predict. Sticking 
with the college example, we let them attend col-
lege. We probably won’t be able to let everyone 
into college, so at this stage, we are going to have 
to make some selection decisions. Once the se-
lected group is in college, we need to wait while 
they experience it. Some will succeed. Others will 
fail. We give them a chance to do that. After we 
have waited a sufficient amount of time, we meas-
ure performance on our criterion variable. Once 
we have done so, we can correlate scores on the 
test with scores on the criterion variable. To sum-
marize the predictive design:

1. Determine what we want to predict.
2. Give the test to inexperienced people (i.e., 
applicants).
3. Make selection decisions.
4. Wait while the selected group gains experi-
ence on the behaviors relevant to the criterion 
variable.
5. Measure criterion performance.
6. Correlate the scores.

The hidden danger is in Step 3. How we make our 
selection decisions can adversely impact the corre-
lation that we obtain in Step 6 (called the validity 
coefficient). The optimal scenario would be to se-
lect at random. For practical reasons, that’s not 
likely to happen. The thing we want to avoid at all 
costs is making the selection decisions on the ba-
sis of the scores of the test that is being validated. 
Doing so will introduce direct range restriction, 
which will weaken the validity coefficient we ob-
tain. A discussion of how this happens is in order. 
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Interactive 1 presents an explanation of how range 
restriction weakens a correlation. 

What are we to do about range restriction? Ob-
viously we should avoid it to the extent possible. 
But how? Ideally, we would use a random process 
to make the selection decisions. If that’s not possi-
ble, we can use an alternative test (i.e., a second 
test) to make the selection decisions while we still 
collect data on the test we are validating. With 
this second test, we will still have range restric-

tion (called indirect range restriction), but it’s im-
pact on the correlation is likely to be minimal.

Concurrent Design. One problem with the pre-
dictive design is the need to wait. If we are predict-
ing college performance, we will have to wait at 
least one semester, and probably more. Ideally, we 
want our measure of performance to be based on a 
large sample of behavior, and one semester of col-
lege (in our ACT example) is not much. We proba-
bly want at least two years of performance before 
we measure college performance. Thus, we might 
have to wait two years. That’s a long time. Can’t 
we get the results any faster? Yes, if we do a con-
current study. In a concurrent study, we will give 
the test to experienced people. That is, people 
who already have experience at the thing we are 
trying to predict. Because they already have experi-
ence, we don’t need to wait, we can go right to the 
part where we measure criterion performance. So 
the steps are:
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relation
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1. Determine what we want to predict.
2. Give test to a group of experienced people 
(i.e., current employees).
3. Measure criterion performance.
4. Correlate the scores.

Much quicker this way. And we don’t have to 
make making selection decisions. They’ve already 
been made. But there’s nothing for nothing. New 
problem: The people taking the test may not be all 
that motivated. In a predictive study, the people 
taking the test usually want something: a job, col-
lege admission, etc. And they think that the test is 
their ticket to get in. So, they are always trying 
hard. But in the concurrent design, we’ve got peo-
ple who already have experience. Their futures are 
not hanging on the outcome of the test results. In 
short, there’s nothing in it for them. This lack of 
motivation can affect results, which ultimately dis-
torts the validity coefficient. But, you say, couldn’t 
we offer them rewards and incentives to get them 

to try harder? Yes, and that may solve some of the 
problem.

Problems with all Criterion-Related Validity Studies. 
We’ve got more than a few other problems to deal 
with. First, because all criterion-related validity 
studies end up with a correlation, anything that is 
a problem for a correlation is a problem for our 
study. That includes range restriction (mentioned 
above when we talked about how the selection de-
cisions were made), sampling error, and unreliabil-
ity of measurement. Small sample sizes are greatly 
affected by sampling error, resulting in deviant cor-
relations, either too high or too low. And it’s not 
like we know this when we compute them. The 
correlation doesn’t come with a label stating, 
“This correlation is .23 units greater than the 
population value.” Nobody loses sleep over correla-
tions that are too high, but the ones that are too 
low have a bad habit of being non-significant. Solu-
tion: Use large sample sizes. Finally, variables that 
are not perfectly reliable will lower our validity co-
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efficient. Solution: Use highly reliable measures of 
our predictor and criterion variables.

The Criterion Problem. There’s one more item on 
my list of problems. It is called the Criterion Prob-
lem, capital letters and all. The problem with The 
Criterion Problem™ is that we will never obtain a 
perfect measure of the criterion variable. As such, 
the correlation between scores on our test and our 
imperfect measure of the criterion variable doesn’t 
indicate how well the test actually predicts crite-
rion performance. As the measurement of the crite-
rion variable worsens, our validity coefficient be-
comes more misleading. It is possible that we can 
obtain a strong and significant validity coefficient 
(e.g., r = .5) for a test that is not really valid. 
Why? Although our test predicts this flawed meas-
ure of the criterion variable, it does not predict the 
way people actually perform on the job (or in 
school, etc.). All we got was a bad measure of crite-
rion performance. Conversely, we could obtain a 
0.0 correlation with a terribly flawed measure of 

the criterion variable, but our test may actually be 
valid. How? What if our measure of the criterion 
variable is all random error? Well, nothing will cor-
relate with it. Thus, r = 0.0 for every test that we 
use to predict criterion performance. What’s the 
moral of this story? Make sure that your measure-
ment of the criterion variable is as good as possi-
ble. Don’t just grab a convenient measure of crite-
rion performance. Get a good one. Or don’t do the 
study.

Final Thoughts. It should be clear that there are 
a lot of ways for a criterion-related validity study 
to go wrong. A small sample could introduce too 
much sampling error. One or both variables could 
be unreliable. We could measure the criterion vari-
able poorly in other ways. There could be range re-
striction. In a concurrent design, the test takers 
may not be motivated in the same way real test 
takers would be. It all seems like too much to 
bear. Why would anyone bother trying to gather 
validity evidence with an approach so prone to 
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problems? The first answer is, if you’re trying to 
validate a predictive inference, criterion-related va-
lidity is pretty much the only game in town. The 
second is that when done correctly, a criterion-
related validity study provides persuasive evidence 
that is difficult to discount. Obviously, the trick is 
in doing the study correctly.

Content Validity

Definition. A test is content valid if the behav-
iors measured on the test are a representative sam-
ple of the behaviors in the content domain. The 
content domain is the set of all behaviors relevant 
to the purpose of the test. The controversial issue 
with content validity relates to the various pur-
poses we can have for a test. For now, let’s limit 
the purpose to performance of an activity (e.g., 
driving a car) or knowledge of a narrowly defined 
topic (e.g., state capitals).

We’ve talked about inferences in previous dis-
cussions of validity. What’s the inference with con-
tent validity? The inference is a generalization 
drawn from the test taker’s performance on a 
small thing (the sample of behaviors on the test) 
to a big thing (the content domain). As an exam-
ple, if you can perform the ten or so behaviors on 
the road part of the driver’s test, then we infer 
that you can perform all of the behaviors involved 
in driving a car.

Does this actually work? It does if the test con-
tent is a representative sample of the content do-
main and if the content domain has been defined 
correctly. There are also some other conditions 
that need to be met. We’ll get into those later. 
First, let’s talk about how we conduct a content va-
lidity study.
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Procedure. A content validity study proceeds as 
follows.

I. Define the content domain.
II. Make the test.
III. Establish that the behaviors and/or infor-
mation measured on the test are a representa-
tive sample of the content domain.

How is this done? The content domain is de-
fined by a careful analysis of the targeted activity. 
If it’s a driving test, then we study driving. We 
document not only the behaviors performed but 
also the information required to drive. That’s the 
first step. For the second step, consult Chapter 6. 
The final step uses an expert judgment process. Ex-
perts render their opinion regarding the represen-
tativeness of the test content in the final step. It is 
in this third step of the process where one can say 
that the test has been validated. How do the ex-
perts decide the issue? They simply compare the 
test content with the content domain and address 
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three questions. Is there something in the content 
domain that is not on the test? Is there something 
on the test that is not a part of the content do-
main? Are the items on the test a representative 
sample of the content domain? Once these issues 
are addressed, you have a content valid test, as-
suming some other requirements are met.

What are these other requirements? Well, as 
Pedhazur and Schmelkin (1991) wrote, “Validity 
refers to inferences made about scores, not to an 
assessment of the content of the instrument” (p. 
79). What they mean is that the process given 
above for establishing the content validity of a test 
is really just a process for creating a test. And, as 
we said earlier, validity is about interpretations of 
test scores, which extends far beyond the content 
of the test. Missing from the process described 
above are standardized procedures for administer-
ing the test, scoring the responses, and interpret-
ing the test scores. The good news is that the first 
and the last components are rather easy (there’s 

only one permissible interpretation to draw with a 
content valid test, the generalization interpreta-
tion), and the second one should also be easy for 
almost any performance domain assessed with a 
content valid test. In summary, given standardized 
and logical procedures for administering, scoring, 
and interpreting scores on a test constructed with 
a content validity strategy, one has adequate sup-
port for the interpretation that performance on 
the sample of behaviors measured on the test gen-
eralizes to performance on the larger domain of be-
haviors.

I hope that everything is clear up to this point. 
Our goal is to develop a test that tells us how well 
a person can perform a given activity (or how 
much they know about a narrowly defined topic). 
We list all of the behaviors and/or information as-
sociated with that activity (the content domain). 
We write a test that contains a representative sam-
ple of these behaviors. This test is intended to be 
a miniature version of activity we want to meas-
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ure. As long as the content domain has been accu-
rately and comprehensively defined, and as long as 
the test is a representative sample of this domain, 
then we can validly generalize from test perform-
ance to performance on the larger domain (the ac-
tivity). In this case, the content validity process 
works, and the reason it works is that every step 
of the process deals with observable behaviors 
(and/or specific information that is traced back to 
the activity).

Controversy. Let’s say I want to develop a test 
of an unobservable construct like depression. Can 
I use the content validity strategy to validate such 
a test? It might help to review the two definitions 
of construct from Chapter 1. Everything we’ve dis-
cussed up to this point has been about the second 
definition of construct, the set of behaviors defini-
tion. We are now switching gears and addressing 
the first definition of construct, the unobservable 
cause definition.

Applying the content validity process to an un-
observable construct complicates matters because 
things are fundamentally different. We are now try-
ing to evaluate whether the observable behaviors 
measured on the test are a representative sample 
of something that is unobservable. If you want 
this problem in the form of a question, here it is: 
if something is unobservable, how do we know if 
a set of behaviors (the test) is a representative 
sample of it? Do our experts have special powers 
that mere mortals lack? 

Hardcore fans (and there are some) of apply-
ing the content validity process to tests of unob-
servable causes have a response to this question. 
Their response is, “The experts are simply compar-
ing one observable thing (behaviors on the test) 
with another observable thing (the behaviors in 
the content domain).” True, but this assumes that 
the construct was correctly defined as a set of ob-
servable behaviors (i.e., the content domain). And 
that’s the fundamental point of concern with this 
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approach. The construct is unobservable, so 
there’s no way to know if it has been correctly and 
comprehensively defined as a set of observable be-
haviors. All arguments regarding this issue are 
just arguments about definitions of something un-
observable. Hence, every position is unprovable. 
(This is no minor issue. Arguments rage not only 
regarding the definition of a construct, but 
whether the construct even exists.) Can we com-
prehensively define something unobservable in 
terms of observable components? (Moreover, how 
would we know if we did it correctly?) If the an-
swer is no, then the content validity process is not 
appropriate for these sorts of constructs. The an-
swer is no. It’s not all bad news for tests of unob-
servable constructs; the construct validity strategy 
is perfect for these tests.

Content Validity Applied to Three Tests. Let’s see 
how well the content validity process works when 
applied to three different types of tests: the road 
portion of a driving test, a depression test, and a 

scholastic achievement test. First, the road portion 
of a driving test. Here, the construct is a set of 
driving behaviors. Driving is a set of observable be-
haviors. Just list them. That’s your content do-
main. It’s work, but it can be done. Now make a 
test that is a sample of behaviors from this do-
main and check to see that it is a representative 
sample of the domain. Open and shut. All very 
simple. Observable behaviors (or specific informa-
tion) at every stage. We can generalize from per-
formance on the test to performance on the entire 
domain of car driving behaviors.

Next, a depression inventory. Depression is an 
unobservable construct, so this will be a problem. 
The first step is to define the content domain 
where we list all of the behaviors related to depres-
sion. This needs to be a fully comprehensive list. 
As we discussed, we can never know if we have ac-
curately and comprehensively defined something 
unobservable. So, the content validity process 
breaks down here. We can’t generalize test per-
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formance because we can never know if our test is 
a representative sample of the larger domain. 
Thus, the content validity strategy doesn’t work 
for this type of construct. One possible solution: 
What if you used the DSM definition of depres-
sion as your content domain? The DSM lists a 
number of behaviors associated with depression. 
You could write a test that is a representative sam-
ple from this list. Everything obtained from the 
DSM onward is observable. Sounds good, but it as-
sumes that the DSM’s list is accurate and compre-
hensive. So you couldn’t say that you have a con-
tent valid test of depression, but you could say 
that you have a content valid test of depression as 
defined by the DSM. That’s something. But you’re 
still better off with a construct validity study.

And finally, the third test is a traditional, 
grade school achievement test. Can the content va-
lidity strategy be validly applied to this test? It 
might appear to be that this is another case of a 
test of an unobservable construct. Is it? We’ll an-

swer that with a question: what is the content do-
main for an achievement test? Answer: everything 
that was taught during the school year. Is this an 
unobservable construct or a set of observable be-
haviors? It’s similar to a set of specific information 
(which we treat like a set of behaviors). With an 
achievement test, we want to know if the student 
has learned Topic X (state capitals), Topic Y 
(names of rivers), and Topic Z (names of moun-
tains); we do not care about some underlying abil-
ity. The content domain can be listed in same way 
that all of the driving behaviors can be listed (the 
content domain is every topic covered in class). 
Thus, as with the road driving test, everything is 
observable. In fact, we see this very thing with the 
written driving test. The written portion of the 
driving test is supposed to be a representative sam-
ple of everything a driver has to know to drive a 
car. We can comprehensively define the content do-
main. Thus, we can determine whether the test is 
a representative sample from this domain. So, it’s 
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all good. (If you think about it, the generalization 
inference of content validity is really behind every 
test given in a college class. Whether these tests 
are actually content valid is another story. That de-
pends on whether the instructor took the time to 
insure that the test is a representative sample of 
the course material.)

To summarize, the content validity strategy is 
well suited for inferences regarding generaliza-
tions from a sample of behaviors to the larger do-
main of behaviors. It is not suited for generaliza-
tions to an unobservable construct.

Face Validity. One last content validity issue. 
Content validity is not face validity. A face valid 
test is a test that appears to be valid to the test 
taker. What kinds of tests do test takers think are 
valid? The ones where the format of the test 
matches the format of whatever the test is used 
for. So let’s remember face validity like that. A face 
valid test is a test in which the format of the test 

matches the format of the performance domain. 
For example, a face valid test for the job of forklift 
operator would involve driving an actual forklift. 
A paper and pencil test for forklift operator in 
which a person merely answers multiple choice 
questions about forklift operating principles 
would not be face valid. Face validity and content 
validity are two separate issues. It is possible to 
have a highly face valid test that is not content 
valid (just drive the forklift in a straight line; 
that’s it). It is also possible to have a content valid 
test that is not face valid (once again, the paper-
and-pencil test of forklift operating principles).

A common reaction to learning about the dif-
ference between face validity and content validity is 
to say that face validity doesn’t matter. That is, the 
format of the test doesn’t matter. Is that true? Is 
the format of the test completely irrelevant to the 
content validity of the test? Consider the follow-
ing scenario. We want to make a content valid test 
for that forklift operator job we mentioned. We 
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analyze the job and make a list of all the things a 
forklift operator has to know in order to perform 
the job. We make a multiple choice, paper-and-
pencil test of these concepts, and this test is a rep-
resentative sample of the job. Problem: The job 
doesn’t involve reading, and you obviously must 
read to pass our paper-and-pencil test of job 
knowledge. What we have done is measured some-
thing (reading ability) that is not a part of the per-
formance domain. Now, you might say that any-
one who can’t read really shouldn’t have this job. 
But why? Reading isn’t a part of the job. And even 
if it is, what if the reading level required for the 
job is low (third grade), but the reading level of 
the test is high (tenth grade)? We are still measur-
ing an irrelevant behavior. Not good. So we must 
always be cautious with how we measure the 
behaviors/information on our content valid test. It 
should also be mentioned that even if our paper-
and-pencil test of forklift operating principles 
didn’t have reading-level problems, our test still 

isn’t content valid for the simple reason that a 
written test is a knowledge test and successful per-
formance of the job requires more than mere 
knowledge about how to operate a forklift. It re-
quires actual operation of the forklift. A person 
may know a great deal about how to perform a be-
havior but be unable to successfully perform it.

Final Thoughts on Content Validity. If you’re like 
me when I learned about content validity, there’s 
still something bothering you. Where are the cor-
relations? There aren’t any. Correlations are a part 
of criterion and construct validity but not content. 
What statistics do we have for content validity? 
Statistics related to agreement among the experts. 
Also, reliability is pretty important for the same 
reasons that reliability is always important. But 
wait, if we don’t correlate the test scores with cri-
terion scores, how do we know if the test is valid? 
The answer is that we are not making a prediction 
inference. We are making a generalization infer-
ence. If the test content is a representative sample 
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of a larger domain of behaviors, then performance 
on the test can be generalized to performance on 
the entire domain of behaviors.

Construct Validity

With construct validity, we are concerned with 
whether the test measures the construct it is sup-
posed to measure. That is, if my test is supposed 
to measure intelligence, can I correctly interpret a 
high score as indicating that a person is smart? 
Anyone can say that their test measures intelli-
gence (or schizophrenia, or depression, or what 
have you), but how do we know if it does? In or-
der to support our claims of the construct validity 
of our test, we need to demonstrate two things: 
convergent validity and discriminant validity.

Convergent validity is when scores on our test 
correlate strongly with scores on another test 
measuring the same construct. That is, people 
who score one way (e.g., high) on our test also 

score the same way (high) on another test of the 
same construct (in short, we get a strong, positive 
correlation between the two). The logic is simple. 
If our test really measures intelligence, then 
scores on our test should correlate strongly with 
scores on an existing test of intelligence. The 
steps to computing convergent validity coefficients 
are short and sweet.

1. Give our test to a group of people.
2. Give another test measuring the same con-
struct to the same group of people.
3. Correlate the scores and hope for the best 
(a strong correlation).

Discriminant validity is the opposite of conver-
gent validity. In fact, discriminant validity is 
unique in that it is one of rare times in which we 
hope to obtain a zero correlation. Nothing would 
thrill us more than a 0.0 correlation. The logic is 
as follows. If our test measures construct X, and 
construct X is unrelated to construct Y (in a con-
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ceptual sense), then scores on a measure of con-
struct X should not correlate with scores on a test 
of construct Y. That is, scores on our test should 
not correlate with scores on a test measuring a dif-
ferent construct. The steps are almost the same as 
before.

1. Give our test to a group of people.
2. Give another test measuring a different con-
struct to the same group of people.
3. Correlate the scores and hope for the worst 
(a weak correlation).

If the test displays adequate discriminant valid-
ity and convergent validity, then we have pretty 
good evidence that it measures the construct in 
question and not some other construct (assuming 
something we’ll discuss in a page or two). We can 
validly interpret a high score as indicating a high 
standing on the construct in question.

The data from a construct validity analysis can 
be displayed in a matrix of correlations. This ma-

trix is called a Multi-Trait Multi-Method matrix 
(or MTMM matrix). Elements in a MTMM matrix 
include convergent validity coefficients, discrimi-
nant validity coefficients, and, optionally, reliabil-
ity coefficients. The word trait is a synonym for 
construct and the word method can be thought of 
as a type of test. However, I find it more useful to 
think in terms of methods of measurement instead of 
test since a single test can measure multiple con-
structs. Below is a MTMM matrix displaying data 
from two constructs (depression and schizophre-
nia) measured two different ways (paper-and-
pencil test and observational checklist). 

Paper & PencilPaper & Pencil ObservationObservation
Dep Sz Dep Sz

Depression (Paper 
& Pencil)

(.92)

Schizophrenia 
(Paper & Pencil)

0.12 (.89)
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What we see above is some fantastic construct 
validity. (The fact that I made up the data doesn’t 
hurt.) The convergent validity is great for the 
measures of depression (.72) as well as schizophre-
nia (.68). The discriminant validity coefficients are 
also fantastic, ranging from -.13 to .12. The other 
numbers on the matrix are reliability coefficients. 
It is common to place reliability coefficients in pa-
rentheses along the main diagonal. In the above 
matrix all of the reliability coefficients are good, 
with the lowest being .88 for our observational 
checklist of schizophrenia.

And now, because we can, how about a quiz 
(Review 1) to see if you can find your way around 
a MTMM matrix?

Problems with Construct Validity. There are a cou-
ple of problems with the construct validity proc-
ess. The first is concerned with the second step in 
the convergent validity process. We need to find 
another test measuring the same construct against 

which we will compare our own test. How do we 
know that this other test actually measures the 
construct in question? We can’t just take the word 
of the test developers on this issue. We need to ex-
amine its construct validity evidence. If this other 
test isn’t a good measure of the construct in ques-
tion, then it would be unwise for us to compare 
our test with it. (This is actually The Criterion 
Problem all over again.) The obvious solution is to 
always compare your test with the best available 
existing measure of the same construct.

REVIEW 1 Multi-Trait Multi-Method Matrix Quiz
Question 1 of  3
Below is a MTMM matrix for two measures of Effort (EFF), Teamwork (TW), and Solution Creativity (SC).
	 Observation! ! Simulation!
	 EFF! TW! SC! ! EFF! TW! SC
EFF (Obs)! (0.72)! ! ! ! ! !

TW (Obs)! 0.39! (0.89)! ! ! ! !

A. .55

B. .48

C. .23

D. .41
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The second problem is related to the first. It is 
more of a problem to the field of psychology than 
to any study in particular. How did someone estab-
lish that the existing test of the construct in ques-
tion really measures that construct? They did their 
own convergent and discriminant validity studies. 
Which means that they compared their test to an 
existing test. And that test was compared with an-
other existing test. Which in turn, was compared 
to another existing test. It’s like a big circle. If we 
keep comparing our new tests to the old tests 
(and rejecting the new ones that fail to correlate), 
then all we’ll ever have is more of the same old 
stuff. Well, what if I write a new test of intelli-
gence that is different in conception and design 
than any of the existing tests? If my new test is 
really as different as I think, then it shouldn’t cor-
relate with the existing tests to a substantial de-
gree. If I’m right about this new test, then there 
isn’t anything available that should converge with 
it. A lot of tests are available for discriminant valid-

ity, but none for convergent. What to do? In such 
a case, I’ll need to abandon the construct validity 
strategy and adopt a criterion-related strategy. I’ll 
need to show that my test can predict meaningful, 
relevant external variables (e.g., school perform-
ance, job performance, etc.) better than the exist-
ing tests.
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11 It’s like waking up in the 
future.

Item Response Theory



Introduction

It’s time for a major change. CTT represents 
basic measurement theory. But there are two 
newer measurement theories that can do things of 
which CTT could never dream. This chapter is 
about one of these newer theories, item response 
theory (IRT), a theory of measurement which 
dates to the work of Lord (1952). (We won’t be 
discussing the other theory, Generalizability The-
ory.) To best explain what IRT can do for us, let’s 
talk about the way things are with CTT.

With CTT a test has a single reliability coeffi-
cient, which of course leads to a single standard er-
ror of measurement (and SEE and SED and so 
forth). The reliability coefficient, standard error of 
measurement, and standard error of the difference 
all serve to convey, in different ways, the precision 
of our measurement. Better reliability means more 
precise measurement. And in CTT there is just 
one reliability per test and thus, just one standard 

error of measurement, which means that in CTT 
our test is equally precise for all test takers. If the 
standard error of measurement is 5.4, it’s 5.4 for 
people with high scores, low scores, and scores 
near the middle of the distribution. According to 
CTT, that is. The reality may be different. Con-
sider a test with a bunch of items average in diffi-
culty and only a couple that are very easy and very 
hard. Given the limited number of items useful for 
measuring people of high and low ability, it would 
be darn near impossible for such a test to be 
equally precise for people of high, low, and aver-
age ability. IRT doesn’t force such a limitation on 
us. With IRT, we may find that a given test is not 
equally precise for all ability levels. Thus, in IRT a 
test will not have a single standard error of meas-
urement, rather the standard error of measure-
ment for a test can be different for test scores of 
all levels. The typical pattern is one in which high 
and low scores have high standard errors of meas-
urement (i.e., poor precision) and average scores 
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have low standard errors of measurement (i.e., 
good precision). Although this scenario is typical 
of many tests, it is not forced on a test with IRT. 
Of course, it is always possible (though unlikely) 
that a test could be equally precise for the entire 
range of test scores. If it is the case, then IRT will 
properly model precision. It is also possible that a 
test could be best (most precise) for people of 
high and low ability and worst for people of aver-
age ability (IRT will also model this situation prop-
erly), although this scenario is extremely unlikely.

So what does all of this measurement preci-
sion stuff mean to us? How will it affect our daily 
lives? Measurement precision is what allows us to 
be confident that two scores are actually different 
from each other. If you score an 89 on your sci-
ence final and your friend scores an 88 on the 
same test, is this score difference likely due to just 
random error? Probably yes. You know that ran-
dom errors may have raised your score or lowered 
your friend’s score. If, however, our test is per-

fectly precise (SEM and SEE are both 0.0), we can 
be confident that a one point difference means 
your true score is actually higher; that is, the differ-
ence is not due to a random error. New example: 
Let’s say you get a 90 and your friend gets a 70. 
Can we be confident that you actually know more? 
You might think, 20 point difference, that’s pretty 
big, it can’t be due to random error. But we need 
to know the standard error of the difference to an-
swer this question. If our test has a huge standard 
error, then we can’t be confident at all that your 
true score is greater. To sum all of this up, precise 
measurement is good. CTT models measurement 
precision in an unrealistic fashion. IRT models it 
in a realistic fashion.

Life with CTT also means that we have pretty 
much one way to score a test, called number-right 
scoring. With number-right scoring, a person’s 
score is based on the number of items answered 
correctly. This number is often rescaled into some 
other number (e.g., percent correct, z scores, etc.), 
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but it all starts with the number of items an-
swered correctly. IRT allows for another way to 
score a test, called maximum likelihood scoring. 
With maximum likelihood scoring, we attempt to 
determine what ability level best fits the pattern of 
right and wrong responses given to questions of 
known difficulty. As an example, let’s say a person 
answers half of the easy questions correctly, but 
misses all of the items of average or high difficulty. 
In such a situation, we ask ourselves, is it likely 
that a person of high ability would perform in this 
way? No, it is not very likely (a high ability person 
would be unlikely to miss half the easy items as 
well as all of the harder items). Is it likely that a 
low ability person would perform in such a way? 
Yes, it is fairly likely. Thus, the score we give this 
person will be low. We’ll discuss this more later.

Next up is a related topic. So related that it is 
pretty much the same topic. In CTT we never 
could properly deal with random errors (guessing, 
missing stuff you know) when we scored a per-

son’s response. Guess correctly and you benefit. 
Miss stuff you know, and you lose. But IRT’s maxi-
mum likelihood scoring allows us to handle, to a 
limited extent, certain random errors of measure-
ment which we’ll call aberrant responses. That is, 
with maximum likelihood scoring these errors will 
have less of an impact on a person’s score than 
with number-right scoring. Starting with our 
above example (half of easy questions answered 
correctly, everything else missed), let’s say that 
our test taker also answers the hardest question 
on the test correctly. Number-right scoring gives 
him the extra point, but maximum likelihood scor-
ing recognizes that a correct response on the hard-
est item (by someone who has missed half of the 
easy items in addition to pretty much every other 
item on the test) is an aberrant response. (Simi-
larly, imagine a person who answers every ques-
tion on the test correctly except for the easiest 
item. In such a case, this aberrant response would 
be ignored by maximum likelihood scoring.) Aber-
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rant responses are not greatly considered in maxi-
mum likelihood scoring.

The Logic of Item Response Theory

IRT looks at the world through the lens of con-
ditional probability. (That’s the coolest sentence 
I’ve ever written.) With conditional probability the 
chances of something happening is dependent 
upon some other event. For example, what is the 
chance that you will win the lottery? Well that is 
dependent on whether you buy a lottery ticket. 
Your chance of winning is conditional upon 
whether you buy the ticket. If you do not play the 
lottery, your chance of winning is zero. But if you 
do buy a lottery ticket, your chance of winning is, 
um… well, still pretty much zero. Because it’s the 
lottery. What we need is a better example. Your 
chances of running (specifically, finishing) a mara-
thon is conditional upon whether you train. If you 
train hard before the marathon, you probably will 

finish the race. But if you do not train at all your 
chances are next to nil that you will finish.

Now let’s apply this concept to testing. What 
are the chances that you will answer Item 1 on a 
test correctly? To answer this question, we need to 
understand the three components of IRT. A correct 
response to an item (first part) is conditional 
upon the test taker’s ability (second part) and the 
characteristics of the item (third part). The part 
about test taker ability is easy to understand. If 
you are of high ability (you have a high standing 
on the measured construct), other things being 
equal, you will have a greater chance of answering 
the item correctly than a person of low ability. No 
guarantees here, but a better chance. Now let’s fo-
cus on the item. Is Item 1 a hard item or an easy 
item? Is it a good measure of the construct in ques-
tion or a poor one? Is it an easy item to guess cor-
rectly (maybe because it is poorly written) or very 
tough to guess? These issues are referred to as the 
item’s characteristics. Let’s just focus on the diffi-
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culty one. If the item is easy and you are of high 
ability, what are your chances of answering the 
item correctly? Pretty good. If the item is hard and 
you are of low ability, what are your chances? Not 
good. That’s the basis of IRT.

At this point you might have a few irritating 
thoughts bothering you like, “How do we know an 
item’s characteristics?” Good question. The an-
swer is that in order to know the item characteris-
tics, we will have to do a study to analyze the 
items. This study will help determine how difficult 
the item is along with the other issues mentioned 
above. Once the item characteristics are known, 
we can use the items. The other question you 
might have is, “How do we know the person’s abil-
ity?” A follow up question might be, “If we know 
the person’s ability, why would we bother testing 
them?” You instincts are correct. We don’t know a 
person’s ability before we test them. But the na-
ture of the IRT model allows us to turn things 
around to estimate a person’s ability, which is 

pretty much the whole point of any test. Here’s 
what I mean. When a person completes a test, 
what do we really know? We know the characteris-
tics of the item, as established in a previous study. 
We also know which items the person answered 
correctly. That’s what we know. We don’t know 
the ability of the person, but based upon the two 
things we do know, we can estimate his or her abil-
ity. Example. Let’s say we have 20 very difficult 
math questions. And let’s say that our test taker 
answers 19 of them correctly. What are the 
chances that a low ability person could have an-
swered 19 of 20 hard math questions correctly? 
Not good. What about a person of average ability? 
A little more likely, but still not much of a chance. 
What about a person of high ability? Ah, now we 
have something. It is very likely that a high ability 
person could answer 19 of 20 very hard math ques-
tions correctly. Thus, we estimate this person’s 
ability to be high. The end. What I’ve just de-
scribed is a good summary of how we score tests 
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in IRT. We’ll come back to this scoring issue later 
in the chapter. I hope that this example illustrates 
that in IRT, it is all about conditional probability.

Definitions and More Definitions

Unfortunately, IRT uses what amounts to a 
whole new language. And there’s no way around 
it. Many of these new terms will be three words 
long and, hence, will have a Three-Letter Acronym 
(TLA).

Theta: Our estimate for the ability of the test 
taker. When we score a test using IRT, the scores 
will be called theta (i.e., θ). Theta is typically 
scaled like a z score, so you know that a theta of 
+1.5 is a high score. Of course, we are free to res-
cale thetas into whatever metric we like (e.g., T 
scores), but we’ll stick with thetas in z score 
units.

Homogeneous Sub Population (HSP): A 
group of people who all have the same theta score 
on a given test. Imagine that we know every per-
son’s theta score and that we sort these people 
into groups with the same theta scores. We might 
have 83 people with a theta of -1.7. That’s an HSP. 
We have another 94 people with a theta of -1.6. 
Boom. That’s another HSP. Because the main esti-
mate of IRT is unidimensionality, we know the 
people within a given HSP have something in com-
mon: the same estimated ability or standing on 
the construct in question. People from different 
HSPs are different in one important way. They 
have different standings on the constructs. The dif-
ference might be small (e.g., -1.7 vs. -1.6) or it 
might be big (e.g., -1.7 vs. +1.9), but there is a dif-
ference.

Probability of a Correct Response (PCR): 
The percent of people from a given HSP answering 
a given item correctly. To illustrate this concept, 
just imagine that we give Item 1 to the -1.7 HSP. 
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Then we compute the percent in that HSP answer-
ing Item 1 correctly. If 4 of 83 people answer it cor-
rectly, then the PCR for that HSP is .048 (or 
4.8%). Thus, each HSP will have a PCR for each 
item. Which leads to…

Item Characteristic Curve (ICC): A graph of 
PCRs for all the different HSPs. Naturally, there 
will be one ICC per item. I wasn’t lying about that 
whole new language thing.

An example of an ICC for a hypothetical item 
(we’ll call it Item Gamma) is shown in Figure 1. 
Notice how you can relate PCR to a given theta 
(e.g., PCR of .5 is associated with a theta of 0.0). 
Or you can start from theta and go to PCR (e.g., a 
group of people with a theta of -2 would be ex-
pected to get this item correct 5% of the time).

Information: The absence of uncertainty. If 
you’re like me, you hate it when a term is defined 
as what it’s not. So here’s something better: meas-
urement precision. Each item will contribute infor-

mation to the test and the amount of information 
contributed will vary by theta.

Item Information Function (IIF): A graph of 
information at various thetas for a given item. Fig-
ure 2 is the item information function for the 
aforementioned Item Gamma. For this item (Item 
Gamma), information is maximized for theta 
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scores of around 0. This item offers almost no in-
formation for people with scores beyond +2 or -2.

If you compare the ICC (Figure 1) to the IIF 
(Figure 2) for our Item Gamma (Why Gamma? Be-
cause Greek letters are cool.), you can see that the 
ICC is essentially flat at the extremes and has its 
sharpest slope at around 0 theta. Thus, we can cor-

rectly infer that the slope of the ICC is a prime de-
terminant of information. Sharper slopes mean 
more information. We’ll come back to this point 
later, but we can also note that it will be impossi-
ble to construct a single item that yields a ton of 
information for all thetas. Why? Although an item 
can have a gradual slope that spans all of the theta 
range, it cannot have a sharp slope for more than a 
small portion of the theta range. If an item has a 
sharp slope, the steep slope is limited to just one 
area. Thus, a single item can only yield a large 
amount of information at one spot. That said, 
what if we put together a 100-item test, each item 
with a sharp slope but at different spots along the 
theta range? Our test as a whole would have a lot 
of information across the theta range. Which leads 
to our next concept...

Test Information Function (TIF): The sum of 
the IIFs for all of the items on the test. If we have 
a five-item test, each item has an IIF. But we can 
sum the information offered by each item at a 
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given theta (e.g., Item 1 yields .29 units of infor-
mation at -2 theta, Item 2 yields .05 units of infor-
mation at -2 theta, etc.) to yield an information 
value at that theta for the entire test. Repeat for 
other theta values. This resulting TIF will tell us 
how much information the test as a whole (i.e., 
collection of items) offers. 

Figure 3 is a TIF for a five-item test of un-
known origin (we’ll call it Test Epsilon). As you 
can see the test offers at least .3 units of informa-
tion for thetas ranging from -4 to +2. As you can 
also see, this test is most precise (i.e., offers the 
most information) for thetas near -3, but also of-
fers a non-trivial amount of information between 
-4 and -2. The information offered between -4 and 
-2 is due to one of the items (Item 1) that func-
tioned very well in that range. Figure 4 is the ICC 
for that item. Note how all of its slope is between 
-4 and -2, meaning that all of its information is of-
fered in the -4 to -2 area.

At this point, you might be wondering just 
how much information is a good amount of infor-
mation. More is better, but the upside of informa-
tion is unbounded. Yes, I know the y-axis of the 
graph stops at 1.0 but that was just a choice I 
made for convenience. Information ranges from 
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zero to positive infinity. Thus, information is un-
standardized. Which leads to…

Test Standard Error Function (TSE). For 
some reason the word function doesn’t get to be a 
part of the acronym. Probably due to some rule 
about TLAs. What is the TSE Function? It is a con-
version of the TIF into a standard error metric. 

Best of all, it’s a simple equation. First, just deter-
mine how much information a test offers at a 
given theta. Using our TIF from above, our five-
item test offers approximately .4 units of informa-
tion at a theta of -1. I hope you successfully found 
that on the graph (make sure to look at the TIF). 
Then, plug into the following equation.

SEθ = 1
Infoθ

Where:
SEθ is the standard error of an item at θ.
Infoθ is the information by provided by an item 
at θ.

Thus, the standard error for our hypothetical five-
item test at a theta of -1 is 1.6. Given that a stan-
dard error of 1.0 equates to a full standard devia-
tion, a standard error of 1.6 is pretty bad. Poor 
measurement precision. A graph of the TSE func-
tion for our five-item Test Epsilon is shown in Fig-
ure 5. If you compare it with the TIF shown in Fig-
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FIGURE 4 ICC for Item 1 (b = -3.0) from Test Epsilon
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ure 3, you can see that one is just the inverse of 
the other.

Finally, you might wonder if there is a Test 
Characteristic Curve or an Item Standard Error 
Function. There are, but they are not as useful as 
what we have listed above.

The Incredible World of IRT

Now that we have our terminology clear, we 
can understand more of the IRT world. Let’s play 
“What if?” What if we had an item (it needs a cool 
name – we’ll call it Item Foxtrot) with an ICC as 
shown in Figure 6? Now let’s look carefully at 
Item Foxtrot. For people with thetas less than 0, 
what are their chances of answering this item cor-
rectly? Zero. Not even a slight chance. Not even 
by guessing (it should be obvious that we’ll never 
see this with real data). For people with thetas 
greater than 0, what are their chances of answer-
ing this item correctly? 1.0 (i.e., 100%). No one 
will miss it, not even by some sort of random er-
ror. (Don’t try to figure out what will happen if a 
person’s theta exactly equals zero. You’ll develop a 
serious headache.) Now let’s turn it around. If I 
give this item to a person and they get it right, 
what do I know about his or her theta? It is defi-
nitely greater than zero. It may be 0.1 or it may be 
2.8. I can’t say how much higher, but it’s definitely 
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FIGURE 5 Test Standard Error Curve for Test Epsilon
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greater than zero. Similarly, if someone misses 
this item, then we can say with complete confi-
dence that his theta is less than zero. We don’t 
know how far below, but it is less than zero. 

At this point you might be saying, big deal. 
But this is only one item. Let’s say we have a two-
item test with the second item (another cool name 

needed, let’s see... Item Tango) presented in Fig-
ure 7. Now imagine that a person answers Item 
Foxtrot correctly (meaning that his theta is greater 
than 0.0) but misses Item Tango (meaning that 
his theta is less than 1.0). We can conclude with 
absolute confidence that this person’s theta is be-
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FIGURE 6 Item Characteristic Curve for Item Foxtrot FIGURE 7 Item Characteristic Curve for Item Tango
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tween 0 and 1. With more items, I can be more 
precise.

Now at this point you might be thinking, “OK, 
smart guy, what if the test taker misses Item Fox-
trot and gets Item Tango correct?” Your mistake is 
that you’re thinking of the real world where peo-
ple can guess correctly and make all other sorts of 
random errors. Items Foxtrot and Tango exist in a 
fantasy world where that doesn’t happen. It can’t 
happen with our two items. Check the ICCs – if a 
person has an ability greater than 0, they must an-
swer Item Foxtrot correctly. 

What was the point of all of this? It was to 
show you how the item characteristics, the re-
sponse of the test taker, and scoring a test in IRT 
all relate to each other. As a point of contrast to 
our earlier super items (Foxtrot and Tango), con-
sider the item presented in Figure 8. Let’s say 
someone answers the Figure 8 item correctly. 
What can we conclude about this person? Not 

much. Look at people with a theta of -3, which is 
very low ability. These people have roughly a 45% 
chance of answering this item correctly (PCR = 
.45). Compare that with people at +3. PCR there 
is around .55 (or 55%). Thus, the chance of an-
swering this item correctly for someone very low 
in ability as compared to someone very high in 
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FIGURE 8 Yet Another Item Characteristic Curve
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ability increases by only ten percentage points. 
Thus, if you answer this item correctly, I can’t con-
clude much of anything about your ability with 
any confidence. You might be low in ability. You 
might be average. You might be high. I just don’t 
know. So to summarize, what we see here is a 
worthless item. Its IIF would be nearly flat and 
close to zero for all theta scores.

What have we learned by this exercise? In IRT, 
we like items that have a sharp slope at some 
point along the theta range. We want a lot of these 
items and we want them to have their sharp 
slopes at different points, so that our test offers in-
formation (remember sharper slope means more 
information) at every location along the theta 
scale that we care about.

The Ugly Details

Let’s talk about where this ICC actually comes 
from. In the Definitions section, I described the 

process as one in which the item is given to peo-
ple from different HSPs and plot the PCR for each 
group (set aside the issue of how we know each 
person’s ability). We could do that. Doing so is 
called empirical IRT. But, it’s a little more efficient 
if we model the shape of the ICC with a smooth 
function that we could describe with just three 
terms. That is, I can graph any ICC correctly if I 
know just three numbers for that item. This is 
called the three-parameter model of IRT for obvi-
ous reasons. There are one- and two-parameter 
models, but they are clearly excluding something 
important. 

The three parameters are: difficulty (called the 
b parameter), discrimination (the a parameter), 
and lower-asymptote (c parameter). Note how the 
letters are not in alphabetical order. A normal per-
son would have labeled them a, b, and c, but obvi-
ously IRT was not developed by a normal person. 
I’m sure there is a long and interesting story about 
this, but I don’t want to hear it.
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Difficulty (b): Describes how difficult the item 
is. It is analogous to p value from the CTT days. 
The difference is we will describe difficulty in IRT 
as the ability level required to have a 50% chance 
of answering the item correctly. It is very easy to 
determine the difficulty of the item by looking at 
the ICC. Just start at a PCR of .50 (50% chance of 
success) and draw a line to the ICC, then come 
straight down and draw a line to the theta.

An example has been diagramed in Figure 9. 
In the case of this item, the value of b is 0.0. This 
item is average in difficulty. Why? A person must 
be average in ability to have a 50% chance of an-
swering this item correctly.

A new item is shown in Figure 10. This item 
is easy. It has a b-paramter of -3.0. That means a 
person of very low ability (-3.0 is very low) has a 
50% chance of answering this item correctly. As a 
point of comparison, what is the PCR associated 
with a theta of 0? I’m just eyeballing it here, but it 

looks to be about .97 (or 97%). Now that’s much 
better than the previous item. Thus, easier item. 
So, to summarize, if b is close to zero, the item is 
average in difficulty. If b is seriously negative, the 
item is easy. If b is strongly positive, the item is 

Start at PCR of .5

Draw Line to ICC

Draw Line Down to 
x-axis

FIGURE 9 Item Difficulty (b Parameter) Illustrated
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very difficult. There, now we’ve done the first pa-
rameter. Moving on.

Discrimination (a). Item discrimination de-
scribes the relationship between a correct re-
sponse to an item and test taker ability. We’ve ac-

tually discussed this before; we just didn’t know 
it. Do you remember those stair-stepped shaped 
ICCs from before (Figure 6 and Figure 7)? Those 
kinds of items do a perfect job at determining 
whether a test taker has enough ability to answer 
the item correctly. In fact, they do such a great job, 
they are not realistic items. Totally fictional. Real 
items don’t work that well. Now examine the item 
that had an almost flat ICC (Figure 8). As we dis-
cussed, it was terrible at relating test taker re-
sponses to test taker ability. What we have been 
discussing this whole time was the item’s discrimi-
nation, or a, parameter. Sharper slopes mean bet-
ter discrimination. Sharper slopes yield more infor-
mation, which means less standard error, which ul-
timately means better measurement precision. In 
short, we like items with high a parameters. a can 
range from zero (not good) to positive infinity. To 
compute a, we need to compute the slope of a line 
at a point on the curve in which the slope is at its 
strongest, which is at or near the location of b. We 

Start at PCR of .5

Draw Line to ICC

Stop at x-axis

FIGURE 10 Item Difficulty (b Parameter) Illustrated – 
Yet Again
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can compute the slope at any point on the curve. 
Only one point, however, will have the maximum 
slope. This point happens to be at or very near the 
theta associated with a PCR of .5. Computation of 
slope at a point on a curve requires differential cal-
culus. I don’t know about you, but I’d rather not 
deal with that. We’ll just let computers do the 
dirty work for us. That said, it’s very easy to visu-
ally compare two or more ICCs and determine 
which has the better a parameter. ICCs for two 
items are presented in Figure 11 and Figure 12. It 
is no challenge to see that the ICC in Figure 12 
has the steeper slope, and thus, the higher a pa-
rameter. The a parameter for the item in Figure 11 
is .3, whereas the a for the Figure 12 item is .8. As 
mentioned, there’s no way to easily compute 
those numbers from looking at the graph; I used a 
computer to obtain them. Notice that both items 
have the same b parameter (+1.0). They are equal 
in difficulty, but the for Figure 12, a correct re-
sponse is more closely linked to test taker ability.

Lower Asymptote (c). The c parameter, also 
called the pseudo guessing parameter, tells us the 
percent of very low ability people who answer the 
item correctly. It is analogous to the y-intercept 
from regression days. To estimate c from the ICC, 
if the ICC has flattened out (the asymptote part), 
simply find the point where the ICC intersects the 
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FIGURE 11 Item Discrimination (a = .3)
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y-axis. To understand the c parameter, let us once 
again examine Figure 12. As you can see, at the 
low end of the theta range, the ICC is flat and in-
tersects the y-axis at 0.0. Thus, the c parameter is 
zero, meaning that zero percent of very low ability 
test takers answer the item correctly. (Given that 
people have a bad habit of guessing correctly in 

the real world, c will not be zero for real ICCs.) 
Contrast Figure 12 with Figure 13. Figure 13 has 
the same b (+1.0) and the same a (0.8) as Figure 
12, but it has a c of .20. This means that people of 
very low ability (i.e., beyond -2.0) still have a 20% 
chance of answering the item correctly. We don’t 
know why. Probably a guessing issue. (By the by, if 

220

FIGURE 12 Item Discrimination (a = .8) FIGURE 13 Lower Asymptote (c = .2)
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you’re wondering why the b parameter in the sec-
ond ICC looks like it’s less than 1.0, that happens 
when c is greater than 0.0. Non-zero c parameters 
actually shift the graphical representation of the b 
parameter a little. Don’t worry about it, though. 
It’s not a big issue.)

More about c. Non-zero c parameters are bad. 
c is the antitheses of a. c actually reduces informa-
tion, and thus, measurement precision. I have 
seen many items with great a parameters that also 
had large c parameters and, thus, were worthless. 
To summarize, we like items with large a parame-
ters, low c parameters, and probably a variety of b 
parameters.

PCR Is as Easy as b, a, c. An item’s characteris-
tics can be described with just three numbers: b, a, 
and c. Everything we need to know about the item 
is captured by them. Better yet, we can use these 
three numbers to draw the ICC and make exact 
computations of PCR for a given theta. To do so, 

we need to know the equation that relates theta to 
PCR. And here it is.

PCRθ = c + (1 −c) eDa(θ−b)

1 + eDa(θ−b)

Where:
PCRθ is the probability of a correct response at 
a given θ.

First thing you may be thinking is, wait, what is 
D? And where did that e come from? D is just a 
constant with the value of 1.702. e is an arithmetic 
function and is the inverse of the natural loga-
rithm (you may have noticed an e button on your 
calculator). The only variables in the equation are 
the familiar b, a, and c. We plug in b, a, and c for a 
given item and compute for thetas ranging from -5 
to 5. Now we have exact PCRs for every theta, al-
lowing us to generate our graphs or perform exact 
calculations.
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What about the IIF, you say? How do we draw 
that graph, you say? Well, the IIF is just another 
equation with a bunch of familiar parts.

Infoθ = D2a2(1 −c)
[c + eDa(θ−b)][1 + e−Da(θ−b)]2

Once again, just plug in b, a, and c (D still equals 
1.702) and compute information across a range of 
thetas. Graph if desired. If you like playing around 
with equations, you can see how raising a in-
creases information. You can also see how raising 
c lowers information.

Estimating Theta

This is it. This is where we can obtain one of 
the big benefits of IRT. We will now find out how 
to score a test using maximum likelihood scoring. 
No more number-right scoring for us. To explain 
maximum likelihood scoring, recall that we said 
there are three components to IRT: a correct re-
sponse to an item (first part) is conditional upon 
the test taker’s ability (second part) and the item 
characteristics (third part). To put these three com-
ponents together, I’ll quote myself from earlier in 
the chapter.

When a person completes a test, what do we 
really know? We know the characteristics of 
the item, as established in a previous study. 
We also know which items the person an-
swered correctly. That’s what we know. We 
don’t know the ability of the person, but 
based upon the two things we do know, we 
can estimate his or her ability. Example. Let’s 

REVIEW 1 Item Characteristic Curves
Question 1 of  6
What is the approximate value of b for the following item?

A. 0.18

B. -1.8

C. 0.5

D. 0.8
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say we have 20 very difficult math questions. 
And let’s say that our test taker answers 19 of 
them correctly. What are the chances that a 
low ability person could have answered 19 of 
20 hard math questions correctly? Not good. 
What about a person of average ability? A lit-
tle more likely, but still not much of a chance. 
What about a person of high ability? Ah, now 
we have something. It is very likely that a high 
ability person could answer 19 of 20 very hard 
math questions correctly. Thus, we estimate 
this person’s ability to be high.

The basic premise is a simple one. Identify which 
theta best fits this person’s pattern of responses 
given the item’s characteristics (b, a, and c parame-
ters). The math is not all that bad, but it is a little 
tedious. There are a few options as far as equa-
tions go. I’ll give you the simple one, which I call, 
the simple one.

LHθ = Π[PCRθ(SR) + (1 −PCRθ)(1 −SR)]

Where:
LHθ is the likelihood (or probability) that 
someone with a given theta could make cor-
rect responses to the items that the test taker 
answered correctly (and the converse).
SR is scored response to the item (1 if correct, 
0 if incorrect).

The capital pi symbol (Π) at the front means that 
this is a sequential operation, but instead of sum-
ming (as with Σ), we multiply. Notice that the 
plus sign divides the equation into two halves. 
One of these halves will be zero every time due to 
the SR component, which is always 1 or 0 (if it is 1 
for the left side, then it’s 0 for the right – and the 
converse). So, we’re always dealing with just half 
of this equation every time, the left half if the re-
sponse was correct and the right half if the re-
sponse was incorrect.
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We will use this equation across items for a 
given theta for the test taker, yielding a probability 
that that a person with this theta could have made 
these responses. Before we get to the details, let 
take a side trip down a road called joint probabil-
ity. 

If you roll a single die, what is the probability 
that you will roll a six? The answer is 1/6. If you 
roll a die three times, what is the probability that 
you will roll three sixes? The answer is 1/6 x 1/6 
x  1/6, which equals 1/216. We multiply the prob-
abilities of the individual events to determine the 
probability that all of these events will occur (this 
multiplication is what is conveyed by the capital pi 
symbol, Π, in the maximum likelihood equation). 
Let’s change up the dice example just a little bit. 
Still rolling the die three times, but now let’s ask, 
What’s the probability that the first two rolls will 
be sixes and the last roll will not be a six (that is, 
1, 2, 3, 4, or 5)? To figure out that last part, we 
need to know the probability of not throwing a 

six. The probability of something not happening is 
one minus the probability of it happening. The 
probability of not throwing a six is one minus the 
probability of throwing a six. Thus, it’s 1 - 1/6, 
which equals 5/6. So for our new version of the 
dice example, the probability of throwing sixes on 
the first two rolls and not throwing a six on the 
last roll is 1/6 x 1/6 x 5/6 = 5/216.

Maximum likelihood theta estimation oper-
ates in the same manner. PCR tells us the probabil-
ity of a correct response to an item for a person of 
a given theta. What if the person missed the item? 
We use 1 - PCR. Now let’s apply our last dice ex-
ample (two sixes followed by a not six) to a three-
item test. What’s the probability that a person of a 
given theta will answer the first two items cor-
rectly and miss the last item? Like the dice exam-
ple, we need to find the probability for each event 
and then multiply to obtain the joint probability. 
So it’s PCR at the given theta for Item 1, PCR at 
the given theta for Item 2, and 1 - PCR at the 
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given theta for Item 3. Then, we multiply. This 
joint probability tells us the probability that a per-
son with a given theta will answer the first two 
items correctly and miss the third. Just like the 
dice example. This process is what occurs with the 
maximum likelihood theta estimation equation.

That wasn’t so bad. The kicker is that for maxi-
mum likelihood theta estimation we have to re-
peat this process across a range of theta scores. 
We only had to do this dice thing once, but we 
have to ask ourselves what the probability is that a 
test taker of a given theta could answer Items 1 
and 2 correctly while missing Item 3 for all possible 
thetas. The theta with the greatest probability 
value is the most likely theta for our test taker, 
hence the name maximum likelihood estimation. In a 
sense, we’re asking a series of probability ques-
tions (How likely is it that a person with a theta of 
-3 could have answered these questions correctly? 
How likely is it that a person with a theta of -2 
could have answered these questions correctly? 

And so on.) and are picking the answer with the 
greatest probability value.

An example for our three-item test with a test 
taker who answered Items 1 and 2 correctly and 
Item 3 incorrectly is offered in Interactive 1.

Based on our calculations, the most likely 
theta for our test taker is +1.0 (actually, +.61 if 
we use the refined estimate). Let’s step back and 
ask ourselves, Does this estimate make sense? 
Does it make sense that a person who answered 

INTERACTIVE 1 Maximum Likelihood Theta Estimation
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two items correctly, but missed the most difficult 
item would have a theta of +.61? Well, I guess so. 
It sure makes more sense than a theta of -1 (If it’s 
that low, how did the test taker answer two items 
correctly?) or +2.5 (If it’s that high, how did the 
test taker miss the third item?). An ability esti-
mate of just above average average makes the 
most sense out of the test performance.

Finally, you may recall that I mentioned at the 
beginning of the chapter that maximum likelihood 
estimation allows us to reduce the impact of guess-
ing and other random errors. An aberrant re-
sponse (e.g., missing the easiest question while an-
swering all of the hardest questions correctly) will 
be ignored with maximum likelihood scoring 
given a large number of test items. So we have 
that going for us, which is nice.
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12 No one is allergic to this 
CAT.

Computer Adaptive 
Testing



Introduction

Now we’ll take everything we learned in Chap-
ter 11 and put it to good use. This chapter is all 
about computer adaptive testing (or CAT). Any-
one can take a test and put it on a computer. That 
isn’t a challenge. The hard part is to make it adap-
tive. An adaptive test is tailored to the ability of 
the person taking the test. Recall that in Chapter 9 
we discussed difficulty-based item analysis. In 
difficulty-based item analysis a good item is one 
that is matched to the ability of the test taker. 
Well then, a bad item must be one that is poorly 
matched to the ability of the test taker (e.g., giving 
an easy item to a high ability test taker). What’s 
so bad about that? It’s bad because the test taker’s 
response to that item doesn’t tell us much about 
the test taker. A high ability test taker will likely 
answer an easy item correctly. If he should happen 
to miss an easy item, it’s likely due to random er-
ror. Thus, either outcome isn’t very informative. 
We would be a lot better off if we had given this 

high ability test taker a hard item. Now that 
would tell us something about the test taker.

Thus, we want to administer only items with 
difficulties that are a good match to the ability of 
the test taker. The only problem is: How do we 
know the ability of the test taker? (To be pedantic, 
if we knew the person’s ability, we wouldn’t need 
to give them the test.) Until now, the only way out 
of this conundrum were those situations where 
we had a general idea about the test taker’s ability. 
For example, if we are giving a math test to a 
group of first grade students, the ability level for 
every one of those test takers will be low com-
pared to the general population. In such a case, we 
want to use a lot of easy items on our test. But 
even that system is largely inefficient. Moreover, 
there are many other times when we don’t have 
the first clue as to our test taker’s ability. What 
then?
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Well, we could give our test takers short pre-
tests. That is, we give everyone a ten question pre-
test, score it, and then give the test takers one of 
three versions of the main test (a hard, medium, 
or easy form) based on their pre-test score. The 
pre-test serves as our estimate of ability for the 
rest of the test, and we pick a set of items to best 
match that ability estimate. Any problems with 
the pre-test (e.g., missing items that you know) 
means that a test taker was stuck with the wrong 
version of the main test. Not good. With comput-
ers, we can change, or update, our estimate of a 
person’s ability after every question. Thus, let’s 
say our Mr. Test Taker* makes a few unpleasant 
random errors in the first few items, missing stuff 
he knows. Because he’s missed a number of items, 
we don’t think much of his ability at this point. 
But Mr. Test Taker starts paying attention and 
makes correct responses to the items he should 
get correct. We can now update our estimate of 
his ability. Based on this new estimate of his abil-

ity, we can give him the hard questions he de-
serves. Thus, computers allow us to update our es-
timate of a person’s ability after every question, 
further allowing us to pick from our pool of items 
the best item (defined in terms of the match be-
tween item difficulty and test taker ability) for the 
test taker. That’s adaptive testing.

*Not his real name

Now this whole adaptive testing thing flies in 
the face of one of the basic rules of measurement: 
standardize testing conditions (including test con-
tent) as much as possible. If we give two people 
two different versions of a test, how can I compare 
their scores? Wait, you say, don’t the ACT people 
do that very thing all of the time? You bet they do. 
The items you get in October are not going to be 
the same items that your best friend gets when he 
takes the test in November. So they are violating 
this most basic of rules. We are generally not trou-
bled by this issue because the ACT people spend a 
great deal of effort making sure that test given in 

229



October is as close as possible in difficulty to the 
test they give in November. (You might remember 
this discussion when we talked about parallel tests 
– not that they could actually make it parallel, but 
they can do a pretty decent job). Conversely, with 
CAT we are actually trying hard to give two differ-
ent people very different versions of the test. We 
want the high ability person to get a bunch of hard 
items and we want the low ability person to get a 
bunch of easy items. We actually want this. We 
want to violate this most revered rule of standardi-
zation. And yet, we’ll still compare their scores 
head to head. Doesn’t seem like it will work.

The answer is item response theory (IRT). 
With IRT, we can give different people totally dif-
ferent versions of the test (one full of the hardest 
questions and the other full of the easiest ques-
tions) and still compare the scores directly. We 
can do this because of the fact that we know the 
item parameters (difficulty, discrimination, and 
lower-asymptote) for all items and we score the 

test using maximum likelihood scoring. See Chap-
ter 11 for a refresher on these issues. This of 
course means that we’ll have to analyze the items 
to compute the item parameters (b, a, and c) for 
each item before we can set up a CAT.

The CAT Process

So, let’s put those two pieces together: com-
puters plus IRT. Now we have fully adaptive test-
ing. We start the test knowing nothing about the 
test taker. After he or she answers the first item, 
we know a little something, but not much. Based 
on what we know, we can pick an item that might 
actually match his or her ability level. Once he or 
she answers the second item, we know a little 
more. The next item we pick should be an even 
better match to his or her ability level. And so on. 
We’ll stop the test when we conclude that preci-
sion of our estimate of the test taker’s ability will 
not be improved by the addition of more items. A 
flow chart of this process is presented in Figure 1.
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One issue we haven’t discussed is the first 
step. It says we need to begin with a provisional 
theta estimate. We need something for theta in or-
der to pick the first item (which would be the best 
item for that theta). We have a conundrum: We 

don’t know what theta to use given that our test 
taker has not answered any questions yet. What to 
do. Hmmm… Let’s just make up a theta and for-
get about it as soon as the test taker answers the 
first item. At that point we’ll estimate theta for 
real. So we’re going to have to just pull a theta out 
of thin air to start the test. We really have three op-
tions here, and two of them have problems. First, 
we could be optimists and say that everyone is 
high ability until they prove otherwise. That is, 
theta is +3.0 (or higher) until they actually miss 
an item. Sounds great, but problems abound. If I 
think your theta is 3.0, what kind of an item will I 
pick for you? That’s right, a really, really hard one. 
It’s not too fun to take a test and start with the 
hardest question. For some people, that can shake 
their confidence in ways that affect their perform-
ance on the rest of the test. Fine, so we’ll go the 
other way, start people off with a low theta, like 
-3.0. No harm there since, we’ll estimate theta for 
real after they answer the first item. This is nice 
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because the first item the test taker sees is very 
easy and may help build confidence. The only prob-
lem is that very few people actually need to take 
the easiest possible item – very few people are 
very low in ability. Thus, this item is a wasted 
item for most test takers. The solution must lie in 
the middle. We’ll assume that everyone is average 
until they answer the first item. This way, the test 
starts with an item that is average in difficulty. Be-
cause most people are close to average, the first 
item will not be a wasted item for most people.

A Demonstration

Shown in Interactive 1 is an inside look at 
what happens when a computer adaptive test is ad-
ministered. This test is a math test with a pool of 
28 items. This test, like many tests, works best (is 
most precise) for thetas close to zero. We will ob-
serve the responses of an imaginary test taker. I’ll 
report his theta and standard error for that theta 
after each item.

One thing that is clear is that our computer 
adaptive test could be improved if we were a little 
more judicious about our theta estimates early on 
in the test. Specifically, after one item the test 
taker’s theta will be estimated to be either posi-
tive infinity (if the item was answered correctly) 
or negative infinity (if the item was answered in-
correctly). These estimates cause the next item to 
be either the easiest or hardest item in our pool. 
This is obviously a ridiculous situation and not at 
all consistent with the goal of computer adaptive 
testing.
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The solution should be obvious. Rather than 
re-estimate theta after the first item has been an-
swered, we should delay re-estimating theta until 
a small set of items (five, for example) have been 
answered by the test taker. Thus, the first real esti-
mate of theta will be based on a larger sample of 
behavior and will be less likely to fluctuate so 
greatly. Essentially, our CAT doesn’t start being a 
CAT until the test taker has has given us enough 
information for us to form a reasonable estimate 
regarding his or her ability.

Fifty Ways to Stop a CAT

The only remaining issue is: When do we stop 
the test? We have a lot of options there. What if 
we didn’t stop the test? That is, we just keep giv-
ing items until we run out of items. Everyone 
takes all of the items. (Question: What do you call 
a computer adaptive test in which the test takers 
answer all of the items? Answer: a test.) In such a 
situation, we don’t have an adaptive test. Sure, the 

order of the items is different for different people, 
but at the end of the day, everyone answers all of 
the items. Including the ones that are a waste of 
time (eventually, the high ability test taker must 
answer the easiest items in the shallow end of the 
item pool). If we wanted to give all of the items to 
everyone, we could have saved ourselves a lot of 
trouble and just given a standard, paper-and-
pencil test. My point is, the stopping rule is one of 
the things that makes a CAT administration better 
than a traditional testing format. We don’t want to 
stop too early (too few items) or too late (too 
many items). We’ve already talked about problems 
with giving too many items. But what if we give 
too few items? If we give too few items, our esti-
mate of the test taker’s theta is not as precise as it 
should be. Specifically, the standard error for this 
person’s theta estimate will be too high. We’ll ex-
plore some common stopping rules and see that 
most stopping rules result in too few items being 
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given to some test takers and too many to other 
test takers. Not very efficient.

The simplest stopping rule is to stop the test 
after a set number of items. If we decide that the 
magic number of items is 20, then everyone who 
takes the test will be done after they’ve answered 
the 20th question. High ability test takers will, in 
large part, have answered the 20 hardest items, 
whereas low ability test takers will have seen the 
20 easiest items. You get the idea. Easy rule to un-
derstand and implement. Here’s the problem: Re-
call that most tests work best (i.e., are most pre-
cise) for average theta values. That is, they have 
many items that yield information at around theta 
of zero. But for theta values at the extremes (e.g., 
beyond +/-1.5), most tests have very few items 
that yield information. Now based on that fact, a 
simple “stop after X items” stopping rule will re-
sult in people with thetas at the extremes taking 
too many items and people at the middle area tak-
ing too few items. Not good. Sure, it’s better than 

a non-adaptive test, but it’s not all it can be. A 
more sophisticated version of this same rule is to 
stop when a person’s standard error of theta 
reaches a fixed threshold (e.g., stop when SE of 
theta is below .5). Ultimately, the same problems 
will occur because, as we said before, most tests 
work best for people with average ability levels. 
The good news is that there are more sophisti-
cated stopping rules that do a great job of balanc-
ing the competing demands of measurement preci-
sion and test administration time.

CAT and Test Security

CAT can increase test security as compared 
with paper-and-pencil or computer based tests 
(CBT, a non-adaptive test which is administered 
on a computer). With a standard test, a test taker 
could memorize the items and give them to an-
other person who will be taking the same form of 
the test in the future. It may sound far-fetched, 
but it’s been done (ETS v. Kaplan, 1997).
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Now let’s see if this same security breach 
could happen with the CAT GRE. Let’s say for the 
sake of argument that the CAT GRE item pool con-
tains 300 hundred items for each section of the 
test. (Although I have close to zero inside informa-
tion, it is my suspicion that the CAT GRE item 
pool is much greater than 300. It is likely to be 
well into the thousands.) Let’s say that twenty bo-
gus test takers take the test with each person hav-
ing the goal of memorizing five items from each 
section of the test. That’s 100 items from each sec-
tion – a third of the test. Now let’s say these items 
are shared with a new test taker. When he takes 
the test, he’ll know the answer to about one of 
every three items. If we were scoring this test with 
number-right scoring, that would be a big boost. 
But this is CAT with IRT based maximum likeli-
hood scoring. I am sure that you remember from 
Chapter 11 that with maximum likelihood scor-
ing, an aberrant response (missing easy items but 
getting a hard item correct) is ignored to a certain 

extent. Now think about our cheating test taker 
who knows one-third of the items. Unless he is of 
high ability, he will have a seriously aberrant re-
sponse pattern in which he will get some hard 
items right (because he was told about the item in 
advance) and miss a number of medium difficulty 
items that we did not see in advance.

But there’s more. As long as we’re using a 
computer to store our items, why not store a ton 
of items? As in a couple of thousand per section. 
Twenty test takers memorizing five items only gets 
you a total of one hundred – only five percent of 
the test. Not much help for Mr. Cheating Test Tak-
er*, particularly when maximum likelihood scor-
ing is involved. And there’s more yet. What if we 
organized our 2000 items per section into clusters 
of 20 items per cluster (all items within a cluster 
sharing the same characteristics) and set a rule 
that a given test taker can only see one of the 20 
items in a given cluster (chosen at random)? This 
means that even if our cheating test taker had a 
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perfect ability match to the test takers who stole 
the items, he would never see more than 5% of 
them. All of this is a long way of saying that with 
CAT, maximum likelihood scoring, and very large 
item pools, we can achieve much greater test secu-
rity than was possible with other forms of test ad-
ministration.

*Actually his real name

Final Thoughts

It occurs to me that we haven’t discussed why 
anyone would want to use a CAT. Obviously, it’s 
cool to pick just the right items for our test takers. 
So that’s something you can to brag to your 
friends about. But there have to be better reasons 
than just that. What do we get out of tailoring test 
content to the ability of the test taker? There’s 
also the test security angle. That’s moderately 
cool. Anything else? Let’s put it all together. If we 
have fifty items, and we only administer the useful 
ones (say, the 20 items that are well matched to 

the test taker’s ability), then our test takers have 
taken a shorter test. Shorter in terms of items and 
time. And by not presenting useless items, we 
have reduced the opportunities for our test takers 
to make random errors (a low ability test taker 
can’t guess correctly on a difficult item if we don’t 
present him with that difficult item). So we can ac-
tually reduce the number of errors made by our 
test takers. Now that’s seriously cool.
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13 Because I didn’t just make 
up all of this stuff.
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