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Introduction

Correlation and regression are statistical tools 
that are used to assess the relationship between 
variables and to predict scores on a variable given 
scores on other variables. To predict and associate. 
Very useful functions. All very cool. And, I think 
you’ll be surprised at how simple it all is. Things 
will get complicated in time; even then, the ad-
vanced concepts are just a series of additions, 
none too complicated, to a rather simple founda-
tion.

Predictive Versus Explanatory Research 

Let’s talk about uses for correlation and regres-
sion. Correlation and regression are tools, nothing 
more. As with ANOVA, t tests, and chi squares, 
they are tools we use to analyze data. Why we ana-
lyze these data is another story. Psychological re-
search can serve two general purposes: prediction 
and explanation. Predictive research is conducted 

to see how well a variable (or set of variables) pre-
dicts another variable. If we determine that the re-
lationship between these variables is strong 
enough for applied purposes, then predictive re-
search is also concerned with establishing the 
means for making these predictions in the future.

Explanatory research is concerned with causal 
issues. “Explanation is probably the ultimate goal 
of scientific inquiry, not only because it satisfies 
the need to understand phenomena, but also be-
cause it is the key for creating the requisite condi-
tions for the achievement of specific objectives” 
(Pedhazur, 1997, p. 241). Stated differently, under-
standing causality is important because if we un-
derstand how something occurs, we have the 
means to change what occurs. That’s powerful 
stuff.

Thus, with explanatory research we seek to un-
derstand why something is occurring. Why do chil-
dren succeed or fail in school? Why do people feel 
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satisfied or dissatisfied with their job? Why do 
some people continually speak in the form of ques-
tions? It should be obvious that explanation is 
more difficult than mere prediction. With predic-
tion we don’t care why something is happening. 
All we want to do is predict it. Understanding why 
something is occurring may help to predict it, but 
it’s not necessary. Explanation requires more than 
simply finding variables related to the dependent 
variable – it requires the identification of the vari-
ables that actually cause the phenomenon. Many 
variables, although not actually causing the phe-
nomenon, will predict simply because they are re-
lated to causal variables. Many variables predict, 
but only a subset of these variables are the actual 
causes.

So, explanatory research is more difficult than 
predictive research. What may be surprising is 
that the analytical tools used for predictive and ex-
planatory research are sometimes the same. That’s 

right, correlation and regression can be used for 
both types of research.

The Role of Theory

You might ask, how then is predictive research 
different from explanatory research, aside from 
their end goals? The answer is they can involve dif-
ferent analytic tools, but there are some other im-
portant differences. Foremost among these is the 
role of theory. Theory need not play any role at all 
in predictive research. It’s possible to go com-
pletely theory-free and have successful predictive 
research. Just try a bunch of variables and see 
what works. Because it doesn’t matter why some-
thing predicts, we don’t have to possess a good 
reason for trying and using a variable if it predicts. 
That said, predictive research based on a sound 
theory is more likely to succeed than theory-free 
predictive research.
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The situation is completely different for ex-
planatory research. A sound theoretical basis is es-
sential for explanatory research. Because explana-
tory research is all about why different outcomes 
occur, we must include all of the relevant variables 
in our analysis. No throwing a bunch of variables 
in the experiment just to see what works. A set of 
variables, chosen with little regard to any previous 
work, will not likely include the actual cause. 
(Also, including too many irrelevant variables can 
corrupt our analysis in other ways.) Furthermore, 
there is no way to fix explanatory research that 
was incorrectly conceived. “Sound thinking within 
a theoretical frame of reference and a clear under-
standing of the analytic methods used are proba-
bly the best safeguards against drawing unwar-
ranted, illogical, or nonsensical conclusions” (Ped-
hazur, 1997, p. 242). I don’t know about you, but 
I don’t want to draw unwarranted, illogical, or non-
sensical conclusions.

The following hypothetical study illustrates 
the differences between predictive and explanatory 
research. In this study, researchers measured the 
number of classical music CDs, books, computers, 
and desks in the houses of parents of newborns. 
Ten years later they measured the mathematical in-
telligence of these children. An analysis revealed 
that the combined number of classical music CDs 
and desks strongly correlated with mathematical 
intelligence.

The first issue to address is: Is this sound pre-
dictive research? Yes, the number of classical CDs 
and desks are strongly related to mathematical in-
telligence and can be used to predict math IQ 
scores with excellent accuracy. (Just a reminder, 
this study is not real. I had a lot of fun making it 
up.)

A second question is: Is this sound explana-
tory research? No, and it’s not even close. These 
variables were chosen simply because they corre-
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lated with the dependent variable, not because 
there was a logical reason for them to affect math 
ability. To think that the possession of these items 
is the cause of mathematical intelligence for these 
children is to make the classic mistake of equating 
a strong relationship with a causal relationship. If 
you’re still not convinced, ask yourself this: Would 
supplying classical music and furniture to house-
holds of newborns that didn’t have those items 
raise the math scores of children living in those 
households? The cause of a given variable is also 
the means for changing the status of people on 
that variable.

Let us close this section by stating that correla-
tion and regression analysis are statistical tools 
that can be used for both predictive and explana-
tory research. A sound theoretical foundation is 
helpful for the former, essential for the latter.

Research Designs

No chapter that even mentions causal, or ex-
planatory, research would be complete without a 
short discussion of research design. Statistics are 
fun and all, but it is the research design (and asso-
ciated methodology) that allows us to draw, or pre-
vents us from drawing, clear conclusions about 
causality.

The three basic research designs are: the true 
experiment, the quasi experiment, and the non ex-
periment (also called a correlational study, but 
that’s a terrible name). These three designs differ 
in two aspects: how subjects are assigned to condi-
tions (through a random or non random process) 
and whether the independent variables are ma-
nipulated by the experimenter. Some variables can 
be manipulated, like type of reinforcement sched-
ule, and some can’t, like height or SAT score.

Put these two factors together, and we get our 
three basic types of experimental designs (Chart 
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1). The true experiment has random assignment 
to groups and a manipulated independent vari-
able. Due to the random assignment, the groups 
likely begin the study equal on all relevant vari-
ables, meaning that after the manipulation has oc-
curred the differences observed between the 
groups on the dependent variable are the result of 
the experimenter’s manipulations (i.e., the inde-
pendent variable). The great advantage of this de-
sign is that, if done correctly, causal claims are 
clear and easy to substantiate. There are some dis-
advantages to this design, but let’s not concern 
ourselves with those.

In the quasi experiment, people are not ran-
domly assigned to groups, but there is a manipu-
lated independent variable. Aside from the lack of 
random assignment, the quasi experiment is like 
the true experiment. However, that one difference 
makes all of the difference. The non random as-
signment to groups is a fundamental weakness. 
Only random assignment offers any assurance that 
the groups start out equal. And if the groups start 
out unequal, there is no way to know if the ob-
served differences on the dependent variable are 
due to the manipulated variable or to pre-existing 
differences. To summarize, there are an infinite 
number of possible causes for the differences ob-
served on the dependent variable, of which the in-
dependent variable is but one. At least, however, 
the manipulated variable is a good candidate for 
the cause. So there’s that. You may be asking, “If 
there are so many problems that result from not 
randomly assigning people to groups, why would 
anyone ever fail to randomly assign?” The answer 
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Assignment Manipulation

True Experiment ✔ ✔

Quasi Experiment ✘ ✔

Non Experiment ✘ ✘
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is sometimes we are simply unable to randomly as-
sign people to groups. The groups are pre-existing 
(i.e., they were formed before the study) and unal-
terable. An example would be the effect of two dif-
ferent teaching techniques on classes of introduc-
tory psychology students. The students picked the 
class (including instructor, dates, times and loca-
tions); it is not possible for the researcher to as-
sign them, randomly or otherwise, to one class or 
the other. That’s the real world, and sometimes it 
constrains our research.

In the third design, the non experiment, peo-
ple are not randomly assigned to groups; there is 
also no manipulation. In fact, there are often not 
even groups. A classic example of this type of de-
sign is a study designed to determine what causes 
success in school. The dependent variable is scho-
lastic achievement, and the independent variable 
is any number of things (IQ, SES, various personal-
ity traits). You will note that all of these various in-
dependent variable are continuous variables – 

there are no groups. And of course, nothing is ma-
nipulated; the people in the study bring their own 
IQ status (or SES or what have you) with them. 
As with the quasi experimental design, there are 
an infinite number of possible causes for the differ-
ences observed on the dependent variable. How-
ever, because nothing was manipulated in the non 
experiment, there isn’t even a good candidate for 
causality. Every possible cause must be evaluated 
in light of theory and previous research. It’s an 
enormous chore. So why would anyone use this de-
sign? Well, some variables can’t be manipulated 
for ethical reasons (e.g., the effects of smoking on 
human health) or practical reasons (e.g., height). 
Conducting research on topics where the inde-
pendent variable can’t be eliminated requires re-
searchers to make the best of a bad hand (to use a 
poker metaphor).
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Terminology: Independent Variable or Predictor?

I’ve used the term independent variable in the 
previous section without defining it. Independent 
variable has a twofold definition. An independent 
variable is a variable that is manipulated by the re-
searcher; it is also a presumed cause of the depend-
ent variable. Another oft-used term, similar to in-
dependent variable, is predictor. A predictor dif-
fers from independent variable on both parts of the 
previous definition. A predictor is not manipu-
lated by the researcher, and causal claims are not 
being made with it.

So there we have it, independent variable and 
predictor, two terms describing the variable that 
that starts the study. Independent variables are ma-
nipulated and causal. Predictors are not manipu-
lated and are non causal. That seems simple 
enough, but what of research conducted within a 
non experimental design where the variable is not 
manipulated but is thought to be the cause of the 

dependent variable? This situation is rather confus-
ing, but the causality issue is likely the more rele-
vant factor, making this variable an independent 
variable.

One last issue, when the term predictor is 
used, the variable analogous to dependent variable 
is referred to as the criterion. So it’s independent 
and dependent variables when causality is an issue 
and predictor and criterion variables when it is 
not.

One Last Thing Before We Proceed

I didn’t invent any of this stuff. In this book I 
am merely explaining concepts and principles that 
long ago entered into the body of foundational sta-
tistics knowledge. The origins of regression analy-
sis date to work by Gauss and Legendre some two 
hundred years ago. Everything important about 
correlation was described over a century ago by 
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two other researchers. Correlation and regression 
analysis are not new concepts – they are classics.
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2 Variability. Sampling Error. 
Standardized Scores.

It doesn’t get any better 
than this.

Basic Statistics



Introduction

Before we can discuss correlation and regres-
sion, there are a few basic statistics we need to dis-
cuss. These should be very familiar concepts, so 
we won’t spend much time on them.

Populations and Samples

There are two terms that are important to un-
derstand in the world of statistics. Just to scare 
you a little bit, failure to understand these terms 
may mean that you use the wrong equation be-
cause, you guessed it, sometimes there are differ-
ent equations for samples versus populations.

Population: Everyone relevant to a study. If 
your study is about people in general, then your 
population consists of every person on the planet. 
If your study is about students in an art history 
class being taught a certain way at a certain place, 
then your population is everyone in that class. 

Aside from studies with narrowly defined popula-
tions, we never measure the entire population. 
Sometimes researchers like to pretend that they 
have measured a population just because their 
sample is big, but they’re just pretending.

Sample: A subset of the population. If there 
are ten million in the population, and you meas-
ure all but one, you’ve measured a sample. Sam-
ples can be small (N = 23) or large (N = 10,823). 
Smaller samples often lead to greater error in our 
results. So we prefer larger samples. Bad news: 
Large samples are labor intensive. And if that’s 
not enough, there are other problems to consider. 
To keep you from demanding a refund at this 
point, we’ll save those issues for later. 

Sampling Error

All right, so we’ll measure samples and not 
populations. But saving all of that work comes at a 
price: sampling error. Sampling error is the differ-
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ence between the value of a statistic computed in 
a sample versus the population value of that same 
statistic. As an example, let’s say that we wanted 
to investigate how well high school seniors know 
the capitals of the 50 states. Thus, the population 
consists of every high school senior (remember, 
the population isn’t always everyone on the planet 
– it’s everyone relevant to the study). It is clear 
that it’s too much work to give our state capital 
test to every high school senior student. So, via a 
random process we select 100 students and test 
them. And let’s say that their mean number cor-
rect is 34. Now that’s a sample of people and their 
mean score represents our best estimate of the 
mean score for all the senior students. But this es-
timate is just that, an estimate, and it won’t be per-
fect. Now, for the sake of argument, imagine that 
we collected data from every single high school 
senior (i.e., the population). And the mean popula-
tion score turns out to be 22 correct. Whoa, 
there’s a big difference between our sample value 

(34) and the population value (22). That differ-
ence is sampling error, and it’s the price we pay 
for being lazy. Sometimes sampling error is big, or 
sometimes, by sheer luck, it works out to be zero 
for a given study. The rule to remember is this: 
Larger samples are likely to lead to smaller 
amounts of sampling error. So, we like large sam-
ples. The bigger, the better.

For the “larger samples lead to smaller 
amounts of sampling error” rule to work, every-
one in the population must have an equal chance 
of being selected for the sample (such a sample is 
called a probability sample). There are a variety 
of techniques (e.g., simple random sampling, clus-
ter sampling) available to collect probability sam-
ples. It’s work, but it can be done. But what if the 
sample isn’t a probability sample? The “larger sam-
ples lead to smaller amounts of sampling error” 
rule definitely does not apply if the sample is any 
type of non probability sample (i.e., samples of 
convenience; volunteer samples; collecting data 
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from friends, family, and pets). In a non probabil-
ity sample, some members of the population have 
no chance of being selected. The classic example 
of a non probability sample is the use of college 
students in psychological research. Any sample 
taken from a college student subject pool will not 
be representative of any population broader in 
scope than college students for the simple reason 
that people who are not college students have zero 
chance of being selected. Data gathered from a 
non probability sample, regardless of size, should 
never be used to draw inferences regarding popula-
tion characteristics; the validity of such generaliza-
tions is unknown and unknowable (Pedhazur & 
Schmelkin, 1991). No statistical magic exists 
which would fix the problems caused by a non 
probability sampling technique.

This next point should be obvious, but I’ll 
state it anyway. The population from which the 
sample is taken must be the right kind of popula-
tion. That is, it must be the population that is rele-

vant to the study. Using our state capital example 
from earlier, if we wanted to know the average 
score of high school seniors, it wouldn’t make 
sense to draw our sample from the membership of 
a plumber’s union. If the sample is taken from 
Population A, we shouldn’t generalize sample char-
acteristics to Population B. It’s not that any such 
generalization will be automatically wrong; it’s 
that there is no way to know if it is correct.

To summarize, we can state rules regarding in-
ferences from samples as follows. To use sample 
statistics to make inferences about the population 
with a minimum of error, a sample must be large, 
collected via a probability sampling technique, and 
drawn from the right kind of population.

Finally, these rules apply to all statistics. We 
used means in our example, but we could have 
used medians, standard deviations, correlations, 
or a whole pile of statistics whose names you and 
I have not yet even heard of. Sampling error af-
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fects every statistic that we compute and the only 
sure way to completely avoid it is to measure the 
entire population. Since that’s too much work, we 
can minimize the magnitude of sampling error by 
the use of large probability samples.

Central Tendency

You’ve probably already learned that there are 
three types of averages: mean, median, and mode. 
An average score describes the central tendency of 
a set of data. The mode is the most frequently oc-
curring value. Consider the following table.

Person Score

L. Sebastian 22
Kyle 18
S. Joe 29
Shauna 18
Ron 19

The modal score is 18 because it occurs more of-
ten (twice) than any other score (all just once 
each).

The median is the middle score. As an anal-
ogy, in a family with three children, who is the 
middle child? The second one, of course. If there 
are three scores, then the median is the value of 
the second score. So to compute a median, just 
find the middle score and note its value. In the 
above example, there are five scores so the middle 
score is the third highest one. The value of the 
third highest score is 19. Thus, the median score 
is 19 (not 3 or 29). It should be clear that to com-
pute a median, (a) one must sort the data from 
highest to lowest (or lowest to highest), (b) find 
the middle score, and (c) obtain the value of the 
middle score. OK, new example. What if a family 
has four children, who is the middle child? It is a 
little tougher because two kids (the second and 
the third) tie for the middle spot. We could have 
the same issue with finding the median score. In 
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the above dataset, let’s say we obtain data from a 
sixth person, who we will call Lucy. Lucy has a 
score of 20. That means we have six total scores. 
The middle scores are the third and fourth highest 
scores. Note that there are the same number of 
scores greater than and lesser than these two – 
that means that you’ve successfully found the mid-
dle value(s). The values of the two middle scores 
are Ron’s 19 and Lucy’s 20. To compute the me-
dian, split the difference. Thus, the median score 
is 19.5. To summarize, when we have an odd num-
ber of scores, just sort the data and find the value 
of the middle score. When we have an even num-
ber of scores, sort the data, find the values of the 
two middle scores, and split the difference.

You’re probably most familiar with means. To 
compute a mean (symbolized as μ for populations, 
X̄ for samples), add up the scores and divide by 
the number of scores. If you like equations, here’s 
one:

X̄ = ∑ X
N

Now that you know three ways to compute av-
erage or central tendency, we should talk about 
the advantages and problems with each. There is 
no problem with mode, except that nobody uses 
it. And I mean nobody. Means can be overly influ-
enced by a single extreme score, resulting in a 
value that is not representative of the dataset. Me-
dians do not suffer from that problem. In fact, one 
might say that medians are not influenced enough 
by extreme scores.

Variability

A frequency distribution (also called a histo-
gram) is a graph of scores of a single variable (Fig-
ure 1). The x-axis indicates the various levels of 
the variable and the y-axis indicates the number of 
times each value is observed. It sounds fancy, but 
it’s really just a bar graph, the sort of thing you 
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made in third grade. The jaggedness of the bars is 
because the X variable is a variable which has dis-
crete categories (like ACT scores, where the only 
possible score values are integers – there’s no 
21.7); in other words, the variable is not truly con-
tinuous. With datasets of infinite size (and con-
tinuous variables), frequency distributions smooth 

out to something called a probability density func-
tion, (see Figure 2). Much nicer, no?

Let us note a few of things in the two distribu-
tions. First, not many people have scores that are 
very low (-2 or -3) or very high (+2 or +3). Most 
people have scores in the middle (“The meaty part 
of the normal curve.” Costanza, 1997). Second, 
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the distribution is symmetrical. If you draw a line 
down the middle, one side is a mirror image of the 
other. Go ahead, find a mirror and try it. Finally, 
when the distribution is symmetrical like this one, 
that line down the middle tells you where the 
mean is located. In this case, the mean is zero.

Moving on, distributions for two different data-
sets are displayed in Figure 3 and Figure 4. What’s 
the difference between the first graph (black distri-
bution) and the second graph (blue distribution)? 
When they are shown on separate graphs they ap-
pear to be the same. They have the same mean 
score. Notice how the midpoint of each is zero. 
They have the same sample size (trust me on 
this). If you’ve read the title of this section, then 
you’ve guessed that the difference is variability. In 
the first distribution (in black), most (approxi-
mately two-thirds) of the scores are within one 
point of the mean (the mean plus or minus one 
point). In the second distribution (in blue), very 
few of the scores are within one point of the 

mean. You have to move out to five points away 
from the mean (the mean plus or minus five 
points) in order capture most of the scores. If we 
place both datasets on the same scale (Figure 5), 
it’s clear that the scores are not spread out in the 
same way (if Figure 5 seems like a massive cheat, 
pay careful attention to the scale on the x- and y- 
axes on the three graphs).
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Variability is greater for the blue distribution 
than for the black distribution. Variability is all 
about the differences between the scores. There 
are a number of ways to compute variability, but 
we’ll end up using just two of them.

The simplest measure of variability is called 
range. The range is simply the difference between 

the highest and lowest scores. Easy to compute, 
but such a crude measure of variability. A single 
outlying score can result in a high range. Thus, it 
is not a sensitive measure of variability.

The measure of variability that we like is 
called variance (symbolized for populations as σ2). 
Yes, the name is a little confusing, so here’s a hint. 
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Variability refers to all of these statistics (including 
range), whereas variance refers to a specific equa-
tion (given below for populations). (Just to be 
clear, the equation below computes variance for a 
population of data. But wait, you say, I thought 
people never measure an entire population. True. 
So why do we need this equation? Before I explain 
sample variance, I need to explain population vari-
ance. All things in due time.)

σ2
X = ∑ (X −μ)2

N

This equation isn’t that bad. In fact, it is really 
similar to the equation for a mean. To see that, 
take all the parenthetical stuff and call it Q (just to 

give it a name). The equation is now 
∑ Q

N
. In es-

sence, variance is the mean of this Q variable. So 
variance is the mean of something. Now let’s look 
at the parenthetical component. It’s (X −μ)2. For-
get the squared part, focus on (X −μ). This is 
called a mean-deviation score and it is the simple 

difference between a score on X and the mean 
score. If X equals the mean score, then the mean-
deviation score is zero. If X is greater than the 
mean score, then the mean-deviation score is posi-
tive. You get the idea. We’ll be computing mean-
deviation scores for all people in our dataset. An 
example is presented below. The mean of X is 6.

Person X (X - Mean)

Bennett 3 -3
Tommy 9 3
Todd 4 -2
Matt 8 2

Now we have to deal with the squared-ness. We’ll 
be squaring the mean-deviation scores.
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Person X (X - Mean) (X - Mean)2

Bennett 3 -3 9
Tommy 9 3 9
Todd 4 -2 4
Matt 8 2 4

Remember that Q thing we made up? That’s the 
last column, the squared mean-deviation scores. 
As we said, variance is just the mean of this thing.

So variance is the mean of the squared mean-
deviation scores. In this case, it’s (9+9+4+4)/4 
= 6.5. Another way to describe it is variance repre-
sents the average squared difference between each 
score and the mean. Here’s another example.

Person X (X - Mean) (X - Mean)2

Julianna 9 0 0
Paul 9 0 0
Jennifer 9 0 0
Anthony 9 0 0
Brenden 9 0 0

Variance is, you guessed it, zero. Why? Every 
score is the same. Thus, the average distance be-
tween each score and the mean is nothing. Just for 
fun, diagram the frequency distribution of this da-
taset.

So that’s the equation for population variance. 
What about the equation for computing variance 
when you have measured a sample (which, as we 
have discussed, is pretty much all of the time)? 
The equation to compute the variance of a sample 
of data (when you want an unbiased estimate of 
the population variance, and, trust me, this is 
what you want) is:
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S2
X = ∑ (X −X̄ )2

N −1
The only difference, aside from the symbol S2

X and 
the replacement of μ with X̄, is that instead of di-
viding by N , we divide by N −1 . It is worth noting 
that the popular statistics programs (e.g., SPSS, 
SAS) use this N −1 equation to compute variance. 
And, of course, the N −1 version is the correct 
equation – unless you happened to have measured 
a population. And that won’t happen on accident. 
So we’ll stick with the sample variance equation 
from here on.

You might be wondering why we divide by 
N −1 instead of N with the sample variance equa-
tion. Here’s the short answer (and feel free to skip 
this paragraph if you don’t care): the N −1 denomi-
nator is necessary to obtain an unbiased estimate 
of the population variance. “Unbiased estimate?” 
you say. Well, think about it. We measure samples 
because it’s inconvenient (well nigh impossible) 

to measure the entire population. But, and this is 
important, we want our sample statistics to repre-
sent the population statistic. All of the statistics 
we have discussed to this point (e.g., mean) were 
unbiased, meaning that the sample statistic would 
not consistently yield a value that was too high or 
too low (stated another way, there was about a 
50% chance that the sample statistic would be too 
high compared to the population value and about 
a 50% chance that it would be too low). Variance 
computed in a sample using the N denominator is 
a biased statistic in that it will consistently yield a 
value that is less than the population value. And 
where does the N −1 denominator come in? By di-
viding the squared mean-deviation scores by 
N −1, the bias is eliminated and the sample vari-
ance equation produces an unbiased estimate of 
the population value. Aren’t you glad you asked? 
If you want to know why the N denominator ver-
sion of the equation produces a biased estimate in 
a sample, that’s a much bigger question. There are 

21



proofs for that. Take my word for it; they are not 
fun.

Our final variability statistic is called standard 
deviation (symbolized as SX). If you know vari-
ance, then standard deviation is a snap because…

SX = S2
X

That’s right, standard deviation is just the square 
root of variance. If you know one, you can always 
compute the other. A clear sign of this is the sym-
bol for each. The variance symbol (S2

X) has a 
squared sign and the standard deviation symbol (
SX) doesn’t.

You might be tempted to ask, given that vari-
ance and standard deviation are basically the 
same, why do we need both of them? Well that’s a 
good question and I’m glad you asked it. Shows 
your intelligence. The answer relates to the metric 
of measurement. If scores on X are how much peo-
ple weigh in pounds, and the variance comes out 

to be 85, then we say the variance is 85 pounds 
squared because variance is in squared units. Right 
away you can see the problem: squared pounds. 
Now imagine that we measured ACT scores. 
Squared ACT points? Variance just doesn’t live in 
the land of regular units of measurement. But stan-
dard deviation does. With standard deviation, 
we’re back to pounds, ACT points, and the like – 
the original metric of measurement. Operating in 
the original metric of measurement makes it a lit-
tle easier to determine if a given value is big or 
small. In squared units, everything looks big.

Standard Scores: Linear z Scores

Standardizing a set of data changes the scores 
so that they have a useful mean and standard de-
viation. We call these rescaled scores standard 
scores. There are many forms of standard scores. 
We’ll discuss a few. Before we get to that, why 
would anyone use standard scores? As we men-
tioned in our section on normative inference, test 
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score metrics (e.g., measuring race results in sec-
onds versus hours, measuring job performance 
with a 5-point scale versus a 7-point scale) are ar-
bitrary. Thus, it is difficult to interpret a score 
without knowing something about how other peo-
ple score on the test. The mean and standard de-
viation are two pieces of information describing 
how well other people scored. Both statistics are 
used to transform raw scores into standard scores. 
Data expressed in standard scores allow us to in-
terpret how high or low the score is as long as we 
know the characteristics of the standard scores. 
Think of standard scores as a neutral playing field 
for our test scores.

There are many types of standard scores, but 
the most popular is the linear z score (often re-
ferred to as just z score, but the linear word is im-
portant because there is a nonlinear version as 
well). The equation for computing a z score is sim-
ple.

zX = (X −X̄ )
SX

X represents the person’s score in question. X̄ is 
the mean score and SX is the standard deviation. 
So, all we need to know in order standardize a 
score is: the test taker’s score, the mean score, 
and the standard deviation. That doesn’t sound 
too difficult.

How about an example? Let’s say that I took 
the SAT, and my verbal score (SAT-V) is a 400. 
The mean of the SAT-V section is 500, and the 
standard deviation is 100. Now we’re ready to go. 
Plugging in these values into the z score equation, 
we find that my 400 on the SAT-Verbal becomes a 
z score of -1.0. 

Let’s take a closer look at my z score of -1.0. 
My z score is negative. The negative sign tells you 
something – I did worse than average. If my score 
was above the mean, my z score would have been 
positive. If my score had been exactly the same as 
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the mean, my z score would have been 0.0. The dif-
ference between my score of 400 and the mean is 
100 points. The standard deviation is 100 points. 
Thus, my score of 400 is exactly one standard de-
viation below the mean. The z score is -1.0. Do 
you see where this is going? I’m not this redun-
dant on accident. Here it comes: A z score is liter-
ally the number of standard deviations a score de-
viates from the mean. In case that's not clear, I'll re-
state the definition in the form of a question: How 
far (in terms of number of standard deviations) 
from the mean (above or below) is this score? If 
the z score is -2.0, then the person’s score is two 
standard deviations below the mean. If the z score 
is 1.5, then the person’s score is one and a half 
standard deviations above the mean. If the z score 
is 0.0, then the person’s score is zero standard de-
viations above the mean – it is right on the mean. 
So when we talk about the number of standard de-
viations a score is from the mean, we’re also using 
z scores. Very convenient.

One important point about the linear z score 
transformation (and all other linear transforma-
tions) is that the shape of the distribution does 
not change. If the data were normally distributed 
before the transformation, it will be normally dis-
tributed after. It the data were skewed before, they 
will be skewed after. The linear z score transforma-
tion changes the mean and standard deviation of 
the data, not the shape of the distribution.

There’s another benefit to standard scores. 
Standard scores allow for easy comparisons of 
scores. Comparing two or more scores from the 
same test is child’s play if the measurement is 
done at the ordinal level or better – the highest 
score represents the highest standing on the con-
struct. Highest number wins. But what if we want 
to compare scores from one test to scores from a 
different test? This won’t be as easy. Now you 
might ask, why would anyone want to do this? 
The answer is that we have many similar tests that 
do the same thing. The ACT and the SAT offer but 
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one example. Let’s say that you took the ACT and 
scored a 30. We already know that I took the SAT 
and scored a 400 on the verbal section. Who did 
better, me or you? A layperson might look at the 
scores and say that I did better because 400 is big-
ger than 30. But we know better. We know that 
each test has a different metric of measurement – 
they use different numbers with different stan-
dards for good, average, and poor performance. 
What we need is a way to put both scores on the 
same metric of measurement. All we have to do is 
translate both scores to standard scores.

Back to our ACT-SAT example. We know my 
400 on the SAT-Verbal translates to a z score of 
-1.0. What about your 30 on the ACT? What’s its 
z score? Using the z score equation (we’ll say that 
the ACT has a mean of 20 and a standard devia-
tion of 5), your ACT score transforms to a z score 
of +2.0. Again, z scores are the number of stan-
dard deviations above or below the mean. So your 
score is two standard deviations above the mean. 

REVIEW 1 Computing z Scores

Check Answer

Question 1 of  2
If a set of data has a mean of 50 and a standard deviation of 20, 
what is the z score for a person with a raw score of 40?

A. -0.5

B. +0.5

C. +2.0

D. -2.0

E. +0.75

F. -0.75
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Now that both of our scores are in z score units, 
we can directly compare the numbers. It is clear 
that your z score of 2.0 is bigger than my z score 
of -1.0. You win. You did better on your test than I 
did on mine. Try to stay humble. It won’t be easy.

One last bit on this comparison business. 
Some comparisons are not meaningful. Suppose 
you take a test of depression and I take the SAT-
Verbal again. Your score is a 4 and mine is a 410 (I 
studied a bit harder this time). Who did better? 
The answer is: Who cares? The tests are com-
pletely different, measuring different constructs, 
existing for different purposes. It’s a meaningless 
comparison.
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3 If there’s a hall of fame for 
statistics, the correlation 
coefficient is in it.

Correlation



Overview

You may have noticed that everything we have 
discussed so far has been related to scores on a sin-
gle variable. That is, we’ve talked about a set of 
ACT scores, but we’ve never looked at the relation-
ship between two variables (ACT and college 
GPA, just to throw out a wild idea) for a group of 
people who each have scores on both variables. Are 
the scores related? Unrelated? In what way are 
they related? Is it a strong relationship or a weak 
one? As you can see, life gets much more interest-
ing when we measure multiple variables for each 
person. And we haven’t even talked about why 
these two variables are related. That’s a topic for 
another day (and another book). For now, let’s fo-
cus on understanding how we quantify associa-
tions between two variables.

Bivariate Associations

When describing the association between two 
variables there are two issues to consider: the 
strength of the relationship and the direction of 
the relationship. One way to assess the associa-
tion between two variables is to simply examine 
the raw data. Below is another one of our absurdly 
small datasets, which we’ll use as an example.

Person X (ACT) Y (GPA)

John 12 1.1
Sal 23 2.8
Tim 24 2.9
Amy 31 3.4
Linda 22 -

First off, we note that each person should have 
two scores: X, the ACT score, and Y, the GPA. If a 
person had only one score, we would be unable to 
include him or her in the analysis. Note that Linda 
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doesn’t have a score on the Y variable, meaning 
that we are unable to include her in the analysis. 
A person must have scores on both variables to be 
included. We also note that I’ve sorted the remain-
ing scores from lowest (John) to highest (Amy) on 
X. Now let’s see if there’s a trend in the data. And 
because I made up the data, there is. Lower scores 
on X are associated with lower scores on Y. Higher 
scores on X are associated with higher scores on Y. 
So it appears that there is a strong, positive rela-
tionship between X (ACT score) and Y (GPA). We 
say that it is a strong relationship because the rank 
order of scores is perfectly consistent. The person 
with the highest score on X (Amy) also has the 
highest score on Y. The person with the second 
highest score on X (Tim) also has the second high-
est score on Y. And so on. There are no exceptions 
to this perfect ordering of the scores. It is this con-
sistency of rank order which is the primary deter-
minant of the value of the correlation coefficient. 
Finally, we say the relationship is positive because 

higher scores on X are associated with higher 
scores on Y. If higher scores on X were associated 
with lower scores on Y, then the relationship 
would have been negative. Thus, we have ad-
dressed both aspects of bivariate associations: 
strength (the relationship between X and Y is 
strong) and direction (the relationship is posi-
tive). Now this is about all we can get from exam-
ining the raw data (don’t try doing this with large 
datasets – it’s borderline impossible); let’s move 
on to a better way to examine the relationship, the 
scatterplot.

The Scatterplot

A scatterplot is a graph of the X and Y scores 
on two axes. It’s the same old kind of x-y graph 
you’ve known since, oh, about third grade. The 
data from our example are graphed in Figure 1. 
On a scatterplot, each person receives a dot (or a 
square, or a plus sign, or a smiley face, or what-
ever you want). The dot indicates a person’s score 
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on X and Y. It should now be clear as to why we 
couldn’t include Linda in the analysis. Where 
would we put her dot? It would be somewhere at 
22 on the x-axis, but how high on the y-axis do we 
put the dot? We can’t assume that she would have 
done poorly on Y. We’re not in the business of as-
suming anything – we’re in the business of using 

the available data to describe the relationship. 
Thus, she’s gone. Looking at the scatterplot, we 
can see a trend, the same trend we saw when we 
looked at the raw data: higher scores on X are asso-
ciated with higher scores on Y. And notice how 
the scores fall in the path of a straight line. The ba-
sic Pearson correlation tells us the strength of the 
linear relationship between two variables. What if 
the relationship is not linear? Another time, an-
other chapter for that topic.

Getting back to how closely the scores match 
a straight line, let’s draw the graph again, only 
this time with a straight line added as a reference 
(Figure 2).This line is called the line of best fit, or 
more commonly, the regression line. The regres-
sion line is the line that minimizes the vertical dis-
tance between the line and each point. You can 
imagine pulling out a ruler, measuring the vertical 
distance between each point and the line, averag-
ing the distance, moving the line ever so slightly 
to try to improve things, and repeating until you 
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FIGURE 1 Scatterplot of Example Dataset
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find the sweet spot. You can imagine doing this, 
but it sure doesn’t sound like fun. Fortunately, we 
don’t have to do this graphically (where we meas-
ure things with a ruler); we can do it mathemati-
cally with the raw data. Even more fortunately, we 
can let computers do all the work for us (more on 
this later). As mentioned, the strength of a rela-

tionship between two variables is indicated on the 
scatterplot by how close the points are to a 
straight line. As we will see, in weaker relation-
ships, the points are far from the line. The direc-
tion of the line (pointing up or pointing down) 
tells you direction of the relationship (positive or 
negative). If the line is completely flat, there is no 
relationship. Very important point: The apparent 
slope of the regression line (aside from the case 
where it is completely flat) does NOT indicate the 
strength of the relationship. It seems like it 
should, but it doesn’t (aside from one special ex-
ception with which we will not concern our-
selves). As mentioned, the strength of a relation-
ship between two variables is indicated on the scat-
terplot by the closeness of the points to a straight 
line, not the slope of this line. Why not the slope? 
The answer is that we can stretch or squash the x- 
and y-axes by a number of different methods to in-
crease or decrease the slope of the line. The same 
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FIGURE 2 Scatterplot of Example Dataset with Regres-
sion Line



data are displayed again in Figure 3, this time with 
different ranges on both axes.

That new slope may appear impressive, but 
the strength of the association is unchanged. The 
correlation stays the same. So don’t be fooled by 
the apparent slope of the regression line. Notice 
how I said that the apparent slope doesn’t indicate 
the strength. If you were to compute slopes with 
the old slope = rise/run equation for the above 
graph and the previous one, you would find that 
the value is the same in both cases. By changing 
the range on the axes I’ve made the slope appear 
to be stronger. Always examine how close the 
points are to the line to assess the strength of the 
relationship. But this graphical stuff is just a vis-
ual representation of the data, something that we 
can eyeball to get a general idea of what is going 
on. To describe the strength of the association be-
tween two variables with any accuracy requires 
something more than a casual inspection of the 
raw scores or even a graph of these scores. We 

need a statistic to quantify the strength of the rela-
tionship. We have a few options. Before we dis-
cuss any of these statistics, let’s discuss what prop-
erties a good measure of association statistic 
should have.
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FIGURE 3 Scatterplot of Example Data with Adjusted 
Axes
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Measures of Association

What properties should a measure of associa-
tion have? First off, it must accurately convey the 
desired information: strength and direction of the 
relationship. If it does’t do that, then there’s really 
no need to proceed with it. Furthermore, it should 
be sensitive to small differences in strength. One 
of the problems with evaluating strength with an 
examination of a scatterplot or dataset is that we 
are able to determine only the biggest of big pic-
ture ideas about strength (“It’s kinda strong. 
Maybe, medium strong.”). There is simply no way 
to be precise that way. A measure of association 
must be precise, or why bother?

Building on this, a good measure of associa-
tion should be easy to interpret. That is, upon com-
puting the coefficient, we should be able to deter-
mine, without any other information, whether the 
relationship is strong or weak, positive or nega-

tive. We should be able to see the number and in-
stantly know what it means.

Finally, a good measure of association should 
have a design that makes some sort of logical 
sense. It should be more than just a magic box in 
which the raw data is fed in the front, resulting in 
a coefficient falling out of the back end. I realize 
that this may not seem all that important, but it 
is. With these expectations set, let’s examine our 
first measure of association, covariance.

Covariance

Covariance is not just our first measure of as-
sociation, it’s the first measure of association. Co-
variance is the start of it all. Aside from one in-
credibly annoying limitation, covariance is the sim-
plest and most fundamental way to understand 
measures of association.
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Covariance is like variance – for a pair of vari-
ables. To understand covariance we must take a 
step backwards and discuss variance again. Vari-
ance quantifies differences among scores for a sin-
gle variable (remember that if everyone has the 
same score, variance is zero). If you recall, vari-
ance (in the population form) is defined as the 
mean of the squared mean-deviation scores:

σ2
X = ∑ (X −μX)2

N

Where:
μX is the mean of X.

As long as we’re looking at the variance equation, 
I’ll do a little algebraic manipulation and expand 
the squared part.

σ2
X = ∑ (X −μX)(X −μX)

N

There, same equation, just presented slightly dif-
ferently. Just to refresh your memory a little more, 

a mean-deviation score is computed as the simple 
difference between a given score and the mean of 
that variable (i.e., X −μX). A positive mean-
deviation score indicates that the score is above 
the mean. A negative mean-deviation score indi-
cates that the score below the mean. And a mean-
deviation score of zero indicates that the score is, 
you guessed it, right at the mean.

To summarize how variance is computed, we 
transform every person’s score into a mean-
deviation score, square these mean-deviation 
scores, and compute the mean of these squared 
values. Covariance is computed like variance for a 
pair of scores for each person. That is, instead of 
multiplying a variable’s mean-deviation score with 
itself (i.e., squaring), we multiply the first vari-
able’s mean-deviation score by the second vari-
able’s mean-deviation score. To make this happen, 
all we need to do is make a small modification to 
the variance equation listed above so that the 
mean-deviation scores of X are multiplied by the 
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mean-deviation scores of Y. Below is the equation 
for covariance.

σXY = ∑ (X −μX)(Y −μY)
N

Where:
σXY is the population covariance of X and Y
μY is the mean of Y.

Below is a dataset demonstrating the calcula-
tions for covariance.

Person X Y (X-
MeanX)

(Y-
MeanY)

(X-MeanX)* 
(Y-MeanY)

John 12 1.1 -10.5 -1.45 15.225
Sal 23 2.8 0.5 0.25 0.125
Tim 24 2.9 1.5 0.35 0.525
Amy 31 3.4 8.5 0.85 7.225

The mean of the last column (which works out to 
5.775) is the covariance.

Covariance Logic

How does the covariance equation work as a 
measure of association? Consider what we learned 
about bivariate associations: A strong positive as-
sociation is obtained when people with high 
scores on one variable (e.g., X) have high scores 
on another variable (e.g., Y) and when people with 
low scores on X also have low scores on Y. When 
we say high scores and low scores, doesn’t that sound 
like mean-deviation scores? (High or low com-
pared to what? The other scores – the mean being 
a great representation of the other scores.)

Now, all we need is a way to quantify the de-
gree of consistency of these mean-deviation 
scores. Multiplying the two mean-deviation scores 
for each person results in a product which is maxi-
mized only when both scores are large numbers 
(either positive or negative). Take the mean of 
those products and you have a pretty sweet meas-
ure of association.
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Let’s talk a little more on how the mean of 
this product works. Consider that half of the the 
mean-deviation scores will be positive and half 
will be negative. If the people with high scores on 
X have high scores on Y, then you’ll have two posi-
tive mean-deviation scores. Compute the product, 
and you have a nice, big, positive number (see 
Amy in previous dataset). Continuing with this ex-
ample, if the people with the low scores on X have 
low scores on Y, then you’ll have two negative 
mean-deviation scores. Take the product, and due 
to the old negative times a negative equals a positive 
property of numbers, and you’ll have another nice, 
big, positive number (see John). The mean of all 
of the big, positive numbers is a big, positive num-
ber, indicating a strong, positive association. 
There’s our index of strength and direction.

To continue to understand the logic of covari-
ance, let’s flip the previous scenario around. Now, 
the people with the high scores on X have the low 
scores on Y (and the converse). Thinking in terms 

of mean-deviation scores, that’s a big, positive 
number multiplied by a big, negative number. 
Which results in a big, negative number. The 
mean of these is a big, negative number, indicating 
a strong, negative association.

And finally, what if there is no pattern? How 
does the covariance equation handle that? Some of 
the people with high scores on X have high scores 
on Y. Others have low scores on Y. Still thinking 
in terms of mean-deviation scores, that’s some 
big, positive numbers multiplied by a big, positive 
numbers, resulting in big, positive products, and 
some other big, positive numbers multiplied by 
some big, negative numbers, resulting in big, nega-
tive products. Take the mean of these products, 
and you get a zero, indicating no association.

That’s the logic of the covariance equation. 
That’s how it quantifies the direction and strength 
of association. This statistic allows us to see how 
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these variables vary together, or co-vary (hence, 
the name covariance).

Totally irrelevant thought: What if the Y vari-
able is just a copy of the X variable? Same scores 
and all. Doesn’t that turn this part of the covari-
ance equation: (X −μX)(Y −μY) into this: 
(X −μX)(X −μX)? A change which takes us back to 
the variance equation. As mentioned, covariance is 
just like variance, but it’s for a pair of variables.

Since there was a population and a sample 
form of the variance equation, you just know that 
there had to be a population and a sample form of 
the covariance equation. So here it is, the sample 
form of the covariance equation.

cXY = ∑ (X −X̄ )(Y −Ȳ )
N −1

Where:
cXY is the covariance of X and Y in a sample of 
data.

There’s really nothing else we need to say about 
this one. Other than the N −1 thing and the use of 
the sample mean instead of the population mean, 
everything else is the same.

Now that we’ve described the mathematical 
basis for covariance, let’s talk about what it does. 
As mentioned a number of times, covariance indi-
cates the strength and direction of the relationship 
between two variables. A covariance of zero indi-
cates no relationship between the variables. A posi-
tive covariance indicates a positive relationship be-
tween the variables, and a negative covariance indi-
cates a negative relationship between the vari-
ables. The only problem with covariance as a meas-
ure of association is that it is difficult to under-
stand just how strong or weak these relationships 
are. For one set of data a covariance of 41.4 might 
be weak, but for a different set of data a covari-
ance of .83 might be very strong. It’s all very an-
noying. This lack of a consistent standard for 
strong and weak relations is the major limitation 
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of covariance, and it is the principal reason why co-
variance is seldom used as an index of the associa-
tion between two variables. (It does have other 
value in terms of summarizing data, but don’t 
worry about that.) Good news though, there is a 
statistic that does indicate the strength and direc-
tion of the relationship between two variables in a 
standardized, easy to interpret fashion. And that 
statistic is the correlation coefficient.

Correlation

Correlation is, like covariance, a measure of as-
sociation between two variables. Unlike covari-
ance, correlation describes the association in a 
way that allows us to easily interpret the strength 
of the association. Correlation is, in essence, stan-
dardized covariance. Correlation is defined as the 
covariance divided by the standard deviations of 
each variable.

ρXY = σXY

σX ⋅ σY

Where:
ρXY is the correlation of X and Y in a popula-
tion.

We’ll make this our last foray into the population-
versus-sample version of something and just stick 
to sample versions of statistics. And here is that 
sample version of the correlation equation.

rXY = cXY

SX ⋅ SY

Where:
rXY is the correlation of X and Y in a sample of 
data. To reiterate, the symbol for sample corre-
lation is r, variable name subscripts optional.

For both equations, the principle is the same: 
Correlation is covariance divided by the standard 
deviations of each variable. What purpose does 
that serve? Dividing by the standard deviations res-

38



cales the statistic so that the maximum and mini-
mum values are always 1.0 and -1.0, respectively 
(covariance maximums and minimums were a 
function of the product of the standard deviations 
– different standard deviations mean different 
maximums and minimums). Thus, a correlation of 
.6 always means the same thing in terms of 
strength, regardless of the standard deviations of 
the variables. That’s the big advantage correlations 
have over covariance.

There are many types of correlation equations, 
but we’ll focus on the most popular one, the Pear-
son Product Moment Correlation. If someone says 
that they correlated two variables, with no other 
information specified about the type of correla-
tion, they are talking about the Pearson one. If you 
use one of the weird ones (e.g., phi, tetrachoric, 
Spearman), you mention them by name.

The Pearson correlation summarizes the 
strength and direction of the association between 

two variables in a single number. The correlation 
coefficient ranges from -1 to +1. A positive coeffi-
cient means that the relationship is, you guessed 
it, positive. A negative coefficient indicates a nega-
tive relationship. A -1.0 correlation indicates a per-
fect negative relationship and a +1.0 correlation 
indicates a perfect positive relationship. A 0.0 cor-
relation indicates no relationship between the two 
variables. Thus, the strength of the relationship is 
indicated by how close the number is to +1 OR 
-1. A correlation of -.8 is just as strong as a +.8. I 
hope that it is clear that the sign of the correlation 
is irrelevant to the strength of association. The di-
rection of the relationship is useful information 
worth knowing; it is just different information 
than the strength of the relationship. 
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Consider the following dataset.

Person X (ACT) Y (GPA)

Frank 8 1.3
Kevin 12 1.7
Gianni 17 2.2
Warren 20 2.9
Judy 23 2.5

As you can see in Figure 4, the rank order, al-
though good, is not perfectly consistent. The per-
son with the highest score on X, Judy, has the sec-
ond highest score on Y. The person with the sec-
ond highest score on X, Warren, has the highest 
score on Y. They are out of order. Everyone else 
falls in line (third on X is third on Y, fourth is 
fourth, etc.). 

Clearly the trend is positive, but compare this 
graph to any of the scatterplots of the previous da-
taset (Figure 2). Notice how the points in our new 

scatterplot are not as close to a straight line. 
Weaker association. Computing the correlation 
confirms what we already know, r = .92. Still very 
strong, but weaker than the previous dataset.
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FIGURE 4 Strong (But not Perfect) Association
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Time for a new example.

Person X (ACT) Y (GPA)

Rusty 26 2.6
Buck 27 2.7
Jeff 33 4.0
Dale 34 3.5
John 35 2.9
Margaret 36 3.3

Now we see even more exceptions to perfect rank 
ordering (Figure 5). The person with the highest 
score on X, Margaret, has the third highest score 
on Y. The person with the second highest score on 
X, John, has the fourth highest score on Y. More 
exceptions abound, but in spite of them, we can 
still see a general trend: Higher scores on X are as-
sociated with higher scores on Y.

The line points up, but the points are even fur-
ther from the line than we have seen before. Thus, 

we have a positive association that’s not perfect. 
How strong is it? r = .61. So it’s positive and 
strong, but weaker still than the previous datasets.
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FIGURE 5 Very Good (But Weaker) Association
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You might be wondering what a zero correla-
tion looks like. Well, wonder no more.

Person X (ACT) Y (SALES)

Hunter 8 3
Lonny 8 2
Charles 10 3
Craig 10 2
Danny 12 3
Kendall 12 2

What do we see? No clear trend. High scores on X 
are associated with both high and low scores on Y. 
Low scores on X are associated with both high and 
low scores on Y. The scatterplot is shown in Fig-
ure 6 and looks like a rectangle of scores. I’ll bet 
you didn’t know what a rectangle of scores looked 
like before now. I’ll also bet that you didn’t care to 
know. And you still don’t.

Of course, a six person dataset makes for a 
fairly uninteresting scatterplot when the correla-
tion is zero, but, the point is made – there is no 
trend in the data.
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FIGURE 6 Zero Correlation Scatterplot
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When you have a larger dataset, a zero correla-
tion scatterplot resembles a circle (Figure 7). No-
tice how the regression line is perfectly flat. No 
slope at all. This is the land of r = 0.0. A bleak 
and desolate land. Unfit for both man and animal. 
No association of X and Y of any kind.

Finally, how about a negative correlation.

Person X (Hours 
Worked) Y (GPA)

Woodrow 7 2.6
Al 5 2.7
Evan 3 4.0
Eddie 3 3.5
Ernie 4 2.9
Kelly 1 3.3

We can see a clear (although not perfect) trend: 
Higher scores on X are associated with lower 
scores on Y. The scatterplot is shown in Figure 8 
and is different from our previous examples.
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FIGURE 7 Better Zero Correlation Scatterplot
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The line of best fit points down, indicating a 
negative association; the points are fairly close to 
the regression line, indicating a strong association. 
So we see a strong, but not perfect, negative asso-
ciation. The actual correlation is r = -.68.

At this point, it’s time to introduce another 
way to illustrate the association between vari-
ables. If you like Venn diagrams, and who doesn’t, 
one is shown in Figure 9. Venn diagrams illustrate 
the relationship between various concepts. When 
applied to correlations, the circles represent the 
variance of each variable. The overlap of the circles 
indicates the degree of association. Greater over-
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FIGURE 9 Venn Diagram Illustrating Relationship be-
tween X and Y

FIGURE 8 Negative Correlation Scatterplot
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lap indicates greater associations. To get technical, 
the percent of the area of Y overlapped by X repre-
sents the squared correlation between the two vari-
ables (i.e., r2

XY). We’ll talk more on squared correla-
tions in the next chapter, but it’s not like there’s a 
lot of mystery there. You have a correlation. You 
square it. You get r2.

Computing Correlation Coefficients

As mentioned, there are a variety of types of 
correlations, but we’ll stick with the ever popular 
Pearson correlation. Since we live in a computer 
age, there is little to be gained by focusing on equa-
tions. Little, but not nothing. There are a few dif-
ferent, but equivalent, versions of the equation for 
the Pearson correlation. We’ve already seen one 
that starts with covariance. Let’s examine the 
most intuitive form of the Pearson correlation 
equation, the average product of z scores. Listed 
below is the population version of it.

ρXY = ∑ (zX ⋅ zY)
N

It’s fairly simple; just compute the product of the 
z scores for each person, compute the mean of 
those products, and you’re done.

To refresh our memory on z scores, the popula-
tion form of the z score equation is listed below.

zX = (X −μX)
σX

And, of course, if we want to compute z scores for 
Y, the equation is be the similar, only with Y sub-
stituted for X at every opportunity.

Just for fun, let’s take these z score equations 
for X and Y and substitute them into the correla-
tion equation from above. Here’s what we obtain 
with those substitutions:

ρXY =
∑ ( (X −μX)

σX
⋅ (Y −μY)

σY
)

N
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It’s still the correlation equation, but it looks famil-
iar. Where have we seen something similar? 
That’s right, take away the standard deviations 
(σX,σY), and it’s the equation for population covari-
ance.

σXY = ∑ (X −μX)(Y −μY)
N

Do you see it in the above two equations? The 
only differences between the correlation (ρXY) and 
covariance (σXY) equations are the standard devia-
tions in the former.

Here’s a thought exercise: What if X and Y 
both had standard deviations of 1.0 (which, of 
course, is the case with z scores)? Since anything 
divided by 1 equals itself, the standard deviation 
parts of the correlation equation disappear, leaving 
us with what we see in the covariance equation. 
(One quick lesson from this is that for standard-
ized data, covariance equals correlation.)

As mentioned earlier, covariance is computed 
as the average of the products of mean-deviation 
(i.e., X −μX) scores for each person. Correlation is 
computed as the average of the products of the z 
scores for each person. And what’s the difference 
between a z score and a mean-deviation score? A 
division by a standard deviation. I hope that it’s 
clear to you that correlation and covariance are 
very similar statistics. But correlation is better. 
There, I said it.

Those were population versions of the equa-
tions. For reasons that should be obvious by now, 
it will be much more useful if we discuss the corre-
lation equation designed for samples. And here it 
is.

rXY = ∑ (zX ⋅ zY)
N −1

What’s the difference? Well, there’s the symbol 
for correlation. It’s now r instead of ρ. So, there’s 
that. The only other difference is the denominator. 
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It’s N −1 instead of just N. Does this look famil-
iar? It should. This is the variance story all over 
again. When computing the variance of a popula-
tion of data, the denominator is N. When comput-
ing the variance of a sample of data, the denomina-
tor is N −1. It’s the same pattern with the Pearson 
correlation equation: N denominators for popula-
tions, N −1 denominators for samples. So when 
computing z scores for the sample correlation 
equation, be sure to use the appropriate N −1 vari-
ance equation. With samples, it’s N −1 denomina-
tors all the way down. Of course, we let comput-
ers do the dirty work for us, and they use sample 
versions of equations for everything. But just in 
case you have to do your computations by hand, 
you have enough information to do it right.

How Correlations Work

Let’s put this all together so that we can really 
understand what makes correlations tick. Correla-
tions are measures of association between two 
variables. When people who have high scores on 
one variable also have high scores on the other 
variable (and vice-versa), you get a strong, posi-
tive correlation. As discussed, the Pearson correla-
tion equation quantifies the relationship by com-
puting the mean cross-product of z scores. Interac-
tive 1 demonstrates this process.
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INTERACTIVE 1 How Correlations Work
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Correlation and Causation

Correlation does not equal causation. It’s im-
portant to remember that a correlation coefficient 
is just a statistic that describes the association be-
tween two variables. Why these variables are asso-
ciated is another matter. Why is an issue of causal-
ity. In general, our statistics can’t address causal-
ity. It is our research design that allows us to ad-
dress causal issues. As but one example, consider 
the ACT/College GPA correlation. There is a posi-
tive correlation of about .5 between these two vari-
ables. Does that mean that your performance on 
the ACT causes your college performance (X 
causes Y)? Probably not. Does that mean that your 
college performance causes your ACT performance 
(Y causes X)? We can safely rule this out based on 
logic: ACT performance is measured months be-
fore college performance even begins. Statistically, 
the Y causes X inference is as valid as the X causes Y 
inference. It is our research design that allows us 
to rule out Y causing X in this case. So we’ve cov-

ered the causality issue in both directions. There 
is, however, a third possibility. It is possible that a 
third variable, which we’ll call Z , is causing per-
formance on both X and Y – making Z responsible 
for the correlation between X and Y. What is this 
third variable in our ACT-GPA example? Let’s pick 
one: study habits. People with good study habits 
do well on the ACT and do well in college. People 
with poor study habits generally do poorly on 
both. So, it appears that Z is responsible for the 
correlation. No guarantees, but if I was betting per-
son, which I am not, I’d bet on Z. (Just to be com-
plete, there is also a fourth option in which X 
causes Z which causes Y, making X an indirect 
cause of Y. Don’t worry about it, though. The pre-
vious explanation is far more relevant.)

New example: Ice cream sales (X) are corre-
lated .7 with shark attacks (Y) at a certain seaside 
resort. Which seaside resort? That information is 
classified. Is X causing Y? Maybe, if people are eat-
ing a bucket of ice cream and then going swim-
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ming right away. Is it possible that the sharks are 
attracted to the smell of ice cream? Can they even 
smell it? Does the flavor matter? All good ques-
tions, but let’s switch gears. Is Y causing X? That 
is, are the shark attacks causing people to buy ice 
cream? Maybe the survivors of the shark attacks 
like to celebrate cheating death with some mint 
chocolate chip. Statistically, both are equally valid 
explanations – do you see why research design is 
so important? Also, do you see the dangers of a 
blind application of statistics (i.e., devoid of 
logic)? Now is it possible there is some third vari-
able at work here? Yeah, probably.

As you know, a correlation of zero indicates 
that there is no relationship between X and Y. And 
you know that +1 and -1 indicate perfect relation-
ships. But what are industry standards for strong, 
medium, and weak correlations? The classic re-
source on this issue is Cohen (1992). Cohen’s 
standards for correlational strength are as follows: 
small is .10, medium is .30, and large is .50. Natu-

rally, the same rules apply to negative correlations. 
As Cohen stated, .10 is small; it’s far too weak to 
be useful under most circumstances. So consider 
.30 to be the minimum decent value for a correla-
tion.

Correlation Assumptions

Correlation analysis has many assumptions. 
We’ll merely list them here and save the explana-
tions (with one exception) for the next chapter. 
The assumptions are as follows: Y (and optionally 
X) is a random variable (quick note: in this con-
text the term random variable does not mean a vari-
able that is composed of random data), the relationship 
between X and Y is linear, the variance of the re-
siduals is constant across all levels of X (called ho-
moscedasticity), and the joint distribution of X 
and Y is bivariate normal (i.e., bivariate normal-
ity).
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The bivariate normality assumption is one 
that we need to discuss now because classically it 
has been applied to correlation in a slightly differ-
ent manner than for regression. Now you may be 
thinking that bivariate normality means that X and 
Y are both normally distributed. Well, it’s that and 
more. Bivariate normality concerns the joint distri-
bution of X and Y with the assumption that this 
joint distribution is normally distributed. An ex-
amination of the distribution of a single variable is 
done with a simple x-y graph. A visual representa-
tion of a joint distribution requires a three-
dimensional graph. Figure 10 displays an example 
of a bivariate normal distribution.

To understand bivariate normality imagine 
that what we see in Figure 10 is a cake. You heard 
me. Now imagine that we took a thin, vertical 
slice (running top to bottom) from the middle of 
this cake. If we viewed that slice from the side 
(you know, with the cakey part of the cake facing 
us), it would look like a regular, two-dimensional 

normal distribution. And we would see that no 
matter where we cut our slice from. That’s bivari-
ate normality.

Significance Testing Overview

Unfortunately, we have to discuss significance 
testing. It’s a nuisance, but there’s no getting 
around it. Significance testing plays an important 
role in psychology. Before we address how to con-
duct a significance test for a correlation coeffi-
cient, we need to discuss the general concept of 
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FIGURE 10 Bivariate Normal Distribution
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significance testing. First, a review of three terms 
from Chapter 2: sample, population, and sampling 
error. I’m sure you recall that we measure samples 
because it’s inconvenient or impossible to meas-
ure an entire population. We analyze data in our 
sample and make inferences from the sample to 
the population (e.g., 55% of the people in our sam-
ple watch football on TV; thus, we estimate that 
55% of the people in the population watch foot-
ball on TV). Unfortunately, measuring a sample in-
stead of the entire population leads to problems. 
The statistics we compute in our samples will not 
be a perfect match to the statistics in the popula-
tion. The difference between the two is called sam-
pling error, and it is the price we pay for laziness.

Given our knowledge of sampling error, it 
should be clear that we should not infer too much 
from our samples. Quick example: let’s say we col-
lect a sample (N = 127) of ACT scores from high 
school athletes. We analyze the data and find that 
soccer players have a mean score of 20.5, and ten-

nis players have a mean score of 20.3 (yes, it’s a 
pointless study). It is obvious that soccer players 
outperformed tennis players in our sample of 127 
students. But should we make an inference to the 
population and say that soccer players score 
higher than tennis players on the ACT? Probably 
not, you say, since the difference between the 
mean scores is so small. Good call. It is a mistake 
to think that a small difference in our sample sta-
tistics indicates that there is any sort of difference 
between the groups in the population. The small 
difference in our sample could be due to sampling 
error. Now what if there was a big difference in 
the sample means (let’s say that the soccer players 
outscored the tennis players by 11.5 points)? Does 
this large difference in sample scores allow us to 
conclude that soccer players outscore the tennis 
players in the population? Yes. It is likely that they 
do. See how this works?

Where do significance tests fit in? Significance 
tests (also called inferential statistics) are used to 

51



analyze the sample characteristics and indicate 
when it is wise (or unwise) to make inferences 
about the population based on the sample. They 
help us determine if we can conclude that a cer-
tain characteristic (e.g., a difference between test 
scores of girls and boys) actually exists in the 
population. Significance tests are probability analy-
ses, and give an answer like, “There is only a three 
percent chance that a result like the one we found 
in our sample could have been found if there truly 
was no difference in the population. Therefore, we 
conclude that there is a difference in the popula-
tion.” (It helps if you read that sentence with a 
deep, authoritative voice.)

So what about significance tests for correla-
tions? It’s the same story except now that we ex-
amine the correlation in our sample (rXY) and use 
it make inferences about the relevant population 
correlation (ρXY). Example: let’s say we collect a 
sample of college students (N = 93) and find that 
time spent playing video games is positively corre-

lated with GPA, r = .07. Sure, it’s a weak correla-
tion, but it’s a positive correlation. It is indisput-
able that in our sample people who spent more 
time playing video games had a higher GPA. Go 
ahead, try and dispute it. Can we then conclude 
that more time spent playing video games is associ-
ated with higher GPAs in the entire population? I 
hope you’re shouting, “No, our sample correlation 
is likely influenced by sampling error! The popula-
tion correlation could be zero for all we know! The 
sample correlation is only slightly greater than 
zero!” That’s enough shouting for now. Your in-
stincts are correct. We need to conduct a signifi-
cance test to determine whether our sample corre-
lation is large enough to allow us to conclude that 
the population correlation is not zero.
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Significance Test I: Inferences About a Population 
Correlation of Zero

There are a few ways to conduct correlation 
significance tests. The differences between these 
tests relate to the hypothesis you want to test. So 
figure out your hypothesis first, then choose the 
correct significance test. Good news, most of the 
time (and I mean almost all of the time), you’ll be 
stating a hypothesis which reads as some version 
of this: The correlation between X and Y is greater 
than zero/is less than zero/is not zero. The first 
two options are directional hypotheses. You are 
picking a direction (let’s say positive) and check-
ing to see if your sample correlation supports that. 
For example, we might say: The relationship be-
tween study time and GPA is positive. (Notice 
that we didn’t use the words correlation or popula-
tion. It’s implied that we are discussing the rela-
tionship, as indexed by a correlation, in the popula-
tion. We don’t make hypotheses about samples. 
We use sample data to test hypotheses about popu-

lations.) Or we could say that the relationship will 
be negative. Either way, we’ve picked a single di-
rection in our hypothesis. Both of these tests will 
be one-tailed tests, a term you may remember 
from your statistics class. If you can’t decide on a 
direction in your hypothesis (you expect a relation-
ship between the two variables, but you don’t 
know what direction the relationship will be), 
then you need to run a two-tailed test. The only 
problem with a two-tailed test is that it has re-
duced power as compared to the one-tailed test. 
Moral of the story: If at all possible, specify a direc-
tion of the relationship in the hypothesis. You 
have to do this in the hypothesis generation stage, 
well before you examine the data. No fair peeking 
at the data and then saying, “I predict a positive re-
lationship!” Why isn’t that allowed? Well, it’s not 
much of a prediction when you already know the 
outcome. How could you ever be wrong?

Now that we have some general hypothesis 
testing issues out of the way, how does the signifi-
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cance test work? It’s a t test, and all you need to 
know to perform the test are the sample correla-
tion and sample size.

t = r
1 −r2

N −2

Pretty simple. (By the way, t tests take the form of 
sample statistic divided by standard error of sample sta-
tistic. In other words, the denominator of this t 
test is the standard error of a correlation. I’m only 
mentioning this just in case you need it someday.) 
Once you have obtained your t value from the sam-
ple statistics (we often call this the obtained t), use 
a t table to find the critical t (N −2 degrees of free-
dom) and compare the two. If the obtained t is 
greater than the critical t, then we say the sample 
correlation is significant (note: the previous term 
is statistician slang) and conclude that the hy-
pothesis is supported. If our hypothesis specified a 
positive direction, then we would conclude that 
the population correlation is greater than zero. 

One word of caution: Be sure that you use the cor-
rect alpha value and tailedness (more slang) when 
you look up the critical t.

Significance Test II: Inferences About a Non-Zero 
Population Correlation

As mentioned above, the previous significance 
test is used almost all of the time. But if you think 
about it, it’s not exactly the most demanding stan-
dard. Saying that we have enough evidence to con-
clude that the population correlation is greater 
than zero (or less than zero or not zero, depend-
ing on the hypothesis) is not exactly a bold state-
ment. For all we know, the population correlation 
could be +.02. Weak sauce, people. So why not at-
tempt a slightly more demanding significance test, 
something that tells us a bit more about the popu-
lation correlation? Our second correlation signifi-
cance test concerns inferences about population 
correlations that are some value other than zero. 
For the sake of simplicity, let’s consider .3. We 
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could conduct a test to see if our sample correla-
tion is strong enough to allow us to conclude that 
the population correlation is greater than .3. (If 
you want to do the negative correlation thing, we 
would be testing whether the population correla-
tion is less than -.3.) We could choose any value 
we want to test, but .3 is nice because it synchro-
nizes nicely with Cohen’s (1992) standards for a 
correlation of moderate strength.

There’s one bit of bad news with this new 
test. It’s more work. We have to do this irritating 
first step before we can get to the test proper. 
What is this first step? Something called the r to 
Fisher’s z transformation. No, this is not a regular 
z score; it’s a Fisher’s z (I’ll use the symbol Fz for 
it to help distinguish between the two). Two to-
tally different things. (Although, it is scaled like a 
z score... Wait, forget that last sentence. You 
didn’t see that.) Back to Fisher’s z. You see, in or-
der to do the sorts of operations we want to do to 
a correlation, the Pearson correlation that we all 

know and love must be transformed to a Fisher’s 
z. Why? You don’t want to know. Just accept that 
it has to be done and move on. (By the way, a 
Fisher’s z transformation must be done even for 
the simple act of taking the mean of a set of corre-
lations.) The equation to transform a Pearson cor-
relation to a Fisher’s z is given below.

Fzr =
ln( 1 + r

1 −r )
2

Assuming that you know that ln means natural log 
and that you know how to compute natural logs 
on your calculator, this transformation isn’t too 
bad.

Now that we have the r to Fisher’s z transfor-
mation down, let’s get to the significance test. The 
equation is as follows.
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z =
Fzr −Fzρ

1/(N −3)

Where:
z is the obtained z score (which is compared 
to the critical z to determine significance).
Fzr is the Fisher’s z for the sample correlation.
Fzρ is the Fisher’s z for the population correla-
tion.

Not too bad, right? Guess where the Fisher’s z 
transformation fits in? You must perform the r to 
Fisher’s z transformation on both your sample cor-
relation and the population correlation. Below is 
the r to Fisher’s z transformation equation for the 
population correlation. It’s the same equation as 
before, just set up for population values.

Fzρ =
ln( 1 + ρ

1 −ρ )
2

Once you’ve done both r to Fz transformations, 
the rest of the equation is simple. This is a z test, 

like the z tests for means that you had in stats 
class. If your alpha is the traditional .05, then the 
critical z values are 1.96 for a two-tailed test and 
1.65 for a one-tailed test. And given that this test 
only makes sense with a directional hypothesis, 
the only critical z you need to use is 1.65. No need 
to consult a z table. Ever. So that’s nice.

Back to when we discussed testing to see if 
the population correlation was greater than .3, if 
the test is significant, then the answer is yes. The 
population correlation may be .4 or it may be .5, 
but it’s likely (only a five percent chance that 
we’re wrong, assuming alpha is set to .05 and that 
the sample was collected via a probability sam-
pling technique) that it is greater than .3. It could 
be as low as .31. That’s a lot cooler than our first 
test where we could obtain significant result even 
when the population correlation is a puny .03.
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Confidence Intervals for Correlations

Taking our significance testing concept to the 
next level, we can compute a confidence interval 
for our sample correlation. Confidence intervals in-
dicate the likely (again, five percent chance we’re 
wrong) value of the population statistic. Confi-
dence intervals offer a lot of the same information 
that significance tests offer. If you set it up with 
the same tailedness, you can make confidence in-
tervals perform the same function as the previous 
significance tests, only with more information.

How does this work? Here goes. Let’s say that 
you compute a confidence interval (95% confi-
dence) for a sample correlation of .34 (N = 55) 
and the confidence interval ranges from .08 to .55. 
Notice that this is a bidirectional confidence inter-
val: The population correlation could be as low as 
.08 or as high as .55. This bidirectional confidence 
interval is capable of yielding information similar 
to the two-tailed version of our first significance 

test. How? Notice that the interval does not in-
clude zero. That means that the population correla-
tion is greater than zero, a conclusion that is iden-
tical to what we would find if we performed the 
first significance test with an alpha of .05, two-
tailed.

If the confidence interval can replicate the 
function of the first test, then why bother with it? 
(And a confidence interval is more work, as you 
will see.) The answer is that in addition to per-
forming the job of the standard significance test, 
the confidence interval gives us more information 
than a mere significance test. After all, the confi-
dence interval gives us the likely (only a 5% 
chance we’re wrong) lowest possible value for the 
population correlation. Here’s another way to 
think about the confidence interval. Consider the 
second significance test. It allows us to determine 
whether the population correlation is greater than 
some non-zero value (say .3). But it doesn’t allow 
us to say exactly what the lower bound of the 
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population correlation could be. If all we had was 
the second test, and we wanted to know what the 
likely lowest possible value of the population corre-
lation was, we would have to repeat the test with 
a variety of population values (Is it .35? Is it .40? 
Is it .50?) and stop when we get a non significant 
result. (Note: I do not recommend this procedure 
as it is annoying. And it has other problems as 
well.)

Let’s illustrate that point with another exam-
ple. We collect data from a sample of 103 people 
and find a correlation of .50. We run the second 
significance test (alpha = .05, one-tailed) against 
a population correlation of .30. Our obtained z is 
2.40, which is greater than the critical z of 1.65 
(you should do the calculations yourself to check 
these numbers). Thus, we conclude that the popu-
lation correlation is greater than .30. But we don’t 
know how much greater. Is it .35? Is it .40? What 
is the likely lower bound of this population correla-
tion? The confidence interval gives us that infor-

mation. In order to make this an apples to apples 
comparison, we need to compute a unidirectional 
confidence interval, meaning we’ll compute just 
the lower bound of the interval. (Why? The test 
described above is one-tailed. Thus, we want only 
one half of a confidence interval. And, seriously, 
aren’t we really just concerned with the lowest 
possible value for the population correlation? 
Who gets agitated about the maximum possible 
value? No one. That’s who.) You don’t know how 
to do this yet, so I’ll just tell you that the lower 
bound of a unidirectional 95% confidence interval 
for a sample correlation of .5 based on a sample of 
103 people is .366. There you have it. No need to 
run repeated tests using the equation from the pre-
vious section. We would have obtained a signifi-
cant results if we tested to see if the population 
correlation is greater than .36, but not if it was 
tested against .37 (again, check this out). And it 
should be clear that there is no need to run the 
first significance test to see if the population corre-
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lation is greater than zero. If it’s greater than .36, 
then it is also greater than zero.

Now that I’ve convinced you of the value of 
computing confidence intervals, here’s the bad 
news: It’s a lot of work. The first step is an r to 
Fisher’s z transformation for the sample correla-
tion. The second step is compute the interval 
proper. I’ll report the procedure for a bi-
directional confidence interval (upper and lower 
bound). If you only want the lower bound, just do 
that part.

Upper/Lower Fz = Fzr ± zconf
1

N −3

Where:
Fzr is the sample correlation transformed to 
Fisher’s z.
zconf is the value from a z table corresponding 
to how confident we want our confidence in-
terval to be. For a 95% confidence interval, we 
use the familiar 1.96 (bidirectional) and 1.65 

(unidirectional) values, corresponding to our 
one- and two-tailed z tests from earlier.

At this point, we have the upper and lower 
bounds, so we’re done, right? Or so it would ap-
pear. These upper and lower bounds are actually 
in Fisher’s z terms. They need to be transformed 
back into regular correlations. Yes, that’s right, 
you need to perform a Fisher’s z to r transforma-
tion. Twice. Once for upper bound and once again 
for the lower bound. The equation to transform 
Fisher’s z back into r is given below.

r = (e2Fz) −1
(e2Fz) + 1

Where:
ex is the inverse of the natural log.

Now that you have the equations, this would be a 
good opportunity to practice using them with the 
examples we have from earlier in this section (
r = .34, N = 55, bidirectional confidence interval, 
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95% confidence; r = .50, N = 103, unidirectional 
confidence interval, 95% confidence).

Significance Test III: Correlation from Sample A 
Versus Correlation from Sample B

Our final significance test is really about one 
correlation compared to another correlation. 
These correlations are from independent (i.e., dif-
ferent) samples. For example, one researcher, Dr. 
Oldguard, correlated X with Y and found a correla-
tion of .35 (N = 84). Another researcher, Dr. New-
guy, also correlated a variable with Y, only this 
time it was a revised version of X. Dr. Newguy ob-
tained a correlation of .45 (N = 67). Dr. Newguy 
wonders, “I wonder. Does my version of variable X 
predict Y better than Dr. Oldguard’s version of X?” 
Now, obviously .45 is greater than .35, but these 
are sample correlations. The real issue is whether 
revised X predicts better than original X in the 
population. Stated formally: Is the observed differ-
ence in our sample correlations big enough to al-

low us to conclude that the relevant population 
correlations are actually different?

How do we do this test? Would you believe 
that the first step is an r to Fisher’s z transforma-
tion? It’s true. Transform both sample correlations 
to Fisher’s z values. Then use those values in the 
following equation.

z = Fz1 −Fz2

[1/(N1 −3)] + [1/(N2 −3)]

Where:
Fz1 and Fz2 are the Fisher’s z values for the 
two correlations.
N1 and N2 are the sample sizes for the two cor-
relations.

As is obvious, this is a z test, meaning our critical 
values are 1.96 (two-tailed) and 1.65 (one-tailed) 
if alpha is .05. In almost all cases, a one-tailed test 
is the appropriate test as most hypotheses are of 
the “This test will predict better” variety and not 
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“This test will predict better – or worse. I don’t 
know, but it definitely will not be the same.”

Concluding Remarks on Significance Tests

So there you have it. Two ways to do a signifi-
cance test of a single correlation, a confidence in-
terval for a single correlation, and a test to see if 
correlations from two different samples are differ-
ent from each other. The one situation that we 
didn’t cover is a version of the two correlations 
comparison where the correlations are from the 
same sample. We’ll save that for another day.

There is one final point to discuss. This issue 
relates to the difference between probability sam-
ples and non probability samples, something cov-
ered in Chapter 2. All significance tests are predi-
cated on the sample data coming from a probabil-
ity sample. Apply a significance test to data col-
lected from a non probability sampling technique 
and all bets are off. In the words of Pedhazur and 

Schmelkin (1991, p. 321), “The incontrovertible 
fact is that, in non probability sampling, it is not 
possible to estimate sampling errors. Therefore, 
the validity of inferences to a population cannot be 
ascertained.” It is really hard to argue with an in-
controvertible fact.

Range Restriction and What It Does to a Correla-
tion

One last thing that you should know about 
correlations is that they are very sensitive to the 
variability in the scores on both X and Y: If the vari-
ance of scores on X in one sample is less than for 
another sample, all other things being equal, the 
strength of the correlation will be reduced.

Here is a practical example to clarify the issue. 
An unnamed college wants to determine the rela-
tionship between ACT scores and student GPA. To 
find the relationship, they need to have a sample 
of students with both ACT and GPA scores, which 
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means that they have to be actual college stu-
dents. Now this college has been using ACT 
scores to make selection decisions for years, and 
this is a very selective school: The range of scores 
for applicants is 9 to 34, but the range of scores 
for admitted students is 26 to 34. Thus, the appli-
cant sample has a much greater range of scores on 
the X variable than the actual student sample. In 
other words, any correlation performed on the stu-
dent sample will have a restricted range as com-
pared to the applicant sample. The bad news is 
that range restriction reduces the magnitude of 
(i.e., weakens) a correlation. Thus, a correlation 
computed on the selected student sample will be 
lower than if it were computed on the applicant 
sample. Interactive 2 presents an explanation of 
how range restriction weakens a correlation.

You may be thinking something like, “Well 
that’s too bad for them. They deserve a reduced 
correlation. That’s what happens when your sam-
ple is selected by using scores on the variable that 

you’re correlating with the criterion, a concept 
known as direct range restriction.” Well, to a cer-
tain extent, you’re right. And how you knew all 
that amazes me. But the real question is not 
“What correlation do they deserve?” but rather 
“What is the real relationship between ACT scores 
and GPA at this school?” Here’s the thing, in any 
study, the sample which we analyze needs to repre-
sent the relevant population. When this school ex-
cluded the lower scoring test takers (by not admit-
ting them, and thus, preventing them from having 
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a GPA), they made it so that the student sample is 
not representative of the relevant population. All 
of those low scoring test takers, who would have 
had some low GPAs, are not included, weakening 
the resultant correlation. The real relationship be-
tween X and Y didn’t change, but the relationship 
observed in the study changed because the study 
wasn’t conducted on a sample representative of 
the relevant population – the applicants.

So what’s the answer? It is clear that we 
should avoid range restriction to the extent possi-
ble. But how? Ideally, we would use a random 
process to make the selection decisions (remem-
ber that our college has been using the ACT for 
years to make selection decisions – that’s what 
caused the problem for their correlation). If a ran-
dom selection procedure is not possible, we have 
some alternatives that are beyond the scope of this 
book. Let’s just say that they lead to a less harm-
ful form of range restriction called indirect range 
restriction.

The moral of the story is that you should be-
ware of possible traps, like range restriction, that 
can ruin your study. If you can’t design your study 
so that range restriction doesn’t occur (to be spe-
cific, it’s direct range restriction that should be 
avoided at all costs), then you shouldn’t do the 
study. A flawed study leads to the wrong conclu-
sions (i.e., the test doesn’t predict), which is 
worse than no study at all. If there is no study, at 
least you know better than to draw a conclusion 
can.
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4 If loving regression is 
wrong, I don’t want to be 
right.

Simple Regression



Introduction

First off, we need to address this word regres-
sion. Regression analysis is only vaguely related to 
the regular words regression or regress. The name is 
not important. They could have named it with a 
nonsense word like shnurffle. Or omegnacruz. 
Quavelcon analysis sounds pretty cool. Names 
aside, regression is a statistical procedure that de-
scribes the relationship between two variables 
(like correlation) and allows us to use this relation-
ship to predict a person’s score on Y given their 
score on X (unlike correlation). To reiterate: Corre-
lation is a measure of association between two 
variables – regression is a measure of association 
and a method for predicting scores on one variable 
given scores on another. With regression, you get 
the bonus plan.

A few miscellaneous issues. First, regression 
and correlation are so closely related that it’s hard 
to tell which one is derived from which (i.e., 

Which came first?). I like to conceptualize it as re-
gression is an extension of correlation – it starts 
with correlation’s function and takes it to a new 
level. That’s how I like to think of it, but it doesn’t 
matter a whit. Next, in this chapter (and the rest 
of the book), we won’t address the sample-versus-
population form of a statistic anymore. It was fun 
and all, but we’re done with that. We’ll just as-
sume everything is a sample and present our equa-
tions accordingly. And you know enough by now 
that, if you had to generate a population version of 
any of these equations, you could figure it out 
without breaking a sweat. Finally, a note about ter-
minology. This chapter is titled “Simple Regres-
sion.” The full, proper name for what is described 
in this chapter is bivariate linear regression. Simple 
regression is a shorter name, and it fits well be-
cause bivariate linear regression is the simplest 
form of regression. Bivariate means two variables 
(X and Y). Linear means linear (like we discussed 
in the correlation chapter). And regression means, 
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well, nothing helpful, as mentioned in the first 
paragraph.

Regression Philosophy

The basic principle of regression analysis is 
that the dependent variable can be conceptualized 
as being composed of two parts: a part that is re-
lated to the independent variable and a part that is 
not related to the independent variable. This phi-
losophy is illustrated in Figure 1. It’s the founda-
tion upon which the regression house is built, and 
if we don’t understand it, we’ll be in serious trou-
ble.

We can view this division of the dependent 
variable in terms of individual scores on Y, vari-
ance of the scores on Y, and even squared correla-
tion coefficients. Let’s start with individual scores 
on Y.

A person’s score on Y can be divided into part 
that is related to X and a part that is not related to 
X. In the form of an equation, this would look like:

Y = (part related to X) + (part unrelated to X)
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Regression analysis breaks the dependent variable into a part related 
to the independent variable (yellow area) and a part unrelated to the 
independent variable (gray area).

FIGURE 1 Regression Philosophy
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Let’s rename the unrelated to X component residual 
and give it the symbol e. Residual is a statistics 
term that means stuff not explained by the model. 
The e symbol is short for error (Who could have 
guess that one?), which itself is short for error of 
prediction. Furthermore, let’s rename the related to 
X part predicted Y and give it the symbol Y′�. Just 
new names and symbols for the same compo-
nents. Using these new terms, our equation is:

Y = Y′� + e

Same concept as before: A person’s score on Y is 
composed of a part related to X (Y′�) and a part un-
related to X (e).

Now let’s mathematically define e. Well, this 
turns out to be really easy because we can just use 
the previous equation, plus a little algebraic rear-
rangement, to make it happen.

e = Y −Y′�

See, that is simple. e is defined as the difference be-
tween a person’s actual score on Y and that per-
son’s predicted score on Y. We could substitute 
Y −Y′� for e in Y = Y′� + e, giving us Y = Y′� + (Y −Y′�), 
and you would still see the same model as before: 
A person’s score on Y is composed of a part re-
lated to X (Y′�) and a part unrelated to X (Y −Y′�).

Now to the hard part, the mathematical basis 
for the part related to the independent variable 
(i.e., Y′�). We can reason the solution from two just 
pieces of information. First, Y′� must be derived 
from the relationship between X and Y. Second, 
we know that the correlation coefficient is an in-
dex of the strength and direction of the relation-
ship between between X and Y. From these two 
points we can conclude that the correlation be-
tween X and Y will be involved in the prediction of 
scores on Y by scores on X.
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Let’s make our lives easier and assume that 
both X and Y are standardized variables. We could 
set up a prediction equation that looks like this:

zY′� = rXY zX

Where:
zY′� is the standardized score on Y′�.
zX is the standardized score on X.

This equation states that standardized Y′� scores, 
which reflect the relationship between X and Y, 
are the product of the standardized scores on X 
and the correlation between X and Y. Very simple. 
And guess what? This equation is the actual pre-
diction equation for standardized data.

What if our data are not standardized? Be-
cause standardization removes any mean and stan-
dard deviation differences between variables, we’ll 
just introduce means and standard deviation 
terms into our prediction equation. Our equation 
will take the form of:

Y′� = (something based on rXY)X + something

So, it’s similar to the standardized prediction equa-
tion. Scores on X are being multiplied by some-
thing involving the correlation between X and Y. 
To that we are adding a constant. Let’s replace the 
“somethings” with the symbols b and a:

Y′� = bX + a

The part that involves the correlation is called the 
regression coefficient (symbol: b) and is just the 
correlation times a ratio of the standard devia-
tions.

b = rXY
SY

SX

The other term in the equation is called the y-
intercept (symbol: a) and contains the regression 
coefficient and the means of both variables.

a = Ȳ −bX̄
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There’s really nothing all that complicated about 
these equations. They include the correlation, the 
standard deviations, and the means. Just a few ba-
sic statistics that we already know and love. (Fun 
exercise: Apply these equations to standardized 
data, which have means of zero and standard devia-
tions of one. Check out what they reduce to when 
you do.)

Now that we know the symbols for each part, 
let us examine the regression equation again (
Y′� = bX + a). It states states that Y′� scores, which 
reflect the relationship between X and Y, are the 
sum of the y-intercept (a) and product of the ac-
tual scores on X and the regression coefficient (b). 
And we know that the regression coefficient is 
really just the correlation between X and Y with 
some standard deviation stuff tacked on. And the 
y-intercept is just a boring scaling term (necessary 
because we are dealing with unstandardized data).

So now we have it. The equation above (
Y′� = bX + a) is the prediction equation for raw-
score (i.e., not standardized), bivariate (meaning 
two variables, one independent and one depend-
ent variable), linear (we’ll get to linear later) re-
gression. It’s so important to what we’ll be doing 
with regression, let’s list it again. The prediction 
equation for raw-score, bivariate, linear regression 
is:

Y′� = bX + a

Where:
b is the regression coefficient.
a is the y-intercept.

Now let’s put this all together. In regression 
analysis, scores on Y are divided into a part that is 
related to X and a part that is not related to X. We 
expressed this philosophy with the following equa-
tion.

Y = Y′� + e
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Now that we know how to compute Y′� scores (
Y′� = bX + a), let’s substitute bX + a for Y′� in the 
above equation.

Y = bX + a + e

There it is. The philosophy of regression analysis 
in a fully defined equation. Scores on Y are com-
posed of a part related to X (bX + a) and a part un-
related to X (e).

We could even go further and substitute 
(Y −Y′�) for e. This substitution results in 
Y = bX + a + (Y −Y′�). We don’t need to do this, but 
we could.

Summary of Regression Analysis

Regression analysis views a dependent vari-
able (Y) being composed of a part that is related to 
the independent variable (bX + a) and a part that 
is not related to the independent variable (e, de-

fined as Y −Y′�). This philosophy is defined with 
the following model:

Y = bX + a + e

The part of Y related to X is called predicted Y 
(and symbolized as Y′�) and is obtained with what 
can be called the prediction equation (from now 
on, we’ll just call it the regression equation):

Y′� = bX + a

It is this equation that is the basis for actual re-
gression analysis, and it is this equation that we 
will use for computing predicted Y scores. The 
components of the regression equation (b and a) 
are rather simple are computed from the correla-
tion between X and Y, the means of X and Y, and 
the standard deviations of X and Y.

A few final points and then we will move to 
some examples. First, I want to emphasize that Y′� 
is not Y. Y′� is the value of predicted Y (predicted 
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on the basis of X), whereas Y is a person’s actual 
score on Y. Second, the regression coefficient (b) 
can be conceptualized as the weight applied to 
scores on X to get the best possible prediction of 
Y. Third, as with correlation, scatterplots will be 
used to illustrate the relationship between X and 
Y. Remember that line of best fit from the scatter-
plots in the correlation chapter? That’s also called 
the regression line, and the regression equation is 
the equation for that line. b is the slope of the re-
gression line and a is, you’ll never guess this, the 
y-intercept for the line.

Regression Examples

We’ll start with a sample dataset containing 
data from five people. No one in their right mind 
should collect a sample with only five people, but, 
like the other datasets in this book, this is just an 
example to illustrate principles. Using the correla-
tion between X and Y, the means of X and Y, and 
the standard deviations of X and Y, I computed b (

b = 1.3) and a (a = 8.2). Scores on X for this data-
set are given below. Using these values for b and a 
our regression equation is Y′� = 1.3X + 8.2 (or you 
could say Y′� = 8.2 + 1.3X). We can compute Y′� for 
each person by inserting each person’s X score 
into the above equation.

Person X Yʹ
Hal 5 14.7
Fred 2 10.8
Eddie 6 16.0
Joe 8 18.6
Charles 2 10.8

That’s it in all its glory. Predicting a person’s Y 
score with a regression equation is a simple alge-
braic exercise (this is referred to actuarial or statisti-
cal prediction; in contrast there is clinical prediction 
which is a judgmental method). Note that the 
same X will always result in the same predicted Y 
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(see Fred and Charles). Our opinions don’t count. 
Just the equation and the data.

Now let’s say that we know each person’s ac-
tual score on Y. We can compare these actual Y 
scores to our predicted Y scores.

Person X Yʹ Y

Hal 5 14.7 16
Fred 2 10.8 9
Eddie 6 16.0 10
Joe 8 18.6 22
Charles 2 10.8 14

As we can see, our predictions were pretty close 
for some of the people (Hal and Fred) and were 
way off for the others (Eddie, who did a lot worse 
than we predicted, and Joe and Charles, who did a 
lot better than we predicted). The difference be-
tween the actual Y and the predicted Y (e, the re-
sidual) shows the amount of error in the predic-

tion of Y for each person. Also note that Fred and 
Charles had the same predicted Y but had different 
scores on actual Y. This Fred/Charles situation il-
lustrates how the same scores on X will always re-
sult in the same predicted Y; however, their actual 
scores on Y will likely turn out to be different.

Person X Yʹ Y (Y – Y′)
Hal 5 14.7 16 1.3
Fred 2 10.8 9 -1.8
Eddie 6 16.0 10 -6.0
Joe 8 18.6 22 3.4
Charles 2 10.8 14 3.2

I hope that it is obvious that we like it best when 
there are no errors of prediction. Such a situation 
would indicate that our predictions were perfectly 
accurate. But that doesn’t happen in real life.

Let’s talk about the accuracy of predictions 
made with regression analysis. Anyone can make 
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predictions. We want to make predictions when 
we have a good chance of being accurate. How can 
we know whether these predictions will be accu-
rate? That’s where correlation enters the picture. 
Stronger correlations between X and Y lead to 
more accurate predictions. (In the above dataset, 
rXY = .65.) A perfect correlation (+1 or -1) would 
give us perfectly accurate predictions (0.0 residu-
als for all people). Of course, perfect correlations 
don’t happen in the real world, but you get the 
idea.

A Regression Thought Experiment

Let’s review the equations for b and a.

b = rXY
SY

SX

a = Ȳ −bX̄

An examination of the equation for b reveals some-
thing interesting: The most important part of b is 

the correlation between X and Y. The standard de-
viations are just scaling terms. (Consider that if 
the data are transformed to z scores, then SX and 
SY both equal 1.0 and are irrelevant.)

Here’s an interesting thought experiment: 
What happens if rXY = 0? In this scenario, we 
won’t even have to standardize our data. It can be 
raw data. Using the above equations, when rXY = 0 
then b = 0 (because anything multiplied by zero is 
zero). And if b = 0, a = Ȳ −0X̄, which simplifies to 
a = Ȳ. And, thus, the regression equation is 
Y′� = 0X + Ȳ, which simplifies nicely to Y′� = Ȳ. To re-
state: if rXY = 0, then the regression equation is 
Y′� = Ȳ. Thus, predicted Y is the mean of Y for all 
scores on X. It doesn’t matter what your score on 
X is, we predict the mean of Y for you. Why? Be-
cause there is no association between X and Y. 
Thus, why should I care about your X score in my 
prediction of Y? And predicting people to be aver-
age is the safest prediction. That zero correlation 
tells us X is irrelevant. Earlier, we said that b tells 
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us how much to weight scores on X to get the best 
possible prediction of Y. If rXY = 0, then X doesn’t 
matter, and I should give it no weight in my predic-
tion of Y (hence, b = 0 in this scenario).

To the converse, what if rXY = 1.0? To make 
matters easy on ourselves, let’s also make X and Y 
standardized data so that the means are 0.0 and 
the standard deviations are 1.0. Inserting these 
numbers into our equations for b and a yields 
b = 1.0 and a = 0. (Try it – you’ll see.) Thus, our re-
gression equation is Y′� = 1X + 0, which simplifies 
to Y′� = X. With this equation, if X is 2.3, then Y′� is 
2.3. And if X is -1.9, then Y′� is -1.9. Predicted Y is 
exactly as high or low as X.

Conclusions from our little thought exercises: 
The relationship between X and Y strongly deter-
mines the types of predicted Y scores generated 
from a regression equation. If rXY = 0, then all pre-
dicted Y values are the same, regardless of the 
score on X. If rXY is weak, then all predicted Y val-

ues are close to mean, even for people with ex-
tremely high or low scores on X. If rXY is strong, 
then people with extremely high or low scores on 
X will have very high or low predicted Y values.

The Regression Line

Remember that line of best fit in the correla-
tion graph? It was also called the regression line. 
It is a visual representation of Y′� values for all 
scores on X. You can draw the line by plugging all 
possible values of X into the regression equation, 
obtaining Y′� for each X and graphing each of the X, 
Y′� points. Or you could just draw the line using 
the regression coefficient b as the slope and the a 
as the y-intercept. Our most recent dataset is 
graphed in Figure 2, and it includes the regression 
line. Note that the error of prediction (or residual) 
is indicated graphically by the vertical distance be-
tween each point and the regression line. Bigger 
distances mean worse prediction (more error). 
Let’s examine Joe’s data. Joe has a score of 8 on X. 
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His predicted Y is 18.6. His actual Y is 22. Thus, 
his error of prediction is +3.4. That is, he per-
formed 3.4 points better than we predicted. By 
comparison, Hal has a much smaller error of pre-
diction (1.3). Someone with scores located right 
on the regression line would have an error of pre-

diction of zero. The old rule from correlation-land 
is relevant again: Stronger associations (which 
lead to more accurate predictions) are those with 
points closer to a straight line. Correlation and re-
gression, two sides of the same coin. Or maybe 
they are the same side of the same coin. I never 
did understand that expression.

A quick note on interpreting the regression co-
efficient. The regression coefficient, b, tells us 
something useful, and unique, about the relation-
ship between X and Y. For simple regression, b in-
dicates the expected change in Y given a one point 
change in X. Here’s an example. Let’s say we con-
duct an experiment where we assign people to 
varying levels of study time and then measure 
their test performance. We regress test scores (Y) 
on study time scores (X, measured in hours) and 
obtain the regression equation Y′� = 21X + 11.5. In 
this equation, b is 21. Using our interpretive rule, 
for every one hour increase in study time, we ex-
pect to see a 21 point increase in test scores. We 
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may find this information to be very useful in 
evaluating the relationship between study time 
and test performance. Also, the effects of b are cu-
mulative; a three hour increase in study time will 
be expected to lead to a 63 point increase in test 
performance. Nice.

So the regression coefficient can be a useful in-
dicator of the strength of the association between 
two variables. Just like correlations. Sometimes a 
regression coefficient can be every bit as useful (ar-
guably more so) than a correlation. When is that? 
It all depends on whether the dependent variable 
is expressed in a meaningful metric. What kind of 
metrics of measurement are meaningful? Any-
thing that has real world relevance, such as time 
(e.g., to complete a task), number of something 
(e.g., mistakes), dollar value (e.g., of items sold), 
and so on (e.g., and such and forth). Let’s say that 
the dependent variable is expressed in dollars. If 
the regression coefficient is 50, then for every one 
point change in X, we expect Y to increase by $50. 

Based on the nature of the experiment, it will be 
easy to interpret whether $50 is a meaningful 
change (and thus, a strong relationship) or a triv-
ial one.

As long as we’re discussing strength of associa-
tion, remember how we mentioned in our discus-
sion of correlation that we shouldn’t use the slope 
of the line on the scatterplot as an indicator of the 
strength of the association? Mostly because the x- 
and y-axes can be easily manipulated to produce 
the appearance of a strong slope. Remember that? 
Well, here’s the thing. Even though it’s unwise to 
use apparent slope of the regression line on the 
scatterplot as an indicator of the strength of asso-
ciation, it is fine to use the regression coefficient 
as an indicator of the strength of association. How 
is that OK, you’re thinking? I once had a percep-
tive student ask me this very question. Well, we 
know why a visual inspection of the slope of the 
line on the scatterplot is a bad idea. But wait, 
didn’t we just learn that the regression coefficient 
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is the slope of the regression line? How then is 
the regression coefficient useful? The answer is 
that it’s not as easy to subtly manipulate the re-
gression coefficient. You can’t just change the 
scale on the axis of some graph and get the de-
sired effect. You would have to change the scale of 
the data itself (e.g., multiply all of the scores on 
the dependent variable by 10). Such a change 
would be obvious. In short, if one wants to pro-
duce the appearance of a strong relationship, it’s 
more difficult to manipulate the regression coeffi-
cient than it is to manipulate the apparent slope of 
the regression line on the scatterplot. The former 
is a number. The latter is a visual representation 
of that number.

To show how a regression has a real-world use-
fulness, let’s pretend that we are in charge of ad-
missions of a certain college. We’ll call it Enor-
mous State University (or ESU). At ESU we are 
considering using the ACT for freshman admis-
sions. Somebody somewhere (maybe at arch-rival 

Enormous Tech) did a study and found a .5 correla-
tion between ACT scores and college GPA. Based 
on that correlation, we decide to use the ACT at 
ESU. Naturally, we also need the means and stan-
dard deviations of X and Y to set up our regression 
equation. Once we get these data, we obtain a re-
gression equation of Y′� = .1X + .5. For every high 
school student that applies, we plug his or her 
ACT score into our equation, which generates a 
predicted Y for each person. If the predicted Y is 
high enough (say, greater than 2.0), then we ad-
mit the student. If not, then we send him the 
other letter.

Theoretical Basis for Regression Analysis

To really understand how regression analysis 
works, we need to further analyze the theoretical 
foundation. We start with a simple equation.

Y = Y
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Equations don’t get much simpler than that. A per-
son’s score on Y equals that person’s score on Y. 
This is like saying 12 = 12, a valid equation, but 
fairly useless. There’s an algebra maneuver that al-
lows you to do whatever you want to an equation 
as long as you do it to both sides of the equation. 
So let’s add a few terms to each side of the equa-
tion.

Y + Y′� + Ȳ = Y + Y′� + Ȳ

Where:
Y is the actual score on Y for a given person.
Y′� is the predicted value of Y for a given per-
son.
Ȳ is the mean of scores on Y.

And follow that with a little algebraic rearrang-
ing.

Y −Ȳ = Y′ �−Ȳ + Y −Y′�

And put parentheses around some terms.

(Y −Ȳ ) = (Y′�−Ȳ ) + (Y −Y′�)

In the final equation above, the difference between 
a person’s score on Y and the mean of Y can be ex-
plained by what’s on the right of the equal sign. 
Let’s not get into that just yet, though.

Our next step will be to take this equation, 
which is in the form of a single person’s scores, 
and write it as a sum of squared values across the 
entire sample of people. (There’s a long, algebraic 
proof for the validity of this move somewhere, but 
I don’t have it handy. Trust me – you wouldn’t 
want to see it if I did.)

Σ(Y −Ȳ )2 = Σ(Y′�−Ȳ )2 + Σ(Y −Y′�)2

If these sum of squares things look familiar, it’s be-
cause the numerator of the variance formula (see 
Chapter 2 for a refresher) is itself a sum of 
squares. Just think of a sum of squares as meaning 
simplified variance, because like all variability equa-
tions, it’s an index of differences in scores. The 
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first term is the sum of squares of Y (which is iden-
tical to the numerator of the variance equation). 
The second term is called the sum of squares re-
gression. The final term is called the sum of 
squares residual. (Remember the residual, or error 
of prediction, from earlier? There it is. Y −Y′� just 
like before.) Let’s rewrite this equation using our 
new names.

SSY = SSreg + SSres

What this equation is saying is that variability 
(i.e., score differences) in Y (i.e., SSY) is a function 
of the regression and residual component of regres-
sion analysis. What’s the regression component 
all about? We’ll need to take a long look at it to 
find out. SSreg  is Σ(Y′�−Ȳ )2, which is the sum of the 
squared differences between between predicted Y 
and the mean of Y. To understand the importance 
of this, we need to understand whence predicted Y 
emerged. Consulting our regression equations 
from earlier in the chapter tells us that Y′� = bX + a, 

where b = rXY(SY /SX) and a = Ȳ −bX̄. As we dis-
cussed earlier, if rXY = 0, then b = 0 and ultimately, 
Y′� = Ȳ for all values of X (i.e., everyone).

This is an important point, so I’ll start a new 
paragraph and restate it: Y′� = Ȳ when there is no 
relationship between X and Y. Thus, we can con-
clude that Y′� differs from Ȳ only when there is a re-
lationship between X and Y. With that principle in 
mind, we can understand what is going on with 
the SSreg  term (i.e., Σ(Y′�−Ȳ )2). Stronger relation-
ships between X and Y mean bigger SSreg  due to 
the greater differences between Y′� and Ȳ. So regres-
sion refers to the relationship between X and Y, 
and the sum of squares regression is an index of 
the magnitude of the relationship between X and 
Y. When there is no relationship between X and Y, 
the sum of squares regression is zero. When there 
is a perfect relationship between X and Y, the sum 
of squares regression is huge – it equals the total 
sum of squares in Y (i.e., the total variability in Y).
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What about the sum of squares residual? This 
part is easier to understand. Residual refers to er-
ror of prediction and is defined as Y −Y′� (i.e., the 
difference between actual Y and predicted Y). 
When there is a perfect relationship between X 
and Y, Y equals Y′� for everyone, and all residuals 
are zero. Thus, the sum of squares residual is 
zero. Inference: The residual reflects the lack of a 
relationship between X and Y, and the sum of 
squares residual is an index of this lack of a rela-
tionship. When there is no relationship between X 
and Y, the sum of squares residual is, you guessed 
it, huge; it equals the sum of squares in Y. (You 
can take my word for it, but if you want to see it 
for yourself, remember that when rXY = 0, Y′� 
equals Ȳ for every person. Substitute Ȳ for Y′� in 
the sum of squares residual and you can see why 
the residual equals the sum of squares in Y.)

To summarize our discussion of all things re-
gression and residual (and their sums of squares), 
regression reflects the relationship between X and 

Y, and residual reflects the lack of a relationship 
between X and Y. These two sums of squares add 
to form of the total sum of squares in Y. Stated 
succinctly, the total variability in Y (SSY) can be di-
vided into variability based on the relationship be-

80

Variability in Y can be divided into a sum of squares regression (yellow 
area) and a sum of squares residual (gray area). Dividing both of these 
sums of squares by Σ(Y −Ȳ )2 (the total sum of squares in Y) turns the 
sum of squares regression (yellow) into R2 and the sum of squares re-
sidual into 1 −R2.

FIGURE 3 Sums of Squares Regression and Residual 
Illustrated



tween X and Y (SSreg ) and variability based on the 
lack of a relationship between X and Y (SSres) Fig-
ure 3 is our familiar Venn diagram with the vari-
ability in Y divided into a sum of squares regres-
sion (yellow) and a sum of squares residual 
(gray).

One final algebra move: Divide all of the terms 
in our SSY = SSreg + SSres equation by the sum of 
squares of Y.

SSY /SSY = SSreg /SSY + SSres /SSY

As far the left side of the equal sign goes, it should 
be obvious that SSY divided by itself reduces to 
1.0. But what about the terms on the right side? 
What happens to them? Well, we already know 
that SSreg  is the variability due to the relationship 
between X and Y. Dividing that value by the total 
variability in Y gives us the percent of variance in 
Y that is due to the relationship between X and Y. 
Any ideas as to what that percent equals. Are you 

sitting down? SSreg /SSY = r2
XY. That’s right, it’s the 

same correlation that we started with, only 
squared. r2

XY is has a cool name: coefficient of deter-
mination. And it has a cool definition: The percent 
of variance in Y explained by X. Very cool. What 
about the final term, SSres /SSY? As we said before, 
the residual is the lack of a relationship between X 
and Y, and the sum of squares for the residual is 
the variability due to this lack of a relationship. Di-
viding SSres by the total variability in Y gives us the 
percent of variance in Y not explained by X. In r2

XY 
terms, that’s 1 −r2

XY. With this information, we 
can rewrite the previous equation as:

1 = r2
XY + (1 −r2

XY)

So, there we have it. The logic of regression analy-
sis. It’s actually kind of beautiful.
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Concluding Thoughts on Regression Logic

Earlier in this chapter, without any explana-
tion, I casually dropped the term ordinary least 
squares regression (OLS regression for short). We 
now know enough to explain what that means. 
The least squares part of OLS regression refers to 
the sum of squares residual (SSres). As you recall, 
the residual is the error of prediction, the differ-
ence between the actual score on Y and the pre-
dicted Y. Bigger residuals mean worse prediction. 
This regression analysis that we have been discuss-
ing is based on minimizing the sum of squares re-
sidual. We want the regression coefficient (b) and 
y-intercept (a) that produces predicted Y scores 
with the minimum possible SSres, hence the term 
least squares. (Presumably, you could figure out b 
and a by randomly trying various values for each, 
computing the sum of squares residual for each 
combination of b and a until you found the one 
combination that minimized the sum of squares re-
sidual. You could do it that way, but I wouldn’t rec-

ommend it. It sounds like work.) I don’t know 
where the ordinary part came from. Let’s hope 
that’s not important.

Back to the least squares part. I wouldn’t 
blame you for thinking, “Wait, I thought you told 
me the b and a came from those equations earlier. 
They’re simply a function of the correlation, stan-
dard deviations, and means.” That’s correct. Deriv-
ing the b and a in that fashion minimizes the SSres 
for simple regression. There is no other combina-
tion of b and a that will result in a better SSres in 
that sample.

I haven’t exactly told you anything new here. 
The regression coefficient is a simple function of 
the correlation between X and Y and the standard 
deviations of X and Y. The y-intercept is a simple 
function of the regression coefficient and the 
means of X and Y. Using these statistics will allow 
us to predict Y with the minimum residual possi-
ble in that sample. No tough decisions. Since 
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there are no tough decisions to be made here, why 
all of the fuss over this “let’s minimize the sum of 
squares residuals” stuff? Just wait until we get to 
multiple regression...

A Comment on the Use of the Word “Predict”

The regression equation is designed to predict 
scores on Y. The regression weights chosen are 
those that predict Y most accurately in that sam-
ple. More accurate predictions mean smaller resid-
ual scores. Smaller residual scores mean reduced 
residual variance, which means the independent 
variable is accounting for more of the variance in Y 
(which means a stronger R2, the index used to de-
termine the strength of the relationship between X 
and Y).

Please do not interpret the use of language 
such as “variable X contributes to the prediction of 
Y” to mean that we were only addressing predic-
tive, as opposed to causal (or explanatory), re-

search. This is simply the language of the regres-
sion equation. Y′� is called predicted Y. The pur-
pose of the regression equation is to weight the 
various independent variables to generate scores 
that match actual Y scores as closely as possible. 
That is, to predict Y. Whether you are using this re-
gression equation for predictive or causal research 
is a separate issue.

Cool Regression Tricks

There are a few things we can do to illustrate 
that wonderful regression logic from the previous 
sections. Let’s use our previous dataset for this.

Person X Y Y′ (Y – Y′)
Hal 5 16 14.7 1.3
Fred 2 9 10.8 -1.8
Eddie 6 10 16.0 -6.0
Joe 8 22 18.6 3.4
Charles 2 14 10.8 3.2
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For every person, we have scores on X and scores 
on Y. Our regression equation (Y′� = 8.2 + 1.3X) 
gives us predicted Y scores and residual scores. 
Also, it is worth noting that rXY = .65.

As we have stated more than a few times by 
now, scores on Y (and variance thereof) can be di-
vided into a part related to X (predicted Y scores, 
and variance thereof) and a part unrelated to X (re-
sidual scores, and variance thereof). To illustrate 
this, let’s explore the relationship between X, Y, 
Y′�, and residual scores with a few analyses.

First, a simple one to demonstrate how scores 
on Y are broken into the two parts mentioned 
above. In our example dataset, consider Hal’s 
scores. Hal’s actual score on Y is 16. That 16 on Y 
can be divided into a part related to X and a part 
unrelated to X. The part related to X is Y′�, and 
Hal’s Y′� score is 14.7. Interesting. The part unre-
lated to X is the residual score (Y −Y′�), and Hal’s 
residual score is 1.3. Add the two parts (predicted 

Y score and residual score) together and you get 
16, which is Hal’s score on Y. You are probably not 
impressed because all of this follows from the very 
definition of residual. But, it’s one thing to say it; 
it’s another thing to see that it really works that 
way with actual data.

Second, let us explore the correlation between 
X and predicted Y. Before I tell you the correlation, 
recall that predicted Y comes from the regression 
equation which, in this case, is Y′� = 8.2 + 1.3X. 
Thus, every predicted Y score is somebody’s score 
on X times 1.3 followed by the addition of 8.2. 
This sort of transformation is known as a linear 
transformation. We’ve seen linear transformations 
before when we discussed z scores. The interest-
ing thing about a linear transformation is that it 
doesn’t change the correlation. If that seems 
shocking to you, it shouldn’t. Recall what we 
learned about indices of bivariate associations: A 
strong, positive association occurs when people 
with high scores on one variable (e.g., X) have 
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high scores on another variable (e.g., Y) and when 
people with low scores on X also have low scores 
on Y. In short, strong associations occur when we 
observe a consistent pattern of scores between the 
two variables. Adding 8.2 points to everyone’s 
score isn’t going to change that consistency. Multi-
plying every X score by 1.3 will not change that ei-
ther. The only thing that a linear transformation 
could change is the direction of the correlation, 
and that would only occur if we multiplied by a 
negative number (i.e., when b is negative). That 
said, let’s answer the question, what is the correla-
tion between X and Y′�? It should be obvious by 
now that rXY′� = 1.0 (or -1.0 when the b is negative, 
which only occurs when is rXY negative) because, 
in bivariate regression, Y′� is just a linear transfor-
mation of X.

Next, let’s explore the correlation between Y′� 
and Y. Given what we just learned in the previous 
paragraph, we can reason this out. If Y′� is just a lin-
ear transformation of X (which it is), and if 

rXY′� = 1.0 (which it does), then it stands to reason 
that the correlation between Y and Y′� will be the 
same as the correlation between X and Y. And 
that’s what we observe: rXY = .65 and rYY′� = .65. 
(Side note: rYY′� is always positive, even if rXY is 
negative. The b takes care of the negative relation-
ship.)

For our final analysis, let’s explore what hap-
pens when we correlate the residual scores with 
the X scores. As mentioned many times, the resid-
ual is the part of Y unrelated to X. Thus, any corre-
lation between scores on X and the residual scores 
(Y −Y′�) should be, well, pretty much zero. That’s 
what unrelated means. No relationship. Therefore, 
it’s no surprise when we compute the correlation 
and find that rX(Y−Y′�) = 0.0. The thing that is so cool 
about this last analysis is that it’s one thing to say 
that the residual is the part of Y that is unrelated 
to X, but it’s far more impressive when you use a 
regression equation to first compute Y′� scores, 
then the residual scores, and find that the correla-
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tion between X scores and the residual scores is ex-
actly zero. (By the way, feel free to enter the table 
data into a statistics program and compute these 
correlations. Go for it, it’s fun.)

To summarize everything up to this point, the 
regression model states that scores on Y (and its 
variance) can be divided into two parts: a part re-
lated to X (Y′� and its variance) and a part unre-
lated to X (Y −Y′� and its variance). We see the 
first part with a correlation between X and Y′�, 
which equals 1.0. We see the second part with a 
correlation between X and Y′�, which equals zero. I 
think it’s pretty cool. You may not. You would be 
wrong.

Regression Assumptions: Overview

Now is the time for a discussion about as-
sumptions in regression analysis. And there are 
many. As with any statistic, you’ll always get a re-
sult when you perform the analysis. But violating 

an assumption of that analysis means that the re-
sults will not necessarily match reality. So, yes, as-
sumptions are a big deal.

The assumptions associated with regression 
analysis come in two flavors: those affecting the 
mathematical accuracy of the result and those af-
fecting causal inferences made on the result. The 
first category includes linearity and homogeneity 
of variance. The second category includes model 
specification and the nature of the independent 
variable; these are relevant only for causal re-
search. There is a final assumption, that the inde-
pendent variable is measured without error, that 
sort of fits in both categories, but it works better 
with the latter group.

Regression Assumptions: Linearity

Simple linear regression has, as does correla-
tion, an assumption of, you guessed it, linearity. 
Linearity means that the rate of increase (or de-
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crease) for scores on Y remains the same across 
the range of scores on X. Another way of stating 
linearity is that the best fitting trend line is a 
straight line. Yet another way of stating the linear-
ity assumption is that the most accurate summary 
of the observed relationship between X and Y is 
also the simplest: Higher scores on X are associ-
ated with higher scores on Y (or lower, if it’s a 
negative relationship). Contrast that statement 
with the following: Higher scores on X are associ-
ated with higher scores on Y until a certain point 
at which scores on Y no longer increase. That state-
ment is considerably more complicated, both 
mathematically and grammatically.

So linear regression has an assumption of line-
arity. What happens if this assumption is violated? 
If the linearity assumption is violated, a linear re-
gression will underestimate r2 (and r and b), and 
the regression equation will not accurately model 
the relationship between X and Y. Consider the fol-
lowing dataset and its scatterplot (Figure 4).

Person X Y

Gretchen 18 59
Steven 17 42
Jane 20 79
Mike 21 70
Brandon 23 32
Wendy 22 66
Pete 19 74

This relationship can be described as follows: Low 
scores on X are associated with low scores on Y, 
medium scores on X are associated high scores on 
Y, and high scores on X are associated with low 
scores on Y (note the complexity of this sum-
mary). Figure 4 shows a strong relationship be-
tween X and Y. That relationship just happens to 
be nonlinear.

As mentioned, a linear regression underesti-
mates the strength of a nonlinear relationship 
(i.e., when the linearity assumption is violated). 
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Back at the beginning of the correlation chapter, 
we stated that for a scatterplot, the strength of the 
relationship is demonstrated by how close the 
points are to the regression line. Well, let’s apply 
that principle to Figure 4. No matter where you 
draw a straight line on it, at least half of the points 
will have a large vertical distance between those 

points and the line. A linear regression of Y on X 
(Side note: We always say, “Regress the dependent 
variable on the independent variable.” DV on IV, 
in that order.) results in an r2 of .008 (r = .09). 
Thus, a linear regression of these data indicates an 
extremely weak relationship between X and Y 
when there is in fact a strong relationship between 
X and Y. The strong relationship just happens to 
be nonlinear. Thus, a linear model does not prop-
erly describe this relationship. That’s the bad 
news. The good news is that there is a way to con-
duct a regression analysis that doesn’t require a 
linearity assumption. We’ll discuss this nonlinear 
regression analysis at a later date.

How do we check for violations of the linear-
ity assumption? We just saw the nonlinear nature 
of this relationship in the standard scatterplot of 
scores on Y and X. Is that it? Just graph the scores 
on the standard scatterplot? Well that works here, 
in simple regression. But it doesn’t work in multi-
ple regression. So let’s learn just one method that 
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works for both. Instead of graphing scores on Y 
and X, we graph residual scores (i.e., Y −Y′�) on 
the y-axis and predicted Y scores on the x-axis. For 
the previous example, the predicted Y scores and 
residual scores are listed below (note that the lin-
ear regression equation is Y′� = −.71X + 74.6).

Person X Y Y′ (Y – Y′)
Gretchen 18 59 61.7 -2.7
Steven 17 42 62.4 -20.4
Jane 20 79 60.3 18.7
Mike 21 70 59.6 10.4
Brandon 23 32 58.1 -26.1
Wendy 22 66 58.9 7.1
Pete 19 74 61.0 13.0

The residual plot is shown in Figure 5. Seeing 
this nonlinear trend in the residual plot indicates 
that there is a violation of the linearity assump-

tion, and thus, we need to proceed with a nonlin-
ear regression analysis.

So that’s what things look when the linearity as-
sumption is violated. What do things look like 
when it’s not? Figure 6 is a standard scatterplot 
(i.e., not the residual plot) for a new dataset (not 
shown) where rXY = .70.
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FIGURE 5 Nonlinear Trend Residual Plot
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And the residual plot for these scores in shown in 
Figure 7.

That’s right, a residual plot for a dataset without a 
linearity assumption violation looks like scatter-
plot for a zero correlation dataset. This is what we 
want to see when we check the residual plot for 
violations of linearity assumption. No violations. 

(Unless we want a nonlinear association, which is 
arguably way cooler. But you won’t know if it’s 
there if you don’t check for it.)

Before we move on to the second assumption 
of regression, what does this latter example tell us 
about residual plots in general? The scatterplot 
showed a nice linear trend, but the residual plot 
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showed a mass of points with no trend. The an-
swer is that the residual plot shows the relation-
ship between X and Y after the linear relationship 
between them has been removed. Remember that 
the residual is Y −Y′� and reflects the lack of a rela-
tionship between Y and X. It’s what is unpredicted 
by scores on X. Thus, an examination of these un-
predicted values can tell us what the linear predic-
tion (i.e., Y′�) failed to capture. That’s the y-axis. 
Why then are predicted Y scores plotted on the 
the x-axis? Why not just scores on X? The answer 
is that in simple regression, it makes no differ-
ence. Predicted Y is just a linear transformation of 
scores on X. But in multiple regression, it matters. 
Like I said, let’s just learn one way to do this that 
will work for every condition.

Regression Assumptions: Homogeneity of Vari-
ance

Our next assumption, homogeneity of vari-
ance (also referred to as homoscedasticity), is 
about the variance of the residual scores. The as-
sumption is that residual variance is homogene-
ous, or constant, across all levels of X. As men-
tioned, residuals are the differences between Y and 
predicted Y. Bigger residuals indicate worse predic-
tion. Regression assumes that the prediction equa-
tion works equally well across the range of scores 
on X. That is, the magnitude of the residuals is, on 
average, the same for high, medium, and low 
scores on X. What does homoscedasticity look 
like? Well, as with the linearity assumption, we 
check for violations of the homogeneity of vari-
ance assumption with the residual plot (hardly a 
surprise given that we’re looking at the magnitude 
of the residuals). Figure 8 (which looks suspi-
ciously like Figure 7) is an example of homoscedas-
ticity.
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Here’s what homogeneity of variance is not 
about. It’s not assuming that the residuals are 
small for the entire range of scores on X. It is 
about having residuals that are of the same magni-
tude (be it small, medium, or large) for all scores 
on X. See the difference? Homoscedasticity is 
about a consistent size of the residuals.

Well, then what does a violation of this as-
sumption look like? In Figure 9 we observe such a 
violation, a condition called heteroscedasticity. 
The magnitude of the residuals vary by scores on 
X. This X variable predicts better (i.e., smaller re-
siduals) for high scores on X than it does for low 
scores on X. Big deal, you say. What does this 

92

FIGURE 8 Residual Plot Demonstrating Homoscedas-
ticity

FIGURE 9 Residual Plot Demonstrating Heteroscedas-
ticity

figure:0BCEA0F9-6405-49AC-A3B3-3BD17BD5D703
figure:0BCEA0F9-6405-49AC-A3B3-3BD17BD5D703


mean to us? It means that r2 does not accurately 
describe the strength of the association between 
the two variables. In Figure 9, where this assump-
tion is violated, r2 overstates the strength of asso-
ciation for low scores on X and understates it for 
high scores on X. Not good.

Regression Assumptions: Model Specification

A third regression assumption is one that is 
relevant only for causal, or explanatory, research. 
The assumption is that the model is correctly 
specified. Aside from the linear/nonlinear issue 
from before, a correctly specified model relates to 
the choice of independent variables in the equa-
tion. There are a few ways for a model to be mis-
specified, but we’ll focus on the most serious one: 
variable omission. As the name suggests, variable 
omission means that a necessary independent vari-
able has not been included in the analysis. Three 
conditions must be met for model misspecification 
via variable omission to yield results that lead to 

incorrect conclusions. First, the omitted vari-
able(s) must be an actual cause of the dependent 
variable. Second, the missing variable(s) must be 
correlated with X. Third, X must be correlated 
with Y. The consequences of this type of misspeci-
fied model are serious: Both r2 and the regression 
coefficient for X will be will be too high (i.e., over-
estimated). Thus, X will appear to have a greater 
causal role with Y than it actually has. (Note: The 
effects of this problem are more complicated in 
multiple regression. As before, r2 will be overesti-
mated, but the regression coefficients may be too 
high or too low. Either way, they won’t be cor-
rect.)

So those are the basic facts of model misspeci-
fication. Here’s the odd part. It’s only an issue for 
causal research. For predictive research, the model 
predicts as well as R2 says it does (aside from one 
issue which we will discuss in a later chapter). If 
you left a relevant variable out of the model, that’s 
your problem. You could have obtained better pre-
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diction, but you didn’t. If you achieved this r2 by 
including an apparently irrelevant variable that 
just happened to work (because it’s correlated 
with the actual cause), good news: It works. So r2 
is accurate for predictive research regardless of 
how badly you misspecified the model via the 
choice of independent variables (again, with one 
exception to be discussed later). With predictive 
research, one could hold to the attitude that “Pre-
diction is all we care about. Who cares about cau-
sality?” and be just fine. (Side note: Understand-
ing the causes of the dependent variable will al-
ways lead to better prediction.)

But what of causal research? The whole point 
of causal research is to understand, well, the 
causes of the dependent variable. Leaving out a 
relevant independent variable changes everything. 
A great example of this error is our ice cream-
shark attack example from Chapter 3. In the exam-
ple, we observed a .7 correlation between ice 
cream sales and shark attacks at some seaside re-

sort (data collected in monthly intervals). The re-
gression model could be set up with number of 
shark attacks (Y) as the dependent variable and ice 
cream sales (X, in tons) as the independent vari-
able. Let’s say the regression equation works out 
to be Y′� = 2X −1. For explanatory research the re-
gression coefficient (recall that b indicates the ex-
pected change in Y given a one point change in X) 
is an index of the causal role of its independent 
variable. In this shark attack example, the regres-
sion coefficient is 2. That regression coefficient 
may look small to you, but all things considered, 
it’s quite large: For every ton of ice cream sold, we 
expect to observe two shark attacks. If this is 
causal research, we would conclude that there is a 
very strong relationship between the two vari-
ables, and that shark attacks could be reduced, or 
even eliminated, if we stopped selling ice cream at 
this resort town (Amity, Massachusetts). That’s 
the sort of a conclusion one draws from causal re-
search: A recommendation for changes that 
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should be made with the expectation that chang-
ing the status on the independent variable will 
lead to the desired changes on the dependent vari-
able.

To refresh, a misspecified model is one which 
is missing necessary variables. And our example is 
certainly missing a key independent variable. Sure, 
there is a strong association between shark attacks 
and ice cream sales, but that association is the by-
product of the actual causal factors. Include the ac-
tual causal factors (number of people at the resort, 
in thousands, Z) and everything changes: 
Y′� = .0000000001X + .001Z + 0. Thus, for every 
thousand, thousand people at the resort, we ex-
pect one shark attack. But for ice cream, I don’t 
even want to figure out how many tons have to be 
sold to get one shark attack. The effect of ice 
cream is now seen to be so small that it’s essen-
tially irrelevant. Shark attacks are really related to 
the number of people in the resort: more people, 
more swimmers, more opportunities for sharks. 

Thus, a properly specified model leads to a com-
pletely different conclusion. If we had followed the 
first model, we would have restricted ice cream 
sales, expecting to see a reduction in shark at-
tacks, and then been very dismayed when the ex-
pected results were not observed.

To close our discussion on model misspecifica-
tion, let’s remind ourselves that this doesn’t mat-
ter a whit for predictive research. A regression 
model, specified correctly or incorrectly, predicts 
as well as r2 says it does (aside from that one issue 
that I keep dodging). But, for explanatory, or 
causal, research, a misspecified model can lead to 
the wrong conclusions regarding which variables 
cause the dependent variable and the magnitude 
of their causal role. There are many other things 
that can be discussed about model misspecifica-
tion, but let’s leave it at this: It is a lot easier to 
correctly specify a model in a true experiment 
than with a quasi or non experimental design.
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Regression Assumptions: Fixed Independent Vari-
able

Another assumption is that X, the independ-
ent variable is a fixed variable. A fixed variable is 
one whose values (e.g., 1, 7, 8) would be observed 
each time the experiment is repeated. It should be 
clear that X will only be a fixed variable in an ex-
periment where the values for X are assigned by 
the experimenter (e.g., Condition A receives two 
hours of study time, Condition B received four 
hours, etc.). As such, they are known before the 
experiment is conducted. The opposite of a fixed 
variable is a random variable. A random variable is 
one whose values are not determined or assigned 
by the experimenter (e.g., height, IQ). The values 
of a random variable are not known until the ex-
periment is conducted. Just to be clear, in this con-
text the term random variable does not mean that 
the variable is composed of random data. It simply 
means that the variable’s values were not set by 
the experimenter. It’s too bad this random variable 

thing for regression wasn’t given a better name 
like unfixed variable. That would reduce the confu-
sion.

In regression, X is assumed to be a fixed vari-
able, but Y is assumed to be a random variable 
with a normal distribution. This brings to mind an-
other assumption from correlation that applies to 
regression: bivariate normality. If X is a fixed vari-
able, it is assumed that scores on Y will be nor-
mally distributed at every level of X and that each 
of these distributions will have equal variance (ho-
moscedasticity).

Back to the X variable. The assumption is that 
X is a fixed variable. Based on the definition of a 
fixed variable, it appears that linear regression can-
not be used when X is a random variable, which is 
the case for almost all non experimental research. 
Is that true? No regression for non experimental 
research? That’s a heck of a restriction. I have 
good news. As long as the previous assumptions 
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are met, then OLS regression functions equally 
well for both random and fixed independent vari-
ables. But don’t take my word for it. “It has been 
shown that when other regression assumptions, 
especially ones concerning model specification, are 
reasonable met, regression results hold equally for 
random variables” (Pedhazur & Shmelkin, 1991, 
p. 392). Conclusion: This fixed independent vari-
able assumption is really just a causal research con-
cern. It is not a mathematical thing, like linearity, 
but a “Do these results apply to other samples?” 
issue.

A Brief Discussion of Extrapolation Errors

This fixed variable issue brings to mind a re-
gression analysis issue of which everyone should 
be aware. A regression equation should never be 
applied to values of X that weren’t observed in the 
original dataset (e.g., the regression equation was 
developed on a dataset with X values ranging from 
1 to 5, but now we want Y′� scores for X values 

ranging from 7 to 12). Such an error is known as 
an extrapolation error and makes the assumption 
that the observed trend will hold for values which 
are beyond the range of those in the original data-
set. There is a classic joke (or allegory or parable 
or something) about this kind of error: An old 
man had traveled all over America during his life. 
He noticed that temperatures were colder when he 
was in the Northern states. He also noticed that 
temperatures were warmer when he was in the 
Southern states. He concluded that the North Pole 
must be the coldest place on earth, and the South 
Pole must be the... Well, you can guess the rest. 
Back to our regression equation, if the equation 
was developed on a sample which had X scores 
that ranged from 1 to 5, it is unknown whether 
this same equation would also apply when scores 
on X range from 6 to 10. In short, the generalizabil-
ity of the results is limited to the range of X values 
found in the original sample.
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So how does this relate to the fixed variable/
random variable issue? Well, not much. But just 
be careful when X is a random variable as the 
range of scores in the original sample may not 
match what is needed for the intended application 
of the equation. (Of course, this could also happen 
when X is a fixed variable, but that would be the 
result of a major error on the part of the experi-
menter.) A random variable is likely to have a 
slightly different range of values from sample to 
sample. Thus, when X is a random variable the re-
sults (regression weights, R2, other stuff) may not 
translate well from one sample to another. It’s not 
likely to be a problem, but it is something to con-
sider.

Regression Assumptions: Independent Variable Is 
Measured Without Error

The final assumption is that the independent 
variable is measured without error. That’s going to 
be a problem when X is not a fixed variable. Ques-

tion: When is any variable measured without er-
ror? Answer: Never. And definitely not when it is 
a random variable. There will always be measure-
ment errors. These measurement errors in X cause 
r2 to be underestimated; they also have less pre-
dictable effects on the regression coefficients in 
multiple regression. Long story short, measure-
ment error causes serious problems in regression.

Regression Assumptions: Summary

To summarize the assumptions of OLS regres-
sion, we can state that linearity and homogeneity 
of variance are always important and should be 
checked for every regression analysis. Violations of 
the linearity assumption can be addressed by us-
ing nonlinear regression analysis. Model specifica-
tion and fixed independent variables assumptions 
apply to explanatory research only. Independent 
variables being measured without error is a prob-
lem for all types of research and violations of this 
assumption have the effect of lowering r2.
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So that’s the giant collection of regression as-
sumptions. To what end? What difference does it 
make? After all, you’ll get results from your regres-
sion analysis regardless of whether the assump-
tions are supported or violated. The answer is that 
when a given assumption is violated, you’ll get re-
sults (i.e., r2, regression equation, significance 
tests thereof), but the results will not accurately 
represent reality (r2 may be overestimated or un-
derestimated; significance test results may be inac-
curate; the regression coefficients will be over or 
underestimated; I could go on, but I don’t think I 
need to). Long story short, assumptions matter. 
Violate them at your own risk.

Significance Testing in Regression

Significance testing just won’t go away. Signifi-
cance testing in regression is very similar to signifi-
cance testing in correlation – with a twist. First 
off, the rXY we obtain from a regression analysis is 
the same as the rXY we obtain from a correlation 
analysis (except that it can’t be negative). That 
much should be clear by now. Technically speak-
ing, regression gives us r2

XY, but rXY is just a square 
root button on the calculator away. As these corre-
lations are the same magnitude, it should not be a 
surprise that the outcomes of the significance 
tests are the same. Again, with a twist.

In regression, the significance test we conduct 
is actually a test of r2. The equation is as follows.

F = r2
XY /k

(1 −r2
XY)/(N −k −1)

Where:
r2
XY is the squared correlation between X and Y.
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k is the number of independent variables.
N is the sample size.

Because this chapter is a treatment of simple re-
gression, there is only one independent variable, 
meaning k = 1. This test is an F test with k, 
N −k −1 degrees of freedom. Here’s the cool part: 
The F test of r2 is identical to the standard t test of 
r as long as the t test is a two-tailed test. Don’t for-
get that last part: These two significance tests 
yield the same result if the t test is a two-tailed 
test. (Note: There is no tailedness to an F test. A 
clue to this can be found by noticing that, quite ob-
viously, r2 cannot be negative – a positive relation-
ship between X and Y and a negative relationship 
between X and Y of the same magnitude will re-
sult in the same r2.) A one-tailed t test will have 
greater statistical power than the F test (which, as 
stated, has no directional specificity and is equiva-
lent to a two-tailed t test); thus, the F test of r2 
isn’t the proper test to conduct if you have a direc-

tional hypothesis (i.e., “There will be positive rela-
tionship between X and Y.”).

So that was pretty easy. Now the harder part. 
There are more significance tests in regression 
than just the test of r2. There is also a significance 
test of b, the regression coefficient. This test is a t 
test, and you’d never guess this, but it yields re-
sults identical to the t test of r. Even better, with 
the test of b we can have positive bs or negative b
s, meaning we can test directional hypotheses. 
Thus, we have the option of one-tailed or two-
tailed tests. So here we get results identical to the 
t test of r. (Important note: Many things will 
change in the significance testing department 
when we discuss multiple regression. Some of the 
things I’ve just told you will no longer apply. Life 
will get more complicated. For now, let’s enjoy the 
simplicity of simple regression.)

The test of the regression coefficient in simple 
regression is as follows.
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t = b
SY

SX

1 −r2
XY

(N −k −1)

Where:
b is the regression coefficient.
k is the number of independent variables in 
the model (k = 1 in simple regression).

That equation may look intimidating, but it’s 
really just the t test for a correlation all dressed up 
for regression. (If you want to see how, recall that 
b = rXY(SY /SX). Make that substitution in this equa-
tion, set k = 1, and simplify.) That’s probably why 
they yield the same results. In simple regression, a 
significant t test of r means a significant t test of b.

If you enjoyed all of the discussion of the vari-
ous significance tests in the previous chapter, you 
might be wondering exactly what kind of hypothe-
sis we are testing. The answer is the standard “the 
population value (be it the squared correlation or 
the regression coefficient) is greater than zero/less 

than zero/not zero” test. In other words, it’s the 
standard, common, easy significance test. No r to 
Fisher’s z transformations involved.

One last significance test note. Statistical pro-
grams such as SPSS and SAS also report a t test for 
the y-intercept. Such a test is nonsensical, as in, it 
makes no sense. What do we conclude if the y-
intercept is significant? Nothing. What do we con-
clude if the y-intercept is nonsignificant? Also 
nothing. Pay no attention to a significance test of a 
y-intercept.

Understanding Strength of Association in Regres-
sion

In this chapter, we’ve mentioned three ways to 
assess the strength of association in regression 
analysis: r, r2, and b. We know that all three have 
their own significance tests. But strength of asso-
ciation isn’t significance testing. In using these sta-
tistics to understand strength of association, all 
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three statistics have their merits. All have weak-
nesses as well.

We discussed the regular (i.e., un-squared) 
correlation in the previous chapter. Cohen’s 
(1992) standards provide useful guidelines for as-
sessing the strength of a regular correlation. We 
also have discussed the use of the regression coeffi-
cient as an index of the strength of association 
(earlier in this chapter). The regression coefficient 
is very useful, arguably more useful than a correla-
tion, if the dependent variable is in a meaningful 
metric, such as time, money, number of accidents, 
and so on. As discussed earlier, the regression coef-
ficient can be interpreted as follows: For every one 
point change in scores on X, we expect scores on Y 
to change by b points. For example, the equation 
Y′� = 35X + 130 tells us that for every one point 
change on X, we expect scores on Y to increase by 
35 points. If Y, the dependent variable, refers to 
days spent working, then this b of 35 has real 
meaning. We expect someone who scores a 10 on 

the test to work 35 days longer than someone 
with a score of 9.

Finally, let’s discuss the use of r2 as an index 
of the strength of association. As mentioned ear-
lier in this chapter, r2 has a cool name (coefficient 
of determination) and definition (percent of vari-
ance in Y explained or accounted for by X). So if X 
and Y are correlated .5, then r2 is .25. This r2 
means that 25% of the variance in Y is explained 
by scores on X. Fans of simple math will note that 
this also means that 75% of the variance is not ex-
plained by X. Our .5 correlation (which Cohen de-
scribes as “strong”) doesn’t sound so strong any-
more. Them’s the breaks when you square num-
bers between 0 and 1. They get smaller.

It appears that we have a conundrum. A .5 cor-
relation is strong, so says Cohen. But a .5 correla-
tion fails to explain 75% of the variance in Y, so 
says r2. A relationship can’t be strong and weak at 
the same time. What’s going on? The answer is 
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hiding in plain sight. The definition of r2 states 
that r2 indicates “the percent of variance in Y ac-
counted for by X.” The word variance is where the 
problem occurs. As we learned in some previous 
chapter, variance is in squared units (e.g., squared 
ACT points). Thus, if ACT scores are correlated .5 
with GPA, the r2 method of assessing relationship 
strength is saying that “differences among squared 
ACT points explain 25% of the differences in 
squared GPA points.” This is not at all helpful. 
What we want is a way to understand how two 
variables are related to each other while retaining 
the regular metric of measurement (i.e., un-
squared points). Brogden (1946) demonstrated 
that the regular, un-squared correlation is linearly 
related to how well one variable predicts another. 
Using our example, a variable correlated .5 with Y 
predicts Y half as well as a variable perfectly corre-
lated with Y. A variable with a .4 correlation is 
40% as efficient at predicting Y as is a variable 
with a 1.0 correlation. And so on.

Before I take any criticism from the gallery for 
my disdain for r2 as an index of the strength of as-
sociation between X and Y, let me say the follow-
ing. I understand that predictive efficiency isn’t 
relevant to every discussion regarding strength of 
association. However, when predictive efficiency is 
relevant, “percent of variance accounted for” is 
wholly inappropriate for understanding the 
strength of association. That said, even for regres-
sion analyses not focused on prediction (i.e., 
causal research), interpreting r, instead of r2, is 
still the better way to understand strength of rela-
tionship. A correlation of .5 is 50% as strong as a 
perfect relationship. An interpretation of r2 would 
lead you to believe that it is only 25% as strong be-
cause X only accounts for 25% of the variance Y.

Conclusion: r2 may have a cool name and a 
definition that sounds useful, but it is not the best 
way to understand how well two variables are re-
lated to each other. Stick to statistics that remain 
in the original metric of measurement: r and b.
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Regression Analysis Summary

Regression analysis extends the concept of cor-
relation and applies it in new ways. A correlation 
coefficient simply describes the relationship be-
tween two variables. Like correlation, regression 
analysis describes the relationship between two 
variables. This description can be done with any of 
three different measures of association: r, r2, and 
b. Unlike correlation, regression analysis can be 
used to predict scores on the dependent variable 
based on scores on the independent variable. 
These predictions are made based on the associa-
tion between X and Y (and the means and stan-
dard deviations of both variables), and the accu-
racy of these predictions depends on the strength 
of the association between X and Y.
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5
Multiple Regression

Multiple fun!



Introduction

The previous chapters were an extensive dis-
course of bivariate correlation and bivariate linear 
regression. It was always one X variable and one Y 
variable. Many interesting research questions can 
be explored with just one independent variable 
and one dependent variable. But why stop there? 
Why not use, oh I don’t know, two independent 
variables? (Note: We’ll always have just one de-
pendent variable.) Maybe we would find a 
stronger relationship if we used two independent 
variables. Well, we can do that. And why stop at 
two? Why not use three? No problem. Or four? 
Can do. Or five? Slow down. Let’s just discuss two 
independent variables for now.

Multiple Regression Basics

Just for fun, let’s take a stroll down memory 
lane and examine the simple, bivariate linear re-
gression equation.

Y′� = a + bX

How do we turn this into a multiple regression 
equation, capable of using scores on two independ-
ent variables to predict Y? We’ll just have to add a 
second X to the equation. And, of course, this new 
variable will need it’s own regression weight.

Y′� = a + b1X1 + b2X2

Just like simple regression, there is just a single y-
intercept (a). So no change there. What’s different 
is that each independent variable gets its own re-
gression coefficient, which we will call a partial re-
gression coefficient. These partial regression coeffi-
cients weight each independent variable. Bigger 
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partial regression coefficients mean greater 
weights.

Let’s explore a multiple regression equation 
with a data example. A regression of Y on X1 and 
X2 results in the following equation: 
Y′� = −6 + 6.1X1 + 2.5X2. As you can see from this 
equation, the coefficients are -6 for a, 6.1 for b1, 
and 2.5 for b2. Listed below are the scores on X1 
and X2 for this sample. (I have scores on Y too, but 
we’ll keep those hidden for now.) When we apply 
each person’s scores to the regression equation, 
we compute predicted Y for each person.

Person X1 X2 Yʹ
John 7 10 61.7
Molly 9 10 73.9
Neil 9 20 98.9
Chris 5 16 64.5
Jordan 6 11 58.1

Thus, computing Y′� for each person in multiple re-
gression is just a simple algebraic exercise. It’s not 
much more complicated for equations with more 
than two independent variables. Just a little more 
algebra. Five independent variables? No problem. 
Just a regression equation with an a and five par-
tial regression coefficients. Plug in scores on the 
five variables and solve. No surprises.

Let’s talk about Y′� in multiple regression. As 
with simple regression, Y′� represents our predic-
tion of Y based on the scores on the various inde-
pendent variables. But this is multiple regression, 
so there’s a little more to it. Y′� represents a 
weighted average of the scores on X1 and X2 (along 
with some scaling stuff that’s not interesting). 
The idea of taking an average of the scores on the 
independent variables makes some sense as averag-
ing allows us to reduce the multiple independent 
variable scores down to a single score for each per-
son. Many variables (scores on all of the independ-
ent variables) become one variable (Y′�). Every per-
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son in our example dataset has two scores on the 
independent variables. Reducing these scores 
down to a single score for each person simplifies 
matters. But this isn’t a simple average score – it’s 
a weighted average. How are they weighted? The 
regression weights are chosen to obtain the best 
possible prediction of Y. There are an infinite num-
ber of possible weights that could be used but 
only one set that yields the best possible predic-
tion. We refer to these weights as optimal 
weights. The partial regression coefficients are the 
weights, and they reflect each variable’s unique re-
lationship with the dependent variable (and some 
other stuff we’ll discuss later). Other factors held 
constant, independent variables with stronger rela-
tionships with Y get greater partial regression coef-
ficients.

Remember the residual scores from the previ-
ous chapters? Residuals were the errors of predic-
tion; they were literally Y −Y′� for each person. We 
can compute residual scores in multiple regression 

too. Naturally, we’ll need to know scores on Y to 
do this. Good thing I have those lying around.

Person X1 X2 Yʹ Y (Y – Yʹ)
John 7 10 61.7 42 -19.7
Molly 9 10 73.9 80 6.1
Neil 9 20 98.9 99 0.1
Chris 5 16 64.5 62 -2.5
Jordan 6 11 58.1 75 16.9

Just as with simple regression, bigger residuals 
mean worse prediction. And there are a couple of 
big residuals here (John and Jordan).

How can we compute a correlation to describe 
the strength of the association between X1, X2, and 
Y? You can’t just correlate Y with X1 because that 
would only tell you how well X1 predicted Y. Same 
with correlating X2 with Y. We need to know how 
well X1 and X2, when combined, correlate with Y. 
So how do we do this? You already know how. You 
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may think you don’t, but you do. Here it is: We 
correlate Y with Y′�. Why does this work? Well, in 
the old days of simple regression Y′� was a linear 
transformation of X (recall that rXY = rYY′ � for sim-
ple regression). In multiple regression, we have 
multiple X variables, meaning that scores on Y′� are 
a weighted average of the scores on X1 and X2 for 
each person. Thus, it is Y′� that is actually being 
used to predict Y, and our correlation between all 
of the independent variables and Y is actually just 
a correlation between Y′� and Y.

What shall we call this correlation for multi-
ple regression? How about a multiple correlation? 
Sounds good. The symbol is R (capital R instead of 
lower case r from bivariate correlation days). R is 
just like r except that it ranges from 0 to 1. No 
negative values. For our above dataset, R is .78. 
It’s important to understand subscripts in the mul-
tiple correlation coefficient. For our example, the 
multiple correlation symbol is RYX1X2

. (By the way, 
is it now obvious that RYX1X2

= RYY′�?) For multiple 

correlations, always list the dependent variable 
(i.e., Y) first, followed by the independent vari-
ables. Sometimes people put a dot between the 
two, but there’s no reason to do that. Finally, dou-
ble subscripting can get a little tedious, so it’s not 
uncouth to write the previous multiple correlation 
as RY12.

So how are we going to graph this? In the days 
where we had one X and one Y, we graphed those 
two variables on a two dimensional graph. Here, 
we have three variables. Do we graph the scores 
on a three dimensional graph? Well, we could, but 
what about multiple regression with six X vari-
ables and a Y variable? A seven dimensional 
graph? You’ve already figured it out. Because we 
can compute the multiple correlation by correlat-
ing Y with Y′�, where Y′� was a weighted average of 
the scores on the various X variables, we’ll graph 
the results by graphing Y against Y′�. Figure 1 is a 
graph of the scores from the previous dataset.
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As you can see, a scatterplot in multiple regres-
sion is nothing more than a graph of Y against Y′� 
for each person. Check for yourself. I’ve also 
drawn the regression line so that you can see the 
accuracy of our predicted Y. As usual, Y −Y′� is the 
error of prediction. Notice that Neil has the small-
est error of prediction (0.1). And he’s closest to 

the line. Thus, evaluating strength of association 
is no different here than it was with simple regres-
sion.

Back to our multiple regression equation. 
Thought question: How should the independent 
variables be weighted? What factors should we 
consider in setting the regression weights? The 
simple answer is to weight them according to how 
strongly they are associated with Y. Stronger asso-
ciation leads to greater assigned weights. The 
slightly more complicated answer states that we 
also have to consider the standard deviations of 
the variables. So that’s two factors: association 
strength and standard deviation. That’s not so 
bad. I hate to say this at this point, but even the 
prediction quality part is more complicated than it 
appears. To explain why, we’ll take a slight detour.
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Multiple Regression with Two Uncorrelated Inde-
pendent Variables

Consider the following scenario. Two variables 
are used to predict Y. The bivariate correlations of 
X1 and X2 with Y are both .5. Because we have 
three variables (X1, X2, and Y), we must also con-
sider the correlation between X1 and X2, the two in-
dependent variables. In this scenario, we’ll set that 
correlation to 0.0. To summarize, X1 and X2 are 
both strongly related to Y and are unrelated to 
each other. We’ll explore two things: the multiple 
correlation and the regression equation. The re-
gression equation describes how these two vari-
ables are combined to predict Y, and the multiple 
correlation tells us how strongly they are related 
to Y. First, the multiple correlation. It’s easy to see 
how well each variable predicts Y on its own – the 
bivariate correlations tell us that (r = .5 for each in 
this case). We need a way to assess how well X1 
and X2 predict Y when the two variables are used 
in combination.

When the independent variables are uncorre-
lated with each other (i.e., rX1X2

= 0), the squared 
multiple correlation can be computed with the fol-
lowing equation.

R2
YX1X2

= r2
YX1

+ r2
YX2

Thus, the squared multiple correlation is the sim-
ple sum of the squared bivariate correlations. Fig-
ure 2 is a illustration of this principle.

Applying this equation to our example shows 
that RYX1X2

= .71 (R2
YX1X2

= .52 + .52 = .50; take the 
square root to obtain RYX1X2

). Now let’s think 
about these results. We can use either independ-
ent variable by itself and obtain a correlation of .5, 
or we can use both of them in combination and ob-
tain a multiple correlation of .71. That second vari-
able sounds pretty useful.

As for the regression equation, we’ll keep this 
simple and use standardized variables so that all 
of our variables have means of zero and variances 
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of one. For our present example, the regression 
equation is zY′� = .5zX1 + .5zX2. (If you’re wondering 
where the a went, there is no y-intercept in stan-
dardized regression.)

Multiple Regression with Two Correlated Inde-
pendent Variables

Everything gets worse when the independent 
variables are correlated with each other (i.e., 
rX1X2

≠ 0). So let’s all agree to make our lives easier 
and never use correlated independent variables. 
Deal? Well, maybe we promise a bit too much. Un-
less we’re conducting research with random as-
signment to conditions (i.e., a true experiment), 
independent variables have a nasty habit of being 
correlated. So we’re going to have to deal with it.

To compute the multiple correlation, we’ll 
need a new equation, something that takes into ac-
count the relationship between the two independ-
ent variables. And here it is:

R2
YX1X2

=
r2
YX1

+ r2
YX2

−2rYX1
⋅ rYX2

⋅ rX1X2

1 −r2
X1X2

Greater correlations between the independent vari-
ables diminish the usefulness of a second inde-

112

When the independent variables are uncorrelated the squared multiple 
correlation is the sum of the squared bivariate correlations.

FIGURE 2 Multiple Correlation with Uncorrelated Inde-
pendent Variables



pendent variable. A quick example will demon-
strate this principle. As before, each variable has a 
.5 correlation with Y (i.e., rYX1

= .5, rYX2
= .5). But 

this time the two independent variables are corre-
lated with each other: rX1X2

= .4. Inserting these val-
ues into the above equation (and taking the 
square root to obtain RYX1X2

) yields an RYX1X2
 of .60. 

Figure 3 illustrates the concept of multiple correla-
tion with correlated independent variables. Notice 
how the portion of Y predicted by both X1 and X2 
(green area) can be counted only once in the multi-
ple correlation.

Looking at these results logically, we can use 
either X1 or X2 to predict Y with a correlation of .5, 
or we can use X1 and X2 together and obtain a mul-
tiple correlation of .60. There isn’t as much added 
value in using that second variable when the inde-
pendent variables are related to each other. Com-
pare this R2 of .60 to the previous example with 
uncorrelated independent variables which yielded 
an R2 of .71. At some point, the second variable 

may not be worth using at all. If you’re bored on a 
rainy day and want to see the effects of intercorre-
lated independent variables, play around with the 
previous equation, varying the values of RYX1X2

. It’s 
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The squared multiple correlation is the sum of the squared bivariate 
correlations with the qualification that variance in Y related to both X1 
and X2 (green area) is counted only once.

FIGURE 3 Multiple Correlation with Correlated Inde-
pendent Variables
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actually kind of fun. (When you do this, be sure to 
consult McNemar’s triangular inequality to 
evaluate the permissibility of the values you use. 
I’ve caused myself some trouble by forgetting to 
do just that. Also, check out this other cool corre-
lation equation.)

Let’s pause here and rehash the principal prin-
ciple: other things being equal, lower correlations 
among independent variables are better; they al-
low for a better multiple correlation with Y. A 
rather extreme example of this principle is given 
in Figure 4. Note that in Figure 4, both X1 and X2 
have the same bivariate correlation with Y as in 
Figure 2. The obvious difference between the two 
is that in Figure 2, rX1X2

= 0; whereas, in Figure 4, 
rX1X2

 is strong (let’s just make up a number and say 
.8). Notice that far more of the area of Y is covered 
by the two independent variables in the first graph 
than in the second. Here’s another way to look at 
it: Given the strength of R2 obtained by use of X1 
alone, what does X2 offer in each case? In Figure 2, 

X2 contributes as much to R2 as X1, whereas in Fig-
ure 4, X2 offers next to nothing that we didn’t al-
ready have from X1. Yet another thought question: 
What would the Venn diagram look like if 
rX1X2

= 1.0?
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Highly correlated independent variables: Each variable correlates well 
with Y on its own. Because the independent variable are highly corre-
lated with each other, they do not combine to make a strong multiple 
correlation.

FIGURE 4 The Effect of Independent Variable Intercor-
relation on Multiple Correlation
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What about the regression equation? Sticking 
with our practice of making all things easier by us-
ing standardized data (all means equal zero, all 
variances equal one), the equation for a standard-
ized partial regression coefficient looks like this:

B1 =
rYX1

−rYX2
⋅ rX1X2

1 −r2
X1X2

Where:
B1 is the standardized partial regression coeffi-
cient for X1.

Thus, the partial regression coefficients are af-
fected by the same factors as the multiple correla-
tion. Increased correlations between the independ-
ent variables results in decreased partial regres-
sion coefficients. Using our example from this sec-
tion (rYX1

= .5, rYX2
= .5, rX1X2

= .4), the standardized 
regression equation is now zY′� = .36zX1 + .36zX2. 
Note the reduced regression coefficients as com-
pared to the uncorrelated independent variables ex-
ample where the standardized partial regression 

coefficients were equal to the bivariate correla-
tions. In the present case each variable is weighted 
less because each variable’s unique contribution to 
the prediction of Y is now less. Thus, greater corre-
lations between independent variables lead to re-
duced partial regression coefficients.

You may want to know how to compute the 
partial regression coefficients and y-intercept 
when dealing with unstandardized data (i.e., raw 
scores). It’s surprisingly easy. Of course, it’s even 
easier if you just let a computer do it for you. Just 
combine the previous equation with what we 
know from the bivariate regression chapter. The 
following formula computes the unstandardized 
partial regression coefficient for a two-
independent variable equation.

b1 =
rYX1

−rYX2
⋅ rX1X2

1 −r2
X1X2

⋅ SY

SX1
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Where:
b1 is the unstandardized partial regression coef-
ficient for 
X1.

(Note the symbols for regression coefficients: Bk 
for the standardized regression coefficient and bk 
the for unstandardized regression coefficient.)

As for the y-intercept in multiple regression, 
it’s equation bears a remarkable resemblance to 
the bivariate regression formula:

a = Ȳ −b1X̄1 −b2X̄2

Multiple Regression with Any Number of Inde-
pendent Variables

When multiple regression is used with three 
or more independent variables the principles are 
all the same, just mathematically more compli-
cated. Computers make great tools for those analy-
ses. Actually, they make great tools for simple re-

gression too. The regression equation look like 
this:

Y′� = a + b1X1 + b2X2 + …bkXk

Where:
bk is the partial regression coefficient for Xk.

Any number of variables you want. Same general 
form of the regression equation. What about the 
multiple correlation and the equations for the re-
gression coefficients and y-intercept? Remember 
those computers we talked about? They sure come 
in handy.

There is one question you may be asking your-
self. And that is, “Does the order of the independ-
ent variables in a regression equation matter?” 
That is, does changing the order of the variables in 
the regression equation change the regression coef-
ficients for those variables? Let’s answer that ques-
tion by reminding ourselves that the regression 
weights are assigned to the independent variables 
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so as to maximize the prediction of Y. Other 
things being equal, the best predictors are as-
signed the greatest weights. Knowing this, why 
would the order in which the variables are listed 
affect the weights? It wouldn’t. So the answer to 
the original question is no. Y regressed on X1, X2, 
and X3 (in that order) will result in the same re-
gression weights assigned to those variables as 
will Y regressed on X3, X1, and X2 (in that order).

Significance Tests in Multiple Regression

Significance testing in multiple regression is 
similar to significance testing in simple regression: 
We can test R2 with an F test, and we can test the 
regression coefficients with a t test. We have multi-
ple independent variables, each with their own re-
gression coefficient, so we’ll have t tests for each 
of these regression coefficients. These multiple t 
tests allow us to see which independent variables 
have a significant association with the dependent 
variable. We’ll explore this issue further in future 

chapters. As for actually computing the the t test, 
below is the equation for the two-independent 
variable situation (set up for X1); any more vari-
ables and it’s too complicated to deal with by 
hand. And that’s why we have computers.

t = b1

SY

SX

1 −R2
YX1X2

(1 −r2
X1X2) ⋅ (N −k −1)

As for the F test of R2, almost everything is 
the same as with the days of simple regression. 
It’s still a test of how well the independent vari-
ables, combined as per the regression equation, 
predict Y. The equation for the F test is the same. 
I’ll list it again, customized with multiple regres-
sion symbolology, just for the memories.

F =
R2

YX1…Xk
/k

(1 −R2
YX1…Xk

)/(N −k −1)

As with the F test of R2 in simple regression, de-
grees of freedom are k, N −k −1.
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Significance Tests for Changes in R2

There is another significance test worth dis-
cussing in multiple regression. It’s a derivative of 
the F test of R2. Rather than a test of whether R2 
is significant, this test determines whether the 
change in R2 due to the addition of an independ-
ent variable to the model is significant. This test is 
for a specific situation and won’t occur on acci-
dent. The situation is as follows: We have a regres-
sion equation with a certain number of independ-
ent variables (we’ll use just one for this example). 
Having conducted our regression analysis on this 
model (Y regressed on X1), we know R2, the F test 
of R2, the regression equation, and the t tests of 
the regression coefficients. In short, we know eve-
rything about this model. But then we get the idea 
of adding a new variable (or two or twenty, but 
let’s just say one for now) to the model. Now 
we’re regressing Y on X1 and X2. We have two ques-
tions. How much did R2 change, and is this 
change significant? Answering the first question is 

easy; we simply compute the difference between 
the R2 from the bigger model and the R2 from the 
smaller model (in this case, ΔR2 = R2

YX1X2
−R2

YX1
). If 

the addition of X2 to the model did not raise R2 at 
all, then ΔR2 = 0. If the addition of X2 to the 
model did raise R2, then ΔR2 will be some number 
greater than zero. This change in R2 can be defined 
as (a) the percent of variance in Y explained by the 
addition of X2 to the model, (b) the percent of vari-
ance in Y that is explained by X2 beyond what was 
already explained by X1, and (c) the unique contri-
bution of X2 to the prediction of Y. All of these defi-
nitions are pretty much the same, but sometimes 
one is more helpful than the other. Figure 5 is an 
illustration of ΔR2.

Now that we know how much R2 changed, we 
need to know if this change is significant. There 
are bunches of variables we could add to the equa-
tion that would raise R2 by a trivial amount (i.e., 
where the change in R2 is so small that it could be 
expected to be purely a product of sampling er-
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ror). So we’ll test whether ΔR2 is big enough in 
our sample to allow us to conclude that the 
change in R2 in the population is greater than 

zero. The equation to test for this is a sort of an ex-
panded version of the F test of R2.

F =
(R2

big −R2
small)/(kbig −ksmall)

(1 −R2
big )/(N −kbig −1)

Where:
R2

big  is the R2 from the larger model (i.e., the re-
gression equation with more independent vari-
ables).
R2

small is the R2 from the smaller model (i.e., 
the regression equation with fewer independ-
ent variables).
kbig  is the number of independent variables in 
the larger model.
ksmall is the number of independent variables 
in the larger model.
kbig −ksmall, N −kbig −1 are the degrees of free-
dom.

Aside from the formulae, how is this ΔR2 F 
test different from the the standard F test of R2? 
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Computing the change in R2 involves conducting two regression analy-
ses. The first is the regression of Y on X1 (yellow area). The second is 
the regression of Y on X1 and X2 (yellow plus blue area). The difference 
between the two R2 values is ΔR2 (blue area).

FIGURE 5 ∆R2 Illustrated



The answer is found in what they are testing. The 
standard F test of R2 is used to test how well the 
collection of variables in the regression equation, 
with their assigned regression weights, are associ-
ated with Y in the population (i.e., how well they 
predict Y). To use an example with four independ-
ent variables, it’s a test of whether R2

YX1X2X3X4
 is 

greater than zero in the population. In contrast, 
the ΔR2 F test is a test of whether the increase in 
R2 associated with adding variables to an equation 
is greater than zero in the population. If our four-
variable example is compared to a smaller model 
with only X1 and X2, it’s a test of whether 
R2

YX1X2X3X4
−R2

YX1X2
 is greater than zero in the popula-

tion. It’s easy to confuse these two tests, so be 
careful. Just remember what you want to test and 
choose accordingly.

One last note on the ΔR2 F test. If only one in-
dependent variable is added to the model, the ΔR2 
F test yields the same result at the t test for the 
partial regression coefficient associated with that 

variable (assuming a two-tailed t test). Not only is 
this nugget of information a potential labor saving 
shortcut, it also reveals what is going on with the t 
test and the partial regression coefficient: They are 
both based on that variable’s unique contribution 
to the prediction of Y.

Closing Thoughts on Multiple Regression

We have discussed a few concepts in this chap-
ters. First, we can use any number of variables to 
predict Y. Scores on these variables are combined 
to form a weighted average. We call scores formed 
by this weighted average predicted Y (i.e., Y′�). The 
regression coefficients, now called partial regres-
sion coefficients, are the weights applied to the 
various independent variables to get the best possi-
ble prediction of Y. The multiple correlation de-
scribes how well this combination of independent 
variables predicts Y. The magnitude of the multi-
ple correlation depends on how well the individual 
variables predict Y as well as the relationship be-
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tween the independent variables. The multiple cor-
relation is identical to the correlation between Y′� 
and Y. Finally, the partial regression coefficient for 
a given variable is a function of that variable’s cor-
relation with Y as well as that variable’s correla-
tion with the other independent variables (and 
some relatively uninteresting standard deviation 
stuff).

Let’s see, I think that about wraps it up for 
multiple regression. Wait, what about assump-
tions? I have good news. The assumptions for mul-
tiple regression are the same as they were for sim-
ple regression. And I already showed you how to 
check for violations of the linearity and homogene-
ity of variance assumptions in a way that works 
for simple and multiple regression (i.e., the resid-
ual plot is a graph of residual scores on the y-axis 
and Y′� scores on the x-axis). The other assump-
tions apply too. No graphs to check for them, 
though.

One last multiple regression issue concerns 
the partial regression coefficient. How do we inter-
pret the meaning of a partial regression coeffi-
cient? Determining the meaning of a partial regres-
sion coefficient is similar to interpreting a regres-
sion coefficient in simple regression. In the case of 
simple regression, b indicated the expected change 
in Y given a one point change in X. In multiple re-
gression, b1 indicates the expected change in Y 
given a one point change in X1, holding the other X 
variables constant. It’s that last part that’s new. It’s 
also that last part that can cause problems. If X1 
and X2 are correlated variables (e.g., height and 
weight), then it may not be possible to manipulate 
X1 without also having scores on X2 change as 
well. Thus, the net change in Y may be more than 
what b1 indicates. Not so bad, you say? Well, what 
if b2 is negative? The change in Y you expect to ob-
tain by increasing X1 is offset by a decrease in Y of 
b2 for every point X2 changes. Your actual increase 
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in Y may turn out to be a whole lot less than what 
an examination of b1 led you to believe.

What’s going on in Figure 6, you ask? Oh, just 
another way to think about multiple correlation us-
ing Venn diagrams. Nothing new here. Just pulling 
a few concepts from our first discussion of regres-
sion analysis (regression and residual sums of 
squares) to illustrate the multiple correlation.
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As with simple regression, the variability of Y (represented in the dia-
gram as the total area of Y; statistically it is Σ(Y −Ȳ )2, the sum of 
squares of Y) can be divided into a residual component (gray area) 
and a regression component (yellow area). Dividing each these terms 
by Σ(Y −Ȳ )2 yields 1 −R2 for the residual component (gray) and R2 for 
the regression component (yellow).

FIGURE 6 Gratuitous Use of Venn Diagrams to Illus-
trate Regression Concepts
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6 Real magic.

Partial & Semipartial 
Correlation



Overview

Determining the causes of a given variable 
(e.g., success in school) is tricky business. The rea-
son for this difficulty is that there are an infinite 
number of potential causes. We need a way to 
eliminate the irrelevant ones so that we can iden-
tify and assess the impact of the actual causes. 
This chapter addresses two statistical methods for 
controlling for irrelevant variables, something that 
helps both causal and predictive research.

There are many ways to control for the influ-
ence of a variable. The best method is to randomly 
assign people to groups. With random assign-
ment, the groups are likely close to equal on every 
conceivable variable, measured or unmeasured. 
(Random assignment to groups is one of the key 
features of the true experiment. The other is the 
exercise of experimental control, where there ex-
perimenter treats the groups the same except for 
the variables the experimenter want to manipu-

late. True experiments are great because if done 
well, they solve so many of the problems we face 
with causal research.)

If random assignment isn’t possible, and it fre-
quently isn’t (Randomly assign people to various 
heights?), there are other ways to control for vari-
ables. One method is matching, which involves 
matching subjects on one or more variables. A 
strict matching method would work as follows: for 
every person with a low score in one group, there 
is a person with the same low score on that vari-
able in the other group (cases without matching 
scores are removed). Thus, whatever effect that 
variable (i.e., the matched variable) has on the de-
pendent variable, the effects are the same for both 
groups (e.g., matching smokers and non smokers 
on family history for cancer). The problem with 
matching as a means of control is that only the 
matched variables are controlled. It is always possi-
ble (highly probable, actually) that an unmatched 
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variable is the actual cause of the dependent vari-
able.

Another method of controlling for the effects 
of a variable is with statistical control. Statistical 
control is a bit like matching, but with a lot less 
hassle. With statistical control all of the data is 
used, but the controlling is done with some statis-
tical magic. Statistical control can be done with a 
variety of methods: partial correlation, semipartial 
correlation, analysis of covariance (ANCOVA), 
and more. We’ll discuss partial and semipartial cor-
relation in this chapter. ANCOVA will be dis-
cussed in Chapter 11.

Partial and semipartial correlation may just be 
the coolest thing ever invented in the entire 
world. With partial and semipartial correlation, we 
can examine the relationship between two vari-
ables while controlling for the relationship they 
have with a third variable. Controlling for the relation-
ship with means removing any association with this 

third variable. Stated yet another way, we can as-
sess the relationship between two variables inde-
pendent from the effects of a third variable.

Statistical Control Example

An example may help illustrate the nature of 
statistical control. Let’s say we want to investigate 
whether grade school student achievement test 
scores are associated with the time a student 
spends one-on-one with a teacher or teaching as-
sistant. We think that classes with more teaching 
assistants are able to give more one-on-one time 
with students, leading to improvements in student 
performance. We sample students from classes in 
a couple of school districts, measure their scores 
on both variables, compute a bivariate correlation, 
and find a strong correlation between the two vari-
ables. Sure enough, achievement test scores are 
positively associated with solo instruction time 
with a teacher or teaching assistant (rXY = .55). 
(Important note: All numbers in this example are 
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fictitious. No real research was consulted in the 
course of creating this example. It’s more fun this 
way.)

Before we start making recommendations to 
people, school boards, state agencies, people on 
the internet named DrWhoSuperfan9000, etc., it 
occurs to us that there may be other variables at 
work. We consider the variable of student intelli-
gence. Of course, we know that there is a relation-
ship between student intelligence and student 
achievement (rZY = .70). Could intelligence also be 
associated with the number of teaching assistants 
per class, which then makes possible more solo in-
struction time? There is no reason to think it is, 
but students were not randomly assigned to condi-
tion, so we can’t rule it out. It turns out that one 
of the school districts is located next to a major 
university and many of their students are children 
of the university professors. Sure enough, this 
same school district also has a policy of encourag-
ing parents to volunteer as teaching assistants. We 

compute the correlation between student intelli-
gence (measured at the start of the year) and solo 
instruction time and find a correlation of .60.

To summarize the situation at this point, more 
solo instruction time is associated with greater stu-
dent achievement test scores (rXY = .55). But 
greater intelligence is also associated with greater 
achievement test scores (rZY = .70) and with more 
one-on-one instruction time (rXZ = .60). We can’t 
just ignore these intelligence test correlations. If 
only we had randomly assigned the students to 
classrooms with varying numbers of teaching assis-
tants, then the intelligence-solo instruction time 
correlation would be zero (or close to it) and 
would not be a problem. We need to remove the 
relationship that intelligence has with our vari-
ables. We could try matching, but that’s a lot of 
trouble and will cost us data (unmatchable cases 
will have to be removed). What we’ll do is statisti-
cally remove any association intelligence has with 
the other two variables. Once that is done, we’ll re-
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assess the relationship between achievement and 
number of assistants per class.

So that’s the setup. How do we statistically 
control for a variable? That is, how do we remove 
any association a variable has with another vari-
able? You actually already know the answer. Re-
member the definition of residual scores? It’s the 
part of Y unrelated to X. Are you seeing it? To re-
move any association between Y and X, regress Y 
on X and compute residual scores for everyone in 
the dataset. These residual scores are the part of Y 
unrelated to X. Scores on Y have been divided into 
two parts: a part related to X (predicted Y) and a 
part unrelated to X (residual). There is, very liter-
ally, less of Y in the residual scores. If you com-
pute the variance of scores on Y and compute the 
variance of residual scores you will find that the re-
sidual scores have less variance. Any association Y 
had with X has been removed from Y. That’s the 
genius of statistical control. There are actually a 

few ways to do it. We’ll discuss two of them in 
this chapter. First up, partial correlation.

Partial Correlation

We’ll explain partial correlation using the sim-
plest data scenario possible, three variables. Y is 
the dependent variable. X is the independent vari-
able. Z is the control variable. A control variable is 
the variable, well, that you want to control. We 
want to remove any association the other variables 
have with the control variable. To reflect back on 
our example, intelligence is the control variable. 
The goal of the study is to see if achievement test 
scores (Y) are related the solo instruction time 
(X). We want to know this correlation independ-
ent of the relationship that each variable has with 
intelligence. A partial correlation is just that – a 
correlation between X and Y independent of with 
any association that either variable has with Z.
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Computing a partial correlation is just a few 
easy steps. Because we want to remove the associa-
tion that both X and Y have with Z, we need to re-
sidualize both variables on Z. Yes, I made up a 
new word.

Residualize (verb): To regress a variable on an-
other variable and compute the residual scores 
for all people in the dataset.

So the steps are as follows: (a) regress Y on Z and 
compute the residual scores, (b) regress X on Z 
and compute the residual scores, and (c) correlate 
the residual scores. When we correlate the resid-
ual scores, we are correlating the part of Y unre-
lated to Z with the part of X unrelated to Z. Thus, 
the resultant correlation, called a partial correla-
tion, reflects the relationship between X and Y in-
dependent of Z. The symbol for partial correlation 
is rYX.Z. Note that this looks like a multiple correla-
tion symbol with the addition of a dot. Everything 
listed after the dot is a control variable.

An illustration of the squared partial correla-
tion is shown in Figure 1 and Figure 2. As always, 
the percent of Y covered by the independent vari-
able(s) represents the squared correlation. Note 
how in Figure 2 the removal of any association 
with Z leads to very literally less of X and Y. Both 
variables have reduced variance. All that is left for 
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each is the part that is unrelated to Z (i.e., the re-
sidual from the regressions upon Z). The overlap 
between the remaining parts of X and Y indicates 
the relationship between the two.

Back to our example. The partial correlation 
between Y and X, controlling for Z, is .23. This is 

considerably less than the zero-order bivariate cor-
relation between X and Y (rXY = .55). To summa-
rize, the correlation between achievement test 
scores and solo instruction time appears to be 
strong, but after controlling for student intelli-
gence, the association is rather weak.

A comparison of Figure 1 and Figure 2 illus-
trates the difference between a multiple correla-
tion between Y, X, and Z (i.e., RYXZ) and a partial 
correlation between Y and X, controlling for Z (i.e., 
rYX.Z). The former describes the association Y has 
with Z and X. The latter describes the association 
between X and Y independent of any relationship 
with Z.

A quick word on partial correlation terminol-
ogy. A correlation where we do not control for any 
variables is called a zero-order correlation. A corre-
lation where we control for one variable is called a 
first-order correlation. You can probably figure out 
the rest. This zero-order, first-order terminology 
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FIGURE 2 Partial Correlation Between Y and X Control-
ling for Z
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also applies to our next item, the semipartial corre-
lation.

Semipartial Correlation

The other kind of correlation involved in statis-
tical control is the semipartial correlation (also 
called a part correlation, but that’s a terrible 
name). The semipartial correlation is similar to 
the partial correlation. The only difference is that 
with the semipartial correlation, the association 
with the control variable is removed from the inde-
pendent variable only. In a sense, the semipartial 
correlation is sort of halfway to a partial correla-
tion. Maybe that’s how it got its name.

The steps to compute a semipartial correlation 
are as follows: (a) regress X on Z and compute the 
residual scores and (b) correlate with Y with the 
residualized X. That’s it. Notice that only X is re-
sidualized; Y is untouched. Thus, the part of X un-

related to Z is correlated with Y. An illustration of 
the semipartial correlation is given in Figure 3.

How does the semipartial correlation compare 
to the partial correlation? Semipartial correlations 
are always less than or equal to partial correla-
tions (assuming correlations greater than zero). In 
our example, where the partial correlation is .23, 
the semipartial correlation between X and Y, con-
trolling for Z, is .16. Thus, the semipartial is less 
than the partial correlation. This reduction in mag-
nitude is demonstrated in the diagrams of each. 
As a reminder, the magnitude of a squared correla-
tion in a Venn diagram is indicated by the percent 
of area of Y (a visual representation of the variance 
of Y) that is covered by the independent vari-
able(s). Comparing the same data for partial and 
semipartial correlations (e.g., Figure 2 and Figure 
3), there is the same amount of X area covering Y. 
But with the partial correlation, the total area of Y 
has been reduced; there is less of Y that can be ex-
plained, but we’re explaining the same absolute 
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amount. Thus, the ratio of explained variance to to-
tal variance (i.e., r2) is greater for the partial corre-
lation. 

And finally, the symbol for the semipartial cor-
relation is rY(X.Z), and is similar to the partial corre-

lation symbol; the only difference are the parenthe-
ses around the independent and control variables.

Computing Partial and Semipartial Correlations 
with Bivariate Correlations

As much fun as residualizing is, and it’s pretty 
great, there are other ways to compute partial and 
semipartial correlations. Both the partial and semi-
partial correlations can be computed with bivari-
ate correlations. The equations below are designed 
for the three variable case. If you have more than 
three variables, you better learn to love residualiz-
ing.

The partial correlation between X and Y, con-
trolling for Z, can be computed with the following 
equation.

rYX.Z = rYX −rYZ ⋅ rXZ

1 −r2
YZ 1 −r2

XZ
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FIGURE 3 Semipartial Correlation Between Y and X 
Controlling for Z



The semipartial correlation between X and Y, 
controlling for Z, can be computed with the follow-
ing equation.

rY(X.Z) = rYX −rYZ ⋅ rXZ

1 −r2
XZ

That last equation, the one for the semipartial cor-
relation looks awfully familiar. I know we’ve seen 
it before. Well, not exactly it, but something very 
close. What was it? Oh yes, the equation for the 
standardized partial regression coefficient. In the 
event you forgot, I’ll list it below (customized for 
our variables names of Y, X, and Z).

BX = rYX −rYZ ⋅ rXZ

1 −r2
XZ

So the difference between the standardized partial 
regression coefficient and the semipartial correla-
tion is just a square root in the denominator. This 
similarity offers some insight into the nature of a 
partial regression coefficient. It’s like we’re staring 

into its soul. Both the semipartial correlation and 
the partial regression coefficient reflect the unique 
relationship (the relationship apart from the other 
independent variables) that a given independent 
variable has with Y.

Think we’re done computing partial and semi-
partial correlations? Not a chance.

Computing Squared Partial and Semipartial Cor-
relations with Squared Correlations

Yet another way to compute partial and semi-
partial correlations (squared partial and semipar-
tial correlations in this case) involves using 
squared bivariate and multiple correlations. We’ll 
call this method the ΔR2 method for reasons that 
will be obvious in about three lines.

The ΔR2 method for computing a squared par-
tial correlation is listed below.
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r2
YX.Z = R2

YXZ −R2
YZ

1 −R2
YZ

And the ΔR2 method for computing a squared 
semipartial correlation is listed below.

r2
Y(X.Z) = R2

YXZ −R2
YZ

As a reminder of the obvious, these equations 
yield the squared partial and semipartial correla-
tions. One must take the square root to obtain the 
un-squared correlations. A word of caution: Com-
puted any other way, partial and semipartial corre-
lations can be positive or negative. With the ΔR2 
method, you’ll never know if the partial correla-
tion is positive or negative. To err on the side of 
caution, avoid using this method if any of the 
zero-order bivariate correlations are negative.

Did you notice something interesting about 
computing the semipartial correlation as a differ-
ence between two R2 values? Every time we com-
pute a change in R2 associated with adding inde-

pendent variables to a regression equation, we’re 
computing a squared semipartial correlation. The 
semipartial correlation reflects a variable’s unique 
relationship with the dependent variable after tak-
ing all of the other independent variables into ac-
count. So all of the ΔR2 stuff in the previous chap-
ter was also a squared semipartial correlation. The 
independent variables in the first regression equa-
tion are the control variables (i.e., Z) in the semi-
partial correlation, and the added variables in the 
second regression equation are the independent 
variables (i.e., X) in the semipartial correlation.

Multiple Partial and Semipartial Correlations

All of the examples to this point have involved 
three variables: the dependent variable, the inde-
pendent variable, and the control variable. What if 
we want to control for multiple variables (Z1 to 
Zk)? Believe it or not, the process is the same as be-
fore. We can use the residualizing method or the 
ΔR2 method. Because it’s more interesting, let’s 
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go with the residualizing method. First, we residu-
alize Y on Z1 to Zk. Because the control variables 
are independent variables in this regression equa-
tion, we can have as many as we want – it’s just a 
multiple regression equation. The residual scores 
here are the part of Y unrelated to all of the con-
trol variables. The next step is to residualize X on 
the control variables. Same concept. Now we have 
the part of X unrelated to the control variables. Fi-
nally, we correlate residualized Y with residualized 
X. All very easy and, this process can accommo-
date any number of control variables. Same proce-
dure for semipartial correlations except we don’t 
residualize Y.

OK, you say, what about multiple independent 
variables? Well, you can residualize, but that gets 
a little complicated. It may be better to just use 
the ΔR2 methods to compute the squared partial 
and semipartial correlations. That method, in case 
you forgot, is simple enough. Just run two regres-
sion equations. The first is Y on all of the control 

variables. The second is Y on the control variables 
and all of the independent variables. Then use the 
appropriate ΔR2 formula from before to compute 
the squared partial correlation or squared semipar-
tial correlation. As an example, consider the fol-
lowing partial correlation scenario: We want to cor-
relate X1, X2, and X3 with Y controlling for Z1 and 
Z2. We can compute r2

YX1X2X3.Z1Z2
 with just two re-

gression analyses. The first is a regression of Y on 
Z1 and Z2. The second is a regression of Y on Z1, Z2, 
X1, X2, and X3. Take the R2 values from these regres-
sions and plug into the partial or semipartial ΔR2 
equation.

Significance Testing of Partial and Semipartial 
Correlations

Since the ΔR2 method showed us that every 
change in R2 is a squared semipartial correlation, 
and we already have a significance test for ΔR2 
(which we called the ΔR2 F test), care to guess 
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what significance test we’ll use for the semipartial 
correlation? If you guessed the ΔR2 F test, you are 
correct. We’ll list it again for old time’s sake, only 
with terminology customized for the semipartial 
correlation.

F = (R2
av −R2

cv)/(kav −kcv)
(1 −R2av)/(N −kav −1)

Where:
R2

av and kav are from the regression of Y on all 
of the variables.
R2

cv and kcv are from the regression of Y on only 
the control variables.

Problems with Statistical Control

Statistical control is a powerful and amazing 
concept. Some might even say a magical concept. 
It sounds like the cure for all of our methodologi-
cal problems. Can’t control for a variable with a 
true experiment though randomization? No prob-
lem, just compute a partial or semipartial correla-

tion and remove its effects. However, before we 
start thinking of statistical control as the solution 
for all of the limitations we face, we must note a 
few serious issues with it. The major issue, called 
the omitted variable problem, is that we didn’t 
control for all of the relevant variables. It may not 
have even occurred to us that we should have con-
trolled for a given variable; thus, we didn’t meas-
ure it. And we can’t control for a variable if we 
don’t measure the variable. So if you’ve finished 
your study and you didn’t measure some variable 
that you now want to control, you’re out of luck. 
Either repeat the study or give up on the study.

To make matters worse, we also have the re-
gression assumption that variables are measured 
without error. Thus, even if you measure this vari-
able so that you can control for it but have a poor 
measure of the variable, you didn’t really control 
for it. You may think you did, but you didn’t. You 
controlled for some variable that’s only weakly re-
lated to the real variable. That doesn’t cut it. 
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Thus, the assumption is that you have controlled 
for all relevant variables – relevant variables that 
you measured poorly were not really controlled.

The net result of this omitted control variable 
problem is that if we didn’t measure the control 
variable, or if we use a poor measure of it, then 
the partial or semipartial correlation doesn’t really 
reflect the association between independent and 
dependent variables free from the control vari-
ables. We didn’t remove as much variance from 
the independent and/or dependent variables via re-
sidualizing as we should have, yielding in a result 
that indicates a stronger effect for the independent 
variable than is true.

The opposite problem with statistical control 
is that it is possible to control too much, making 
the independent variable appear to have a weaker 
relationship with the dependent variable than is 
true. This problem occurs when the control vari-
able is correlated with the independent variable, 

and, although not an actual cause of the depend-
ent variable, it is correlated with the dependent 
variable as well. In essence, this is the opposite of 
the omitted variable problem (but doesn’t have a 
cool name like, say, the included irrelevant vari-
able problem). Researchers often cause this prob-
lem in an attempt to avoid the omitted variable 
problem by controlling for every variable that 
might possibly be relevant. (Researcher: “Hmmm, 
I’m not sure if this variable should be controlled, 
but better safe than sorry. I’m including it.”) The 
moral of the story is that one shouldn’t include ir-
relevant control variables in an attempt to make a 
pre-emptive defense against charges that a rele-
vant variable was left uncontrolled. Such a move 
will only yield inaccurate conclusions.

In summary of the last few paragraphs, statisti-
cal control will not yield the correct answers if (a) 
a relevant control variable is omitted, (b) a rele-
vant control variable isn’t measured properly, or 
(c) an irrelevant variable (that is correlated with 
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the other variables) is included as a control vari-
able. The first two problems results in an underad-
justment of the zero-order correlation, making the 
partial or semipartial correlation greater than it 
should be. The latter problem results in an overad-
justment of the correlation, making the partial or 
semipartial correlation weaker than it should be.

(Another irritation with the entire concept of 
statistical control is that it can be difficult to con-
vince people that you did it right. Let’s say you did 
your homework and controlled for all of the vari-
ables that you should have. You still have prob-
lems if a reviewer says, “Sure you controlled for 
variables A, B, and C, but you forgot about D.” 
Now you have to argue with this person as to 
whether variable D really is relevant and needs to 
be controlled. Either win the argument or repeat 
the study with D controlled as well – even if con-
trolling for variable D results in the included irrele-
vant variable problem.)

Final Thoughts on Statistical Control

In conclusion, statistical control, although 
cool beyond words on a technical level, is not with-
out problems. The long and short of it is that if 
you want to attempt to establish causality with a 
minimum of problems, conduct a true experiment. 
Use statistical control only when a true experi-
ment is not possible. The unfortunate reality is 
that true experiments are not possible in many 
situations (e.g., smoking research). What does all 
of this mean? It means there are no easy answers. 
Maybe that’s the real lesson here. And finally, re-
gardless of the experimental design (i.e., true ex-
periment, quasi experiment, non experiment), you 
should start with a well-reasoned theory or be pre-
pared to face a tidal wave of questions about the 
integrity of your conclusions. Actually, you’ll face 
a tidal wave of questions either way, but you’ll 
have better answers if you started with a well-
reasoned theory.
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One more note. Statistical control isn’t just 
for causal research. It’s also used to determine a 
variable’s unique predictive power (i.e., how well 
a given variable predicts after controlling for other 
predictors). This sort of research question is com-
mon in research regarding the prediction of school 
and job performance. A typical research question 
concerns whether a given predictor has any predic-
tive power beyond what is obtained from some 
other predictor (e.g., Do interviews predict job per-
formance beyond what we can already predict with 
an intelligence test?). It’s one thing to say that my 
test predicts job performance. It’s far more impres-
sive to say that my test predicts job performance 
even after controlling for other commonly used 
predictors.
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7 In the world of prediction, 
regression is a powerful 
ally.

Prediction



Overview

Let us return to the concepts of predictive and 
explanatory research, a topic originally covered in 
the first chapter. Explanatory research is about de-
termining causality whereas predictive research is 
about predicting something. The great thing about 
predictive research is that the results are right 
there in front of you. Unlike explanatory research, 
there are no hidden third variables whose exis-
tence, once revealed, force you to completely rein-
terpret your results and throw your conclusions 
out of the window. The beauty of predictive re-
search is that a variable or set of variables predicts 
the criterion as well as R2 says it predicts. Leave 
out important variables? Not a problem as long as 
the R2 you obtained from the predictors you actu-
ally used is satisfactory. Measure the wrong vari-
able? Again, not a problem if the R2 is satisfactory. 

Nothing in the preceding paragraph should be 
taken as an excuse to measure the wrong vari-

ables. Prediction will be better if you measure the 
right variables. However, in spite of any errors 
made in the choice of predictor variables, if R2 is 
strong enough for the set of variables actually 
measured then you have successfully predicted the 
criterion.

A set of variables predicts as well as the R2 
says it does. No room for opinion or second-
guessing. All very simple. Well, I lied a little bit. 
It's not quite that simple. A set of predictors, 
weighted as they are in a regression equation, pre-
dicts as well as the multiple correlation says it 
does in that sample, but they won’t predict that well 
when applied to future samples. More on this issue 
later.

Prediction Efficiency

In our initial discussion of multiple regres-
sion, we noted that we can improve the prediction 
of the dependent variable by using more predic-
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tors (assuming that the predictors have a non-zero 
semipartial correlation with the dependent vari-
able). Now here’s an additional principle: Some of 
these predictors won’t work very well, which is to 
say that they won’t contribute much to the predic-
tion of Y. Thinking in terms of ΔR2, the addition 
or removal of a weak predictor to the regression 
equation results in a small change in R2. To settle 
the “How small is too small?” issue, we’ll just use 
a significance test of ΔR2. To summarize: A weak 
predictor will contribute a small, nonsignificant 
amount (i.e., ΔR2) to the prediction of Y. To re-
fresh your memory, the significance test of ΔR2 is 
repeated below.

F =
(R2

big −R2
small)/(kbig −ksmall)

(1 −R2
big )/(N −kbig −1)

Where:
big and small refer to the model with greater 
and fewer predictors, respectively.

Should we keep a predictor that does not sig-
nificantly contribute to the prediction of Y? A per-
son might answer that any increase in R2, even if 
small and nonsignificant, is worth having. That 
person would be wrong. A small, nonsignificant 
contribution to the prediction of Y in a given sam-
ple is extremely unlikely to be found in subse-
quent samples. Long story short, a nonsignificant 
increase in R2 is a phantom increase – one whose 
alleged benefit will never be realized.

The previous paragraph addressed a topic we 
discussed many chapters ago: regression equa-
tions are frequently used to make predictions in fu-
ture samples. A regression equation that was de-
veloped on one sample can be used to make predic-
tions in other samples. Although it’s good to 
know how well a regression equation predicts in 
the sample in which it was developed, what really 
matters is how well it predicts when used in fu-
ture samples. And predictors that don’t predict 
well in the initial sample have a bad habit of pre-
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dicting even worse when that regression equation 
is applied to future samples.

Predictor Selection Techniques

Now that we’ve established that there is little 
benefit to keeping predictors that aren’t doing 
much predicting, let’s discuss how we go about de-
veloping a regression equation that includes only 
the useful predictors. And “useful” will be defined 
as contributing a significant amount to the predic-
tion of Y (i.e., a significant ΔR2).

Let’s get the bad ideas out of the way. We 
could choose our predictors by examining the bi-
variate correlations between each predictor and 
the criterion variable. The problem with this ap-
proach is that it looks at each predictor in isola-
tion and doesn’t take into account the relation-
ships among the predictors when they are used to-
gether (i.e., in a multiple regression equation). We 
can illustrate this problem two ways. First, con-

sider Figure 1. Either predictor predicts Y well 
enough on its own, but once one predictor (e.g., 
X1) is in the regression equation, the second one 
(e.g., X2) will contribute very little to the predic-
tion of Y. A second way to illustrate the problem 
of using bivariate correlations to determine 
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whether a given predictor is useful in a multiple re-
gression equation is to consider the equation for a 
partial regression coefficient. To simplify matters, 
we will once again use the formula for a standard-
ized partial regression coefficient (listed below).

B1 =
rYX1

−rYX2
⋅ rX1X2

1 −r2
X1X2

Note that as the correlation between X1 and X2 in-
creases, the magnitude of the partial regression co-
efficient for X1 decreases. At a certain point, the 
strength of the correlation between X1 and X2 re-
sults in a partial regression coefficient (for one or 
both variables) so low as to be useless. (To tie this 
into ΔR2, recall that the significance test for the 
change in R2 associated with adding a certain pre-
dictor to a regression equation is the same as the 
significance test of the partial regression coeffi-
cient.) Once again, this information would not be 
obtained by a simple inspection of the bivariate 
correlations.

So what’s a better way to do this? The lesson 
from before is that you can’t use a bivariate corre-
lation to address issues in a multiple regression 
equation. It sounds like the smart way to do this 
would be to throw all of the predictors into a re-
gression equation and see what works and what 
doesn’t. This is actually a pretty good method, al-
though it will help to conduct it in a systematic 
fashion.

Here is a systematic way to do what is de-
scribed above: First, regress Y on all of the predic-
tors. Second, examine the significance tests of the 
partial regression coefficients. As mentioned 
above, and in a previous chapter, and probably 
again some time in the future, the t test of a par-
tial regression coefficient is the same as the F test 
of the change in R2 associated with adding that 
predictor to an equation already containing the 
other predictors. This little nugget is an enormous 
labor saving device. It means that all we have to 
do is examine the t tests of the partial regression 
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coefficients. If all of the predictors are significant, 
then we keep them all. If one is nonsignificant, 
then we drop that predictor. But what if two or 
more are nonsignificant? We drop the least signifi-
cant one. Which one is that? It’s the one with the 
lowest obtained t (or highest p value, whichever 
you prefer). In terms of ΔR2, it’s the one whose re-
moval will result in the smallest drop in R2. Impor-
tant note: Even if two predictors are nonsignifi-
cant, we drop only one at a time. Why? Because 
dropping one may allow the other to become sig-
nificant (think of Figure 1). How do we drop that 
nonsignificant predictor? Just re-run the regres-
sion analysis without it. Those are the steps. Re-
gress, check, and drop. Repeat this process until 
all predictors remaining in the regression equation 
are significant.

That wasn’t so bad, but wouldn’t it be cool if 
this process was automated? Well, good news, it is 
on the major computer statistical analysis pro-
grams. On SPSS and SAS, this option is called 

backward selection, and it works in the same man-
ner described in the previous paragraph. One 
word of caution: Be sure to check the p value these 
programs use to drop predictors. For SPSS and 
SAS the default p value for dropping a predictor is 
.10; it should be .05.

That was backward selection. What’s the oppo-
site of that? Forward selection. And as the name 
implies, forward selection is an procedure (auto-
mated on the major statistics programs) that pro-
ceeds in the exact opposite fashion as backward. 
Start with no predictors in the model. Add the 
most significant predictor (i.e., the predictor that 
will raise R2 by the most, assuming that ΔR2 is sig-
nificant). Continue to add predictors that will in-
crease R2 by a significant amount. Stop when there 
no significant predictors left to add. The p value 
for adding a predictor to the model should be .05 
(which is the default value in SPSS and SAS).

144

figure:6594F604-A686-419A-8A24-D362D6601755
figure:6594F604-A686-419A-8A24-D362D6601755


You may have one question on your mind: 
Shouldn’t forward and backward selection yield 
the same results? Well, they should, but some-
times they don’t – even when the p values for add-
ing or dropping a variable are set to the same level 
for both procedures. There are some subtle issues 
(borderline cases, high correlations between pre-
dictors, and the like) that can cause the results to 
be different. That said, even though the final 
choice of predictors may be different, the resultant 
R2 values will be about the same for either proce-
dure for the simple reason that if there was an-
other predictor that should be in the model that 
would increase R2 by more than just borderline sig-
nificance, it would in the model. Neither forward 
or backward will miss a strong predictor. The dif-
ferences, when they occur, always relate to using 
one predictor instead of the other when they both 
work about the same and keeping the second pre-
dictor wouldn’t help either model (a Figure 1 situa-
tion – both X1 and X2 work equally well but which-

ever one you use relegates the other to useless 
status).

Finally, wouldn’t it be cool if we could com-
bine forward and backward selection into some 
sort of hybrid model? Well, sort of. This combina-
tion procedure is called stepwise selection and pro-
ceeds like forward selection with a backward 
check after each step (e.g., after every predictor is 
added during the forward procedure, we check to 
make sure that none of the predictors added to the 
model have dropped to a nonsignificant level). 
Does this happen? Do predictors, once added to 
the model, sometimes become nonsignificant 
when other predictors are added to the model? 
The answer is yes, sometimes. Is this likely to be a 
problem? No.

A note on terminology. All of these variable se-
lection techniques are a type of something called 
hierarchical regression. Hierarchical regression re-
fers to a analysis in which more than one regres-
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sion analysis is conducted with variables added to 
or removed from the equation at each step. Fur-
thermore, the results from the various analyses 
are compared to each other. Thus, every ΔR2 is the 
result of a hierarchical regression analysis. (Hierar-
chical regression is sometimes called stepwise re-
gression; however, that name can cause problems. 
Stepwise is the name of a specific variable selec-
tion procedure.) The opposite of hierarchical re-
gression is simultaneous regression. With simulta-
neous regression, only one regression analysis is 
conducted – no variables are added to or sub-
tracted from the model.

One final note on all variable selection proce-
dures. Let us remind ourselves of the goal of these 
variables selection procedures: We want to obtain 
a regression equation with the best possible (i.e., 
maximum) R2 with a minimum of predictors. This 
goal is consistent with the goal of having a parsi-
monious model. Parsimony is a concept that 
means when there are two models of similar effec-

tiveness (e.g., equal predictive power), the simpler 
model is to be preferred; the more complicated 
model is seen as being unnecessarily complicated. 
Back to our variable selection procedures, we use 
these variable selection procedures to purge our 
model of predictors that fail to significantly con-
tribute to the prediction of the dependent variable. 
Thus, the choice to retain a predictor is purely a 
statistical one. The significance test of ΔR2 deter-
mines whether a predictor is retained in or is 
dropped from the model. As such, variable selec-
tion procedures are appropriate only for predictive 
research and should never be used for explanatory 
research. With explanatory research, theory guides 
the choice of variables in the model.

Regression Overfitting

Earlier in the chapter we discussed how a re-
gression equation developed for predictive pur-
poses is ultimately intended to be used on future 
samples. We also said that the key issue is not 
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how well this equation predicts in the sample in 
which it was derived but how well it predicts 
when applied to new samples. The bad news is 
that regression equations have a bad habit of pre-
dicting worse in future samples as compared to 
the original samples on which they were derived. 
There are three issues we should address on this 
point. First, why does this happen? Second, how 
do we obtain an accurate estimate of how well this 
equation will predict when applied to new sam-
ples? And third, how can we prevent this problem 
from being such a problem?

This problem where a regression equation 
does not predict as well in future samples is 
known as regression overfitting. The reduction in 
R2 when the equation is applied to future samples 
is called shrinkage. Regression overfitting refers to 
the fact that a regression equation developed in a 
sample is customized to that sample. If you recall 
our discussion in earlier chapters, we stated that 
the regression weights are the best possible 

weights for that sample. No other weights will 
work better in that sample. These regression 
weights are optimized for the sample in which 
they were derived. (I know I’m being redundant 
here. Sorry. I just want to make sure it’s clear.) Re-
call that linear regression analysis is also referred 
to as ordinary least squares regression, where least 
squares refers to minimizing the sum of squares re-
sidual. This is just another way of saying maxi-
mize R2, and R2 is maximized by choosing the best 
possible set of regression weights. None of this 
would be a problem if our samples represented 
the population perfectly. The unrelenting thorn in 
our collective sides is sampling error. Sampling er-
ror cannot be avoided when we measure anything 
less than the entire population, and it affects every 
statistic we compute, including correlations and re-
gression coefficients. So a regression equation is 
optimized (or customized, if you like that word 
better) for the sample on which it was derived. 
That sample has characteristics that are not pre-
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sent in other samples from the same population. 
As such, a regression equation developed on one 
sample simply will not work as well when applied 
to other samples.

You might ask how exactly a regression equa-
tion is optimized for a given sample. We find the 
answer by analyzing the partial regression coeffi-
cients. One thing partial regression coefficients do 
is weigh predictor variables relative to each other 
in terms of predictive power. Other factors being 
equal, variables that predict the dependent vari-
able better are assigned greater weights than other 
predictors. As we learned in an earlier chapter, par-
tial regression coefficients are a function of a given 
predictor’s correlation with the dependent vari-
able, that predictor’s correlation with the other 
predictor variables, and the standard deviations of 
these variables. If the correlations, both among 
predictors and with the dependent variable, in a 
given sample deviate from the population values 
(and they will), then our regression equation has 

improperly weighted the various predictors. (Note 
that this is only a problem with multiple regres-
sion. For simple regression, there can be no regres-
sion overfitting as there is only one variable and it 
cannot be over or under weighted as compared to 
other predictor variables.)

Here’s an example of regression overfitting in 
action. We start with a dataset representing a 
population consisting of a million cases with 
scores on three predictors and a criterion variable, 
all standardized. A multiple regression analysis on 
this population dataset yields an R2 of .31 and a re-
gression equation: Y′� = 0 + .32X1 + .25X2 + .18X3. 
Those are the population values. We would like 
for our sample regression statistics to match the 
population values perfectly. But they won’t be-
cause of sampling error. It’s always sampling error.

Let’s see what happens when we randomly 
draw a sample of 100 cases from the population 
and execute a regression analysis. First, the R2 is 
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.39. Note that it is greater than the true popula-
tion R2 of .31; that’s the result of overfitting. Next, 
the regression equation is 
Y′� = .15 + .48X1 + .27X2 + .01X3. Notice how X1 is 
overweighted as compared to the population equa-
tion (.48 in the sample equation versus .32 in the 
population equation). Also notice how X3 is under-
weighted as compared to the population equation 
(.01 versus .18). The sample equation is the best 
fitting equation in that sample, but it is not the 
best set of regression weights when the equation 
is applied to new samples or the entire popula-
tion. The equation is overly customized to the 
characteristics of the sample on which it was de-
rived and will not yield the same level of predic-
tive power for future samples.

Cross-Validation

So a regression equation will not work as well 
when applied to future samples as it does in the 
sample in which it was derived. How then can we 

know how well it will work in future samples? 
The answer is a process called cross-validation 
which allows us to estimate an R2 free from the bi-
asing effects of regression overfitting (this new es-
timate of R2 is also called the shrunken R2). There 
are two ways to estimate the cross-validated R2. 
One way is with an empirical (i.e., loads of real 
data) cross-validation process. For the sake of clar-
ity, let’s call this procedure two-sample cross-
validation. The other method is to use an equation-
based estimate. We will discuss both methods.

A two-sample cross-validation is based on col-
lecting and analyzing two samples of data (hence 
the useful name) and proceeds as follows.

I. A regression analysis is executed on one 
sample of data.
II. A new sample of data is collected. The 
same predictors used in the first sample are 
used in the second sample (i.e., we obtain 
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scores from everyone in the new sample on 
the same set of variables).
III. The regression equation from the first sam-
ple is applied to the second sample. That is, 
predictor scores from the second sample are 
plugged into the regression equation obtained 
from the first sample. This process results in a  
set of predicted Y scores for everyone in the 
second sample.
IV. Within this second sample, the actual 
scores on Y and the predicted Y scores are cor-
related.

This correlation, once squared, is the cross-
validated R2 and indicates how well the regression 
equation actually predicts when applied to new 
samples of data. We hope that the cross-validated 
R2 is not much lower than the original R2.

Cross validation can be a little confusing. 
Here’s what is not happening with it. We are not 
conducting a second regression analysis in the sec-

ond sample. Doing so would give us a new regres-
sion equation optimized for the second sample. 
Such an analysis would tell us nothing about how 
well the first equation predicts when applied to fu-
ture samples. Consider that if there was some sort 
of predictor selection (i.e., forward), a different set 
of predictors might be chosen in the second sam-
ple. How would that evaluate the effectiveness of 
the regression equation from the first sample? So 
put that thought out of your head. A proper two-
sample cross-validation takes a regression equa-
tion developed in one sample and uses that equa-
tion to make predictions in a second sample. The 
correlation between the predicted Y and actual Y 
in the second sample tells us how well it pre-
dicted.

The great thing about a two-sample cross-
validation study is that it answers the question we 
had by doing exactly what we should do to answer 
that question. You want to know how well a re-
gression equation predicts when applied to future 
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samples? Get a second sample of people, give 
them the same tests, use the equation obtained in 
the original sample to compute predicted Y in that 
new sample, and correlate predicted Y with actual 
Y in the new sample to see how well it predicts.

The only negative aspect of this two-sample 
cross-validation procedure is that we must collect 
two samples of data. It’s difficult to collect one 
sample of data of sufficient size. Collecting two 
samples of data of sufficient size is twice the work 
(and it may feel like ten times the work). One solu-
tion to this problem is to take a single sample of 
data and randomly split it into two subsamples, 
one for running the initial regression analysis and 
a second for estimating the cross-validated R2. The 
problem with this approach is that the sample size 
has effectively been cut in half, increasing sam-
pling error within each subsample. The regression 
equation developed in the first sample is now 
based on half of the available sample.

So that’s two-sample cross-validation. What 
of this other way to estimate the cross-validated 
R2? This second method consists of a family of 
equations which use the results of a single regres-
sion analysis conducted on one sample to estimate 
the shrunken R2. These equation-based methods 
have an obvious advantage. There is no need to col-
lect a second sample of data, nor is there a need to 
divide one sample into two subsamples (with the 
resultant increase in sampling error). If these 
equation-based estimates of the cross-validated R2 
are as accurate as a two-sample cross-validation 
study, then they should be preferred.

There are many equations available to esti-
mate the shrunken R2. We will discuss two. The 
first is an equation developed by Ezekiel (1930; 
commonly credited to Wherry, 1931).

R2
p = 1 −(1 −R2) (N −1)

(N −k −1)
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As you can see, there are only three components 
to this equation: R2, N, and k (the number of pre-
dictors). This equation is quite popular and is the 
default method for estimating the shrunken R2 in 
SAS and SPSS (where it is called Adjusted R2 or 
R2

adj). Unfortunately, the Ezekiel/Wherry equation 
doesn’t truly estimate the cross-validated R2, al-
though it comes close. The Ezekiel/Wherry equa-
tion is actually an estimate of the population multi-
ple correlation and not the cross-validated multi-
ple correlation (both of which can be legitimately 
called a shrunken R2). The conceptual difference is 
subtle and the mathematical difference is often 
rather trivial in magnitude. But as long as we’re go-
ing to do this, let’s do it right. Many other equa-
tions exist to estimate the cross-validated R2. 
Raju, Bilgic, Edwards, and Fleer (1999) compared 
the accuracy of the various estimator equations 
and found that an obscure equation by Burket 
(1964) was superior to or equal to the others in 
most conditions. Even better, the Burket equation 

is rather computationally simple. The Burket equa-
tion for estimating the cross-validated multiple 
correlation is given below.

Rcv = NR2 −k
R(N −k)

All terms are defined as before. Note that this 
equation yields R and not R2. To obtain R2, you 
have to square it yourself.

Raju et al. (1999) found excellent accuracy for 
these formula-based estimates of the cross-
validated R2. Based on what we have presented, it 
appears that an equation-based estimate of the 
cross-validated R2 should always be used instead 
of a two-sample cross-validation study. Before we 
get too excited, a word of caution. Equation-based 
estimates of the cross-validated R2 may not be ac-
curate when any sort of predictor selection (i.e., 
forward, backward, stepwise, or using only predic-
tors with significant bivariate correlations) has oc-
curred. At this point, it is premature to draw any 
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conclusions. However, it is possible that predictor 
selection techniques may increase sample-specific 
regression overfitting due to the fact that the 
choice of predictors retained in the equation is it-
self affected by sampling error. Additional research 
should be conducted on this issue. At this point, 
the safe conclusion is that if predictor selection 
has occurred, then two-sample cross-validation is 
to be preferred to equation-based estimates of the 
cross-validated R2.

Minimizing Shrinkage

So far we've explained why regression overfit-
ting occurs, the effects of regression overfitting, 
and how to estimate the predictive power of a re-
gression equation free from the biasing effects of 
regression overfitting. In a sense, we know the na-
ture of the sickness, we know the cause of the sick-
ness, we know the effects of the sickness, but can 
we prevent the illness? The answer is... sort of. An 
examination of the equations designed to estimate 

the cross-validated R2 indicate that shrinkage is a 
function of the number of subjects and predictors 
in the initial regression analysis. As with any dis-
cussion of sampling error, larger sample sizes re-
duce the magnitude of sampling errors. Thus, 
larger sample sizes in our initial regression analy-
sis yield an equation that predicts almost as well 
when applied to future samples. The second factor 
is the number of predictors. More predictors in 
the regression equation mean more opportunities 
for sampling error and, thus, greater shrinkage 
when that equation is applied to future samples. 
Long story short, a high ratio of subjects to predic-
tors means less overfitting and, thus, less shrink-
age when that equation is applied to future sam-
ples. In short, when subjects to predictor ratios 
are high, the R2 obtained in the initial regression 
analysis is a better estimate of how well that equa-
tion will predict when it is applied to future sam-
ples than when subjects to predictor ratios are 
low. What’s a high subject to predictor ratio? An-
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swers to this question range from 30:1 to 10:1. 
The conclusion we can draw from this is that any 
ratio less than 10:1 is too low; we are likely to be 
disappointed when an equation developed in such 
a situation is applied to future samples.

The Part Where I Sneak in a Major Discussion 
About Science

Back to how predictor selection techniques 
function, recall that when predictors are added to 
or dropped from a model, the basis for these selec-
tions is the ΔR2 F test. It may not have occurred 
to you, but with all predictor selection techniques, 
a series of ΔR2 F tests is being conducted. Is that 
bad? Maybe. Here’s why. Consider how this thing 
we call science is supposed to proceed.

I. Based on theory, previous research, or a wild 
guess, a hypothesis is proposed.
II. Following a specified procedure, data are 
collected on the relevant variables.

III. Those data are analyzed.
IV. If the results are consistent with the hy-
pothesis, then the results are interpreted as 
supportive of the hypothesis.
V. If the results are inconsistent with the hy-
pothesis, the results are interpreted as indicat-
ing that the hypothesis is incorrect.
VI. If the hypothesis wasn’t supported, the re-
searcher has option to: identify fatal flaws in 
the design of the study (making the results of 
the study irrelevant), abandon the hypothesis 
(i.e., give up and admit that it’s worthless), or 
modify the hypothesis and test this modified 
version with a new set of data (i.e., conduct a 
new study to test this revised hypothesis).

Let’s focus on that last part where we modify and 
re-test the hypothesis. One option that is defi-
nitely not available to us is to test the modified hy-
pothesis on the original set of data (the data that 
demonstrated that the original hypothesis was in-
correct). Why not? Given that the modifications 
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are based on the what the dataset revealed, how 
could a retest of the modified hypothesis on that 
same dataset ever fail?

Here’s an example of the problem. Based on 
theory, an unnamed researcher hypothesizes that 
Treatment A will result in greater success on the 
dependent variable than Treatment B. The re-
searcher conducts the study, analyses the data, 
and finds the opposite case, B has outperformed 
A. Our researcher then revises his theory, reformu-
lates his hypothesis to state that Treatment B will 
result in a greater success rate than Treatment A, 
tests this newly modified hypothesis on the origi-
nal dataset, and finds, much to his delight, that 
his hypothesis is supported.

If that sounds too nefarious for you, here’s a 
slightly more palatable version of events. Our re-
searcher is not so sure about how things are going 
to turn out, so starts without a hypothesis. He con-
ducts the study and analyzes his data. He sees that 

Treatment B outperformed Treatment A. At this 
point, he officially hypothesizes that Treatment B 
will be more successful than Treatment A. The 
data analysis that has already been done is used as 
support for his hypothesis.

You see what I mean? There’s no way for this 
to go wrong. Our researcher will always end up 
with experimental support for his hypothesis. No 
matter what. This process of examining the data, 
and then forming a hypothesis is known as post hoc 
theorizing (and the hypothesis is a post hoc hypothe-
sis). Just to clarify, if these newly modified hy-
potheses were tested on a new sample of data, all 
would be well. But that’s not what was described 
in the two preceding paragraphs. It was: data 
analysis, hypothesis modification/formation, test 
of that hypothesis on the same sample of data.

I once heard a speaker defend this practice 
with the statement that, “The data don’t know 
when the hypothesis was formed.” Yes, those were 
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his actual words, anthropomorphism and all. Of 
course he meant that forming a hypothesis before 
or after examination of the data doesn’t change 
the data. And he’s right on that count. But it sure 
does change your hypothesis. And it’s not hard to 
find a significant effect somewhere in a dataset if 
you keep looking long enough. The consequence 
of this is that you end up building a hypothesis 
around something that is often just sampling er-
ror. It won’t replicate because it’s not a real effect.

Do you see how this post hoc theorizing issue 
ties into predictor selection in regression analysis? 
If we start with ten predictors in the model, then 
our initial hypothesis is that these ten predictors 
are related, as an optimally weighted composite, 
to the dependent variable. Once we start kicking 
predictors out of the model because they are not 
significantly related, then we have changed our hy-
pothesis. I’ll present this situation as a one person 
play.

INTERIOR RESEARCH LAB

A dimly lit room. A researcher of 
indeterminate age has his face bur-
ied in a computer screen and is 
waiting for SPSS to finish load-
ing. His leg shakes with a nervous 
energy. The blinds are down but 
not completely closed. A late af-
ternoon light seeps through the 
gaps between the slats. In the 
background is the faint sound of a 
grant application being rejected 
somewhere off in the distance.

RESEARCHER
I hypothesize that these nine 
variables will predict the DV.

SPSS finally finishes loading. The 
researcher starts a regression 
analysis with a backward variable 
selection procedure.
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Before he can blink, three inde-
pendent variables are deleted from 
the regression equation.

RESEARCHER
Did I say nine? I meant six. 
These six variables will pre-
dict.

His face begins to show signs of 
anxiety.

RESEARCHER
I never liked those variables 
anyway.

As he speaks another independent 
variable is deleted. Sweat trick-
les down his face and into the col-
lar of his ill-fitting golf shirt.

RESEARCHER
Yes, sir. These six, I mean, 
five variables will predict the 
DV in a significant fashion. No 
doubt about it.

One more variable is deleted. The 
analysis stops, retaining only 
four of the original nine independ-
ent variables. He makes a note of 
the remaining variables.

RESEARCHER
These four IVs will predict the 
DV. That’s my hypothesis. Now, 
it’s time to test it.

On the same dataset, he executes a 
regular regression analysis on the 
four variables retained from the 
backward selection procedure.

RESEARCHER
Would you look at that? I was 
right. Those four predict Y. 
And all four were significant 
Just like I hypothesized.

E N D
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Now, most of the time it’s not as bad as all 
that, but there are some tough scenarios. What if 
the overall R2 in the full model is not significant; 
however, after dropping weak predictors, it be-
comes significant upon retesting? Isn’t that the 
very situation we described earlier? In such a situa-
tion a new sample of data would need to be col-
lected to determine if this revised equation actu-
ally predicts. Because the original equation sure 
didn’t.
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8 Clever solutions to 
irritating problems.

Curvilinear Regression



Introduction

As we have discussed many times to this 
point, linearity is a key assumption of correlation 
and regression. Linearity means that the best fit-
ting model of the relationship between the inde-
pendent and dependent variables is in the form of 
a straight line. But what happens when this as-
sumption is violated? Sometimes a dataset exhib-
its a relationship that is not adequately summa-
rized by a straight line. What to do then? The an-
swer is that we’ll have to use a different kind of re-
gression analysis.

Two Options

This new kind of regression analysis will be 
some sort of nonlinear regression analysis. If lin-
ear regression analysis was designed to fit a 
straight line to the observed data, this nonlinear 
regression analysis will have to fit a curve to the 
data. Thus, the parameters (i.e., the various bs, 

the a) in the regression equation will be nonlinear. 
The days of multiplying scores on X by a constant 
and adding a constant will be over. Scores on X 
will be multiplied by something newer and cooler. 
This new form of regression analysis will be funda-
mentally different from anything we have dis-
cussed before.

But there is another option. What if, instead 
of using a new type of regression analysis, we use 
the same old type of regression that we know and 
love (i.e., OLS regression), but we use it in a differ-
ent way? Different how? Instead of altering the re-
gression equation parameters, we’ll alter the vari-
ables. This second option has some nice benefits. 
For one thing, we can use a form of regression 
analysis with which we are already familiar. Sec-
ond, it’s an easy procedure to implement. So we’ll 
go with this option. And we’ll call it polynomial re-
gression analysis.
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A Brief Demonstration

Here’s a quick demo of how a simple data 
transformation solves our linearity (or lack 
thereof) problems. Consider the following dataset.

Name Y X

Albert 8 -3
Whitney 4 -2
Jewell 0 0
Martha 5 2
Odell 9 3

An examination of the scatterplot (Figure 1) 
shows that the relationship is decidedly non lin-
ear. The correlation between X and Y is .14. Watch what happens when we simply square the 

scores on X and re-run the analysis.
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Name Y X2

Albert 8 9
Whitney 4 4
Jewell 0 0
Martha 5 4
Odell 9 9

The correlation between X2 and Y is now .98. 
That’s quite an improvement. Those low, negative 
scores on X are now high scores on X2. Even more 
striking than the correlation is the scatterplot (Fig-
ure 2). Note how what was once a non linear 
trend is now a linear one.

There are a few more steps (and important de-
tails) to an actual polynomial regression analysis 
than what we did for this demonstration. But this 
exercise shows how a simple data transformation 
can solve a major problem for us by turning non 
linear relations into linear ones.
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on X
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Polynomial Regression Analysis

Polynomial regression analysis involves trans-
forming our independent variables and using them 
in a standard linear regression equation. Trans-
formed how? Assuming one independent variable, 
scores on this variable will be squared, cubed, 
taken to the fourth power (quaded?), and so on. 
These new forms of this variable will be called 
powered vectors. These powered vectors are not 
new variables, rather they are multiple representa-
tions of a single variable. These powered vectors 
will be entered into a hierarchical regression analy-
sis, one at a time, to see if the strength of the rela-
tionship between X and Y improves with their addi-
tion. Thus, the philosophy of polynomial regres-
sion analysis is clear: A variable exhibiting a non-
linear association with Y will undergo a nonlinear 
transformation; this variable and it’s higher-
powered representations will be entered into a lin-
ear regression analysis to find out just how many 

of these powered vectors are needed to adequately 
model the relationship between X and Y.

To summarize, a polynomial regression analy-
sis proceeds as follows. First, various powered vec-
tors are created from the independent variable. 
Second, the dependent variable is regressed onto 
the independent variable (i.e., Y is regressed on 
X). Third, powered vectors are added to this regres-
sion equation, one at a time. ΔR2 is computed and 
evaluated for significance at every step (using the 
standard F test for the change in R2 test that we 
know and love). This procedure stops after two or 
three nonsignificant additions to the model. Fi-
nally, the last model featuring a significant ΔR2 
over the previous model is retained as the final re-
gression equation.
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To illustrate this procedure, consider a sample 
dataset.

Name Y X X2 X3 X4

James 20 4 16 64 256
Randall 25 5 25 125 625
Celia 29 6 36 216 1296
George 31 7 49 343 2401
Henry 32 8 64 512 4096
Mary 32 9 81 729 6561

Notice that we only have two variables: X and Y. 
We have created various powered vectors for X: 
X2, X3, and X4. Our next concern is determining 
which powered vectors are needed. For this, we 
first regress Y on X. At this stage this is just regu-
lar regression – nothing fancy yet. A linear regres-
sion of Y on X results in an R2 of .857. As high as 
.857 is, this linear relationship may not be the 
best model of the relationship of Y on X. So we 
add X2 to the equation and regress Y on X and X2. 

This regression results in an R2 of .999. The ΔR2 
for the addition of X2 is .142, a sizable and signifi-
cant increment (ΔR2 = .142, F = 402.6, p < .05). 
Thus, the best fitting model of the relationship be-
tween Y and X requires, at the least, the scores on 
X to be squared, which is a nonlinear model.

Continuing with our example, R2 is already 
.999, so it probably won’t increase any more. But 
let’s see what happens when X3 is added to the 
equation. A regression of Y on X, X2, and X3 re-
sults in an R2 of .999. So there’s no change (
ΔR2 = 0, and of course, it’s not a significant in-
crease). Same with the addition of X4 to the 
model. Let’s return to the last model that had a 
significant increase in R2 as compared to the previ-
ous model, the model with Y regressed on X and 
X2. It is this equation that models the best fitting 
(and simplest as the addition of higher-powered 
vectors did not increase the strength of associa-
tion between X and Y) relationship between X and 
Y. The regression equation for this model is 
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Y′� = −13.2 + 11.0X −.66X2. An inspection of the t 
tests of each regression coefficient shows that the 
regression coefficients associated with both X and 
X2 are significant.

But what if the regression coefficient for X 
wasn’t significant? Would we drop X from the 
model? The answer is no – all lower powered com-
ponents of a powered vector must stay in the 
model. If X7 is in the model, then X, X2, X3, X4, X5, 
and X6 must remain in model regardless of the sig-
nificance of each of these lower powered compo-
nents. (By the way, these lower powered compo-
nents are called constituent variables, probably 
the cutest name in all of statisticsdom.)

Scatterplots and Residual Plots in Polynomial Re-
gression Analysis

To summarize what we have found in our ex-
ample, there is a relationship between X and Y. Al-
though a linear regression revealed a rather strong 

relationship (R2 = .857), the best fitting model of 
this relationship was nonlinear and yielded an R2 
of .999. The resultant regression equation was 
Y′� = −13.2 + 11.0X −.66X2, and it functions just 
like any other regression equation we have encoun-
tered to date (i.e., insert scores on X to obtain pre-
dicted Y). Long story short, we ran a curvilinear re-
gression analysis and found some interesting re-
sults. But how would a researcher know whether 
she or he should run a curvilinear regression analy-
sis in the first instance? If your answer involves ex-
amining the R2 obtained from a simple linear re-
gression of Y on X (e.g., R2 for the regression of Y 
on X is weak so maybe there’s a nonlinear relation-
ship), you are wrong. In our example, that R2 was 
.857, a number so high that you would be forgiven 
for thinking that the linear regression equation is 
the correct model for this dataset. But we know 
it’s not the correct model for the data.

Back to the question. How do we know when 
we should conduct a polynomial regression analy-
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sis? Is this something we should do every time we 
run a regression analysis? Well no. We already 
know the answer to this question. When we first 
discussed regression analysis, we also discussed 
the assumptions of regression analysis. Two key as-
sumptions were linearity and homoscedasticity. 
And, as discussed, the way to check for violations 
of these assumptions is by examining the residual 
plot.

Back to our example dataset. Figure 3 shows 
the simple scatterplot between X and Y. Just for 
good measure, I threw in a regression line. You 
can tell that this particular regression is from a lin-
ear regression because, well, it’s a straight line. As 
this scatterplot makes clear, a linear model does 
not adequately describe the relationship between 
X and Y. It’s not a total failure because there is a 
general trend of higher scores on Y being associ-
ated with higher scores on X. But that pattern tails 
off at the high end of scores on X where increased 
scores on X no longer leads to increased scores on 

Y. What about the residual plot? The residual plot 
is shown in Figure 4. A residual plot, when taken 
from a linear regression analysis, shows you what 
is left over after the linear association has been ex-
tracted from the relationship between X and Y. In 
this case, there is a clear nonlinear association re-
maining. Now we know that a curvilinear regres-
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FIGURE 3 Scatterplot for Regression of Y on X
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sion analysis is called for. The moral of the story is 
that you should always generate a residual plot. 
Failing to do so may cause you to miss one of the 
coolest things you could ever find, a curvilinear re-
lationship.

As long as we’re talking about graphs, you 
might ask what the regression line looks like 

when we execute a proper curvilinear regression 
analysis. Do we get a cool curve that fits the scat-
terplot we observed in Figure 3? Why, yes we do. 
Figure 5 shows a simple scatterplot of our data 
with the new regression line drawn (which is now 
not really a line, but a curve). How do we generate 
this line? We graph it using the regression equa-
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FIGURE 4 Residual Plot for Regression of Y on X FIGURE 5 Scatterplot with Regression Line for the Re-
gression of Y on X and X2
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tion, just like we would graph any regression line. 
If you recall from an earlier chapter (I can’t remem-
ber which one, but it was earlier), one way to 
draw the regression line is by plugging a range of 
values for X into the regression equation, solving 
for Y′�, and plotting the series of (X, Y′�) scores on 
the regular scatterplot. If this procedure sounds 
cumbersome, modern statistics programs auto-
mate it. But it’s important to know how it really 
happens.

One last issue about our example. We found 
that the best fitting model of the relationship be-
tween X and Y is described with equation 
Y′� = −13.2 + 11.0X −.66X2. We saw what the resid-
ual plot looked like before we added X2 to the 
equation. We also saw how well this curvilinear 
model fits the scatterplot. But one thing we 
haven’t examined is what the residual plot looks 
like when Y is regressed on X and X2. Will we still 
see a nonlinear trend in the residual? If so, then 
our regression equation will need additional 

higher-powered powered vectors (i.e., X3, X4). Of 
course, we already know from our significance 
tests of ΔR2 that these higher powered terms are 
not needed. The residual plot for the regression of 
Y on X and X2 is shown in Figure 6, and it looks 
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FIGURE 6 Residual Plot for the Regression of Y on X 
and X2
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about as good as a residual plot could hope to 
look.

Other Issues with Polynomial Regression Analy-
sis

One problem that might have occurred to you 
is that the various powered vectors might be 
highly correlated with X (and each other). In our 
example X correlates .99 with X2. Point nine-nine! 
A high correlation among independent variables in 
a multiple regression equation (I know the pow-
ered vectors are not separate independent vari-
ables, but they appear as such to the mathematical 
number crunching of regression analysis) is called 
colinearity and can be a bad thing. Excessively 
high colinearity can cause a regression analysis to 
have serious problems being executed. Indeed, a 
1.0 correlation among any combination of inde-
pendent variables (as might be found when vari-
ous subtest scores and a composite score of these 
subtests are entered as independent variables) is 

called a linear dependency. The regression of a set 
of linearly dependent variables cannot be exe-
cuted. Due to rounding issues, a correlation close 
to 1.0 can have the same problem. Various statis-
tics programs will refuse to execute a regression 
analysis when the colinearity among independent 
variables is so high as to approach a linear depend-
ency, presumably to prevent the occurrence of 
some sort of cosmic catastrophe.

Thus, we are in a bind. The mere creation of 
various powered vectors leads to high colinearity. 
If colinearity is intolerably high, we can’t run the 
analysis we need. What are we to do? The answer 
comes from a simple mathematical principle: a 
positive number when squared stays positive, but 
a negative number when squared becomes posi-
tive. If half of the numbers in a set are negative, 
squaring them results in the sort of transforma-
tion that kills a correlation. Thus, our solution 
will be to transform scores on X before computing 
powered vectors so that half of the scores are posi-
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tive and half are negative. Standardizing to z 
scores does this. But we don’t have to go that far. 
Simply computing mean-deviation scores (X −X̄) 
for all of the scores does this as well. This latter 
procedure is known as centering. Both work fine. 
Choose whichever you prefer. Back to our exam-
ple, the centered scores on X correlate 0.0 with the 
squared centered scores on X. Much better in the 
colinearity department. Problem solved. (Before 
moving on, I want to emphasize the steps: If cen-
tering is needed, first center, then compute the 
powered vectors from the centered scores on X.)

This colinearity issue is important to address 
because you may find that when you execute a 
polynomial regression analysis, your statistics pro-
gram of choice will not do what you request of it. 
You must know where to look to find out if the 
analysis you wanted was executed (the regression 
equation) and know how to handle it when it was 
not (via centering). Indeed, when I analyzed the 
data from our example, the statistics program I 

used refused to run an analysis with X, X2, X3, and 
X4 in the equation. I had to center X, recompute 
the powered vectors, and rerun the analysis to find 
out that X4 was not needed for the model (i.e., 
nonsignificant ΔR2).

Finally, how do we interpret the partial regres-
sion coefficients in a polynomial regression analy-
sis? The old rule of “bk indicates the expected 
change in Y given a one point change in Xk, assum-
ing the other independent variables are held con-
stant” won’t work because there is simply no way 
to manipulate X without also manipulating X2. 
And what if the regression coefficients for X and 
X2 have different signs? A gain on one is offset by 
a loss on the other. This is a more extreme version 
of the problem we observed when we first dis-
cussed interpreting a partial regression coefficient 
back in the multiple regression chapter. Long 
story short, there is no easy way to interpret re-
gression coefficients with polynomial regression 
analysis.
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Closing Thoughts

At the beginning of this chapter we discussed 
how polynomial regression analysis is really just 
linear regression at heart. Sure, we’re using vari-
ables transformed in a nonlinear fashion, but it’s 
still OLS regression. By making Y′� a nonlinear rep-
resentation of X, we allow the relationship be-
tween Y′� and Y to be linear. If you want proof of 
that, just look at the graph of Y against Y′� (recall 
that one of the cool things about regression is that 
rYY′� = RYX1...Xk

). Figure 7 is a graph of Y against Y′� 
for our regression equation of 
Y′� = −13.2 + 11.0X −.66X2. The regression equa-
tion, with it’s squared scores on X, has straight-
ened out the nonlinear relationship between X and 
Y into something thoroughly linear. A linear corre-
lation of Y′� with Y results in a correlation of .999, 
which is the same value we obtained when we re-
gressed Y on X and X2. One wouldn’t think that a 
simple transformation of the scores on X allows 

OLS to do something that appears antithetical to 
its nature, but there it is.

FIGURE 7 Scatterplot of Y Against Y’ Where Y’ is from 
the Regression of Y on X and X2
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9 Finding a moderator 
variable is like finding gold.

Statistical gold.

Moderated Multiple 
Regression



Overview

Moderated multiple regression is a technique 
designed to test for the effect of a moderator vari-
able. A moderator variable is a variable for which 
the relations between two other variables are dif-
ferent at various levels of a third variable. Perhaps 
a story could better convey the nature of a modera-
tor variable than this awkward definition. Before I 
get to that story, it may help to know that a moder-
ated relationship is similar to an interaction. The 
only real difference between the two is causality. 
Interactions imply causal relationships. Moderated 
relationships do not.

A Moderator Variable Story

Back in the day, there was a researcher named 
Edwin Ghiselli. Ed, as he was known by his 
friends (I’m guessing), was developing an ability 
test to predict job performance. The test was the 
independent variable. Job performance was the de-

pendent variable. Ed gathered a sample of people, 
gave them the ability test, asked them some other 
questions, hired almost a hundred of them, and 
measured their job performance (Ghiselli, 1956). 
When Edwin correlated test scores with job per-
formance he obtained a correlation of .22. Not 
good. Rather than give up and not get paid, Ed got 
creative. In addition to the ability test, Ed also 
asked applicants how interested they were in the 
job. He split the sample into two subgroups on 
the basis on this interest variable. There were 
about thirty people who gave the high-interest an-
swer and about sixty people who gave the low-
interest answer. For the thirty people in the high-
interest subgroup, the correlation between ability 
test scores and job performance was .66. Ed didn’t 
report the correlation for the sixty people in the 
low-interest subgroup but it would have been con-
siderably less than .22. Let’s just call it zero.

Let’s recap what Ghiselli found. The correla-
tion between ability test scores and job perform-
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ance across all 93 people was weak (rXY = .22). But 
when this sample was split into two subgroups on 
the basis of a third variable (interest in the job), 
he found that the relationship between ability test 
scores and job performance was stronger for some 
people (rXY = .66) than for others (estimated 
rXY = 0.0). Notice how the relationship between X 
and Y is different at different levels of the third 
variable (which we could call Z). This third vari-
able is a moderator variable. Interest in the job 
moderates the relationship between ability and job 
performance. As a final point to this story, the sub-
group correlations need to be significantly differ-
ent to support our claims of a moderated relation-
ship (Ed didn’t report a significance test). Small, 
non significant differences between subgroup cor-
relations (e.g., .25 versus .30) are likely the prod-
uct of sampling error and do not indicate a moder-
ated relationship. As such, they are not the slight-
est bit interesting.

Summarizing What We Know To This Point

Let’s review what we can call the Ghiselli pro-
cedure for testing for a moderated relationship. 
First, divide the sample into subgroups on the ba-
sis of the presumed moderator variable. Second, 
compute correlations within each subsample. 
Third and last, test the difference between the cor-
relations for significance. Which significance test 
do we use? The difference between subgroup corre-
lations can be tested using the test for differences 
between correlations from independent samples 
(see Significance Test III in Chapter 3). A non sig-
nificant result would indicate that the correlations 
are the same for both high and low scoring people 
on the third variable (and, thus, no moderated rela-
tionship).

So it’s a fairly easy procedure. But wait, Ghis-
elli’s moderator variable was dichotomous, mak-
ing it obvious that we would split the sample into 
two subgroups. What if the moderator variable is 
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continuous? Do we dichotomize it? I’ll answer 
that question with a question: Should we ever di-
chotomize a continuous variable? Of course not. 
So how are we going to test for a moderated rela-
tionship? We’ll have to use a whole new proce-
dure. And it will involve regression analysis. Any-
one see that coming?

Moderated Multiple Regression Analysis

In the present scenario we have three continu-
ous variables: a dependent variable (Y), an inde-
pendent variable (X), and a moderator variable 
(Z). The regression-based test for a moderated rela-
tionship is as follows. First, create a product vec-
tor that is the simple product of scores on the inde-
pendent variable and the moderator variable (i.e., 
X × Z). Second, regress the dependent variable on 
the independent and moderator variables. Third, 
regress the dependent variable on the independent 
variable, moderator variable, and the product vec-
tor. Fourth and last, compute the change in R2 and 

test with the familiar (at least, it should be famil-
iar by now) ΔR2 F test (shown below).

F =
(R2

big −R2
small)/(kbig −ksmall)

(1 −R2
big )/(N −kbig −1)

If the change in R2 is significant, then we conclude 
that there is a moderated relationship.

Note what happened when we computed ΔR2. 
The first regression analysis indicates how well X 
and Z predict Y. This regression tells us how well 
X and Z, used in the normal way, predict Y. The 
second R2 indicates how well X, Z, and the product 
of X and Z predict Y. Any change in R2 is due to 
the addition of the product of X and Z to an equa-
tion that already had X and Z in it. This ΔR2 re-
flects the unique value of the (non casual) interac-
tion of the two variables in the prediction of Y.
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Consider the following dataset.

Name Y X Z X x Z

Napoleon 4 2 9 18
Jones 5 10 5 50
Frederick 6 4 6 24
Muriel 7 5 6 30
Benjamin 9 6 7 42
Pilkington 9 6 8 48

Note how the product vector is the simple, well, 
product of scores on X and Z. Nothing fancy there. 
A quick analysis of this dataset shows that neither 
X nor Z correlates well with Y (both rXY and rZY are 
less than .2). The regression of Y on X and Z re-
sults in an R2 of .09. The regression of Y on X, Z, 
and the product vector yields an R2 of .95. The 
change in R2 is .86, a huge increase. The F test for 
ΔR2 results in an F statistic of 34.5, p < .05. The re-
gression equation, including the product vector, is 
Y′� = 14.63 + −2.5X + −1.56Z + 0.465(X × Z ).

A quick summary of the example. A regres-
sion of Y on X and Z, in the usual multiple regres-
sion fashion, resulted in a nice R2 of .09. But the 
addition of the product of X and Z to the regres-
sion equation increased R2 to .95. Notice that we 
didn’t add a new variable. A product vector isn’t a 
new a variable – it’s just a different representation 
of the variables already in the equation.

Based on the results of this analysis, we con-
clude that we have a moderated relationship be-
tween Y, X, and Z. We could call Z the moderator 
variable if we want, but both X and Z qualify for 
the title. In a moderated multiple regression analy-
sis, the distinction between independent and mod-
erator variables is arbitrary.

What about predicted Y? How is that com-
puted in a moderated relationship? It’s nothing un-
expected; just substitute the scores on X and Z 
into their respective places in the equation. We’ll 
do an example for the first case in our example da-
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taset. Napoleon has scores of 2 on X and 9 on Z. In-
serting those scores into the regression equation 
yields: 
Y′� = 14.63 + −2.5(2) + −1.56(9) + 0.465(2 × 9). A lit-
tle basic math tells us that predicted Y for Napo-
leon is 3.96.

Issues With Moderated Multiple Regression

There are a few issues with moderated multi-
ple regression. They should sound familiar to read-
ers of the curvilinear regression chapter. In fact, all 
three are exactly the same. The first issue relates 
to interpreting the partial regression coefficients 
in a moderated multiple regression equation. The 
usual multiple regression interpretation of partial 
regression coefficients states that, “bk indicates the 
expected change in Y given a one point change in 
Xk, assuming the other independent variables are 
held constant.” As with curvilinear regression, the 
problem with this is that there is no way to ma-
nipulate X without also manipulating the product 

vector (and vice versa). So there’s no easy way to 
interpret the partial regression coefficients. That’s 
unfortunate.

The second problem relates to colinearity. As 
with powered vectors in curvilinear regression, 
there can be high correlations between X and the 
product of X and Z. If this correlation is too high, 
statistics programs may not react well and will re-
fuse to run the analysis we wanted. The solution 
to this problem is once again, centering. Centering 
is the transformation of raw scores on a variable 
into mean-deviation scores. If you’re not comfort-
able with that, then just standardize (i.e., z scores) 
the scores on a variable. Standardization is center-
ing plus a little more. As a reminder, when center-
ing you have to center (or standardize) X and Z be-
fore computing product vector.

There is one other issue to discuss and that 
concerns non significant constituent variables. If 
you forgot, constituent variables are the compo-
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nent variables of the product vectors (and power 
vectors). In the case of the product vector X × Z, 
the constituent variables are X and Z. Well, what 
of these constituent variables? If the addition of 
the product vector is a significant addition to the 
equation, then the product vector stays in the 
equation. But what if you take a peek at the t test 
for any of the constituent variables and see that X, 
for example, is non significant? Do we drop X 
from the equation? The answer is no. If a product 
vector is in the equation, then its constituent vari-
ables must also stay in the equation, regardless of 
their significance.

Closing Thoughts

Why are moderator variables cool? Let’s go 
back to Ghiselli. Forget the moderator variable for 
a second. Did his test predict job performance? 
Not very well. After he identified a moderator vari-
able, did his test predict job performance? Yes, for 
some of the people. It predicted job performance 

well for those people with high scores on the mod-
erator variable (i.e., high interest in the job). 
That’s certainly a lot better than if we didn’t have 
the moderator variable. If that doesn’t make it 
sound cool for you, consider the second example. 
X and Z, used in the usual multiple regression fash-
ion, can be used to predict Y with some effective-
ness. Adding the product vector to the equation in-
creases prediction strength from good to great. 
This thing that is so great about both of these ex-
amples is that with a moderator variable, we ob-
tain a stronger relationship with the dependent 
variable without adding any new variables. No 
new tests. No new independent variables. Just us-
ing, in new ways, the same ones we already had ly-
ing around.

One last issue to consider. This chapter cov-
ered two ways to test for a moderated relation-
ship. There was the Ed Ghiselli two-correlation 
method and the moderated multiple regression 
method. If you have two continuous independent 
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variables, then you should always use the moder-
ated multiple regression method. If one of the in-
dependent variables is a dichotomous variable, 
then you can use the two-correlation method. But 
can you use the moderated multiple regression 
method with a dichotomous independent vari-
able? You can. If you know how to dummy code 
the dichotomous variable…
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10 Ever wanted to conduct a 
regression analysis with a 
categorical independent 
variable?

Dummy Coding



Overview

Here’s the scenario: Your dataset consists of a 
continuous dependent variable and a dichotomous 
independent variable. Your hypothesis is that 
there are differences between the two groups. 
How do you analyze the data? If you answered t 
test or ANOVA, you are correct. But did you know 
that you can also use regression analysis? It’s true. 
What if the independent variable has more than 
two categories? ANOVA still works, but t tests are 
out. What of regression? Yes, regression still 
works. In this chapter we’ll explore how we can 
use regression analysis to analyze data with a cate-
gorical independent variable.

Continuous and Categorical Variables

Before we continue, it is important that we de-
fine the difference between a continuous and a 
categorical variable. We’ll start with categorical 
variables. A categorical variable has various val-

ues, maybe just two, maybe more. The values as-
signed to these categories lack any order. There is 
no more or less with a categorical variable, just differ-
ent. People with scores of 3 are different on the 
variable than people with scores of 4. In fact, the 
values of the scores are completely arbitrary. We 
could recode the data so that everyone who had a 
score of 1 now has a score of -11. And the people 
with scores of 2 now have π for their score. It 
would be weird, but we could do it that way. Even 
a dichotomous variable is categorical – it’s just a 
simpler set of categories. Back in the day, gender 
was coded dichotomously as 0 or 1. It was up to 
the researcher to decide which is 0 and which is 1. 
Males could be 0 and females 1. Or the other way 
around. Or something completely different from 0 
and 1. It matters not. There is no more or less 
with a categorical variable, only different.

As for continuous variables, there is an order-
ing to the scores; there is a more and less. In addi-
tion, there are no longer discrete categories (e.g., 
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1, 2, 3, etc.). In theory, there is an infinite number 
of possible scores between 1 and 2. In practice, 
our measurement techniques do not allow for a 
true continuum of response options and are fre-
quently constrained to the use of limited options 
(e.g., the five options on a five-point response 
scale). Even though the lack of a true continuum 
might be considered a fatal flaw, no one seems to 
mind, and we proceed with these n-point type 
scales with discrete categories as if they really are 
continuous. Finally, for you Stevens’s scales fans, a 
true continuous variable must be measured at ei-
ther the interval or ratio level of measurement.

Regression Analysis with a Categorical Inde-
pendent Variable: The Wrong Way

As mentioned, regression analysis can be used 
to analyze data with a categorical independent vari-
able. Let’s consider an example dataset, analyze it 
with an ANOVA, and analyze it with regression 
analysis without changing the dataset.

First, our example dataset.

Person Y X

George 21 1
Tyrus 24 1
Mordecai 22 1
Joshua 31 2
Walter 30 2
Joseph 27 2
Cornelius 28 3
Theodore 26 3
Jack 29 3

Notice that there are three groups in our independ-
ent variable. We recognize that this is just one in-
dependent variable with three possible categories. 
It’s not three independent variables. These three 
categories could represent three different treat-
ments in our study. We could have coded these 
categories any way we wanted, but here they are 
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coded as 1, 2, 3. There is also a dependent vari-
able. This dependent variable is a continuous vari-
able. That’s enough of an overview. Let’s get to 
the analysis.

We’ll start with an ANOVA since that is the 
traditional way to analyze such data. The ANOVA 
um… analysis (think about it) shows that there 
are significant differences among the three groups, 
F = 13.37, p < .01. Standard rules for interpreting 
ANOVA results lead us to conclude that at least 
one group’s mean is different from the other 
group’s means. Also, eta-square (i.e., η2), an index 
of the strength of the relationship between the 
two variables (reflecting the differences between 
groups relative to total variability), is .82, indicat-
ing a strong relationship. If we had any planned 
comparisons to do among the groups, we’d do 
them now. Also, if we wanted to do any post hoc 
tests, we’d do those now as well.

Moving on to our regression analysis, we re-
gress the dependent variable on the independent 
variable, coded as shown in the table as 1, 2, 3, 
and find that there is a significant relationship be-
tween X and Y, F = 5.38, p > .05. The strength of 
the relationship, as indexed by R2, is .66. All of 
this is interesting. Even more interesting is the 
fact that none of this matches the results of our 
ANOVA in any way.

So that was fun. All nice and simple. Two 
ways to analyze this dataset but with different re-
sults. Wait a second, I just realized that this data-
set was coded wrong. Groups 1 and 2 were mixed 
up. I have fixed the coding and listed the revised 
dataset below.
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Person Y X

George 21 2
Tyrus 24 2
Mordecai 22 2
Joshua 31 1
Walter 30 1
Joseph 27 1
Cornelius 28 3
Theodore 26 3
Jack 29 3

A re-execution of the ANOVA yields the same re-
sults (F = 13.37, p < .01). Let’s repeat the regres-
sion analysis and see if anything changed there. 
Hmm, that’s odd. Now the F test is different, yet 
again, F = .31, p > .05. And the R2 is different too, 
R2 = .21. Why is all of this different? It’s the same 
dataset. The only thing I’ve changed was how the 
categorical variable was coded. Which coding 
scheme was the right one? I’d like it to be the first 

one since I obtained better results that way. And 
why didn’t the ANOVA results change when I 
changed the codes?

As you may have surmised by now, neither 
coding was correct as far as regression analysis 
goes. And neither was incorrect as far as the 
ANOVA goes. The reason for this is that the inde-
pendent variable is a categorial variable. ANOVA 
treats a categorical variable as a categorical vari-
able regardless of how it’s coded. With ANOVA 
there is no more or less, just different categories. 
Group 2 doesn’t have more of something than 
Group 1. However, with regression the independ-
ent and dependent variables are treated as continu-
ous variables. Greater numbers mean more. When 
I changed the coding scheme, I changed who had 
more or less of whatever the independent variable 
measures as far as regression is concerned.
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To take this to absurd lengths, consider the fol-
lowing coding scheme for our dataset.

Person Y X

George 21 -11
Tyrus 24 -11
Mordecai 22 -11
Joshua 31 3.14
Walter 30 3.14
Joseph 27 3.14
Cornelius 28 9000
Theodore 26 9000
Jack 29 9000

The ANOVA results were unchanged, but a regres-
sion analysis revealed the following: F = .52, 
p > .05, R2 = .26. You know, if we can get creative 
enough, I’ll bet we find a coding scheme that gets 
R2 above .90. I hope it’s obvious that such an exer-

cise would be silly, and the results would have no 
connection to reality.

So what are we to do about regression analy-
sis? It wants every variable to be a continuous vari-
able. Do we just give up if we have a categorical 
variable? Of course not. (Otherwise, this would be 
a very short chapter.) We’ll just have to find a new 
way to code it so that the categorical variable is 
treated as a categorical variable. And this new way 
involves vectors (again with the vectors) and is 
commonly called dummy coding. Actually, it is a 
family of techniques including dummy coding, ef-
fect coding, and orthogonal coding. All of these 
techniques involve the use of coded vectors.
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Regression Analysis with a Categorical Inde-
pendent Variable: The Right Way

Coded vectors, like powered vectors and prod-
uct vectors, are not new variables; rather, they are 
new ways to represent existing variables. The cod-
ing scheme that we will use is dummy coding. As 
mentioned, there are other coding schemes, but 
dummy coding is the easiest to implement and un-
derstand.

Dummy coding works by representing the cate-
gorical with various coded vectors. To be specific, 
we will need k −1 coded vectors, where k is the 
number of categories or groups in the categorical 
independent variable. For our example dataset, we 
have three categories, so we’ll need two coded vec-
tors. Each coded vector will consist of zeroes and 
ones. In essence, each coded vector is a dichoto-
mous variable. Values are assigned to the coded 
vectors as follows: Everyone in the first group gets 
ones for the first vector and zeroes for the others, 

everyone in the second group gets ones in the sec-
ond vector and zeroes for the rest, and so on, until 
the last group, which gets zeroes for all vectors. 
Dummy codes for our example data are given be-
low. Note how people in Group 1 are no longer 
represented by a single score of 1 on X, but rather 
by scores of 1 on D1 and 0 on D2.

Person Y X D1 D2

George 21 1 1 0
Tyrus 24 1 1 0
Mordecai 22 1 1 0
Joshua 31 2 0 1
Walter 30 2 0 1
Joseph 27 2 0 1
Cornelius 28 3 0 0
Theodore 26 3 0 0
Jack 29 3 0 0
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Dummy coding is well suited for an experiment 
where one of the groups is a control group. Mak-
ing the control group the last group allows for 
easy comparisons between the various groups and 
the control group. More on this later. For now, 
let’s focus on how to analyze this with regression. 
The independent variable, X, has now been re-
coded into two coded vectors. To find the relation-
ship between X and Y, we regress Y on the two 
coded vectors (i.e., Y on D1 and D2). We do not in-
clude X, the original categorical variable, in this 
analysis – the whole point of dummy coding is to 
use these coded vectors in place of X.

Enough with the preamble, how did it work? 
A regression of Y on the two coded vectors re-
sulted in an R2 of .82, which is significant, 
F = 13.37, p < .01. Where have I seen those num-
bers before? Oh yes, that’s the same F statistic we 
obtained from the ANOVA (same p value too). 
And the R2 is a match to the eta-square. Our two 
effect size indicators (R2 and eta-square) are the 

same, as are our two significance tests. So we’ve 
done it. With dummy coding, we were able to take 
a categorical variable and represent it in a way that 
forces regression to treat it as a categorical vari-
able instead of a continuous variable. Pretty cool.

Now that we’ve passed that hurdle, what 
about the regression equation? Is that useful? 
Well, yes it is. Here’s how. The y-intercept is the 
mean of the last group. Big deal, you say. There 
are twenty other ways, all much easier, to com-
pute the mean score on Y for a given group. Well, 
there’s more. The regression coefficients for each 
coded vector indicate the difference between that 
group’s (whichever group is coded as 1.0 for that 
vector) mean and the last group’s mean. For exam-
ple, b1, which is the regression coefficient for the 
first coded vector (i.e., D1), indicates the difference 
between the means of Group 1 and the last group. 
b2 indicates the difference between the means of 
Group 2 and the last group. Big deal, you say, any-
one can compute group means and the differences 
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between them. You can even do the difference part 
with a pencil on the back of an envelope, you say. 
Let me finish. Here’s the kicker: The significance 
test of the regression coefficient tells us if this dif-
ference is significant. Checkmate, Mr. Complainer.

Let’s look at our example data to understand 
these features. For our example, the regression 
equation is Y′� = 27.67 −5.33D1 + 1.67D2. Thus, the 
mean of the third group (the last group) is 27.67. 
As for the other groups, Group 1’s mean is 5.33 
points less than Group 3’s mean (because the re-
gression coefficient for D1, which corresponds to 
Group 1, is -5.33), and Group 2’s mean is 1.67 
points greater than Group 3’s mean (b2 = 1.67). 
What about the significance tests of the regression 
coefficients? Here are the results: b1 is significant (
p < .01 for t test of b1), b2 is not (p > .05 for t test 
of b2). Thus, we can conclude two things. First, be-
cause the F test of R2 is significant, there are differ-
ences among the groups, a standard ANOVA con-
clusion. Second, because b1 is significant, Group 1 

is different from Group 3, a standard planned 
comparison/post hoc test type conclusion.

Other Dummy Coding Details

You may have a few questions at this point. 
Like, how do we obtain predicted Y? And does the 
squared correlation between predicted Y and ac-
tual Y equal what we obtained from our dummy 
coded regression analysis? Let me assure you that 
everything we learned from the old days of regres-
sion analysis still applies to the dummy coded 
days of regression analysis.

Let’s start with predicted Y. How do we obtain 
this? The answer is like before: Plug in scores on X 
(this time the dummy coded vectors) and solve for 
Y. For the first person in the dataset, George (a 
member of Group 1 with scores of 1 for D1 and 0 
for D2), this works out as follows:

Y′� = 27.67 −5.33(1) + 1.67(0)

188



Solving for Y′� results in a predicted Y of 22.33. All 
very easy. Wait a second, I just realized that 22.33 
is also the mean for Group 1. Why? Remember 
how we discussed that a is the mean of the last 
group and b1 is the difference between Group 1’s 
mean and the last group’s mean? Once you put 
those two coefficients together, you have the mean 
of Group 1.

What about predicted Y for someone in Group 
2? Just insert Group 2’s coded vector scores:

Y′� = 27.67 −5.33(0) + 1.67(1)

Solving for Y′� leads to 29.33. And finally, what 
about Group 3? Group 3’s coded vector scores are 
0 and 0. Inserting these values into the equation 
gives you:

Y′� = 27.67 −5.33(0) + 1.67(0)

Which of course becomes 27.67. The full dataset 
with predicted Y scores is listed below.

Person Y X D1 D2 Y′
George 21 1 1 0 22.33
Tyrus 24 1 1 0 22.33
Mordecai 22 1 1 0 22.33
Joshua 31 2 0 1 29.33
Walter 30 2 0 1 29.33
Joseph 27 2 0 1 29.33
Cornelius 28 3 0 0 27.67
Theodore 26 3 0 0 27.67
Jack 29 3 0 0 27.67

What about the correlation between predicted Y 
and actual Y? Just like with every other use of re-
gression, that correlation is the same as what we 
obtained from a regression analysis. In this case, 
when squared, it’s .82, the same value that we ob-
tained earlier.

What’s the message here? Predicted Y works 
just like before. And predicted Y is the same as the 
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mean Y score for a given group. (This, by the way, 
unlocks one of the secrets of regression analysis: 
The hidden meaning of predicted Y. Predicted Y is 
not just the score we predict for a person with a 
given score on X. It’s also the mean of Y scores for 
all people with a given score on X.) We won’t 
bother computing residual scores, but that’s the 
same as before too.

The Special Case of the Dichotomous Inde-
pendent Variable

Do we have to dummy code when the inde-
pendent variable is dichotomous? If this dichoto-
mous independent variable is coded as 0 and 1, 
then it is already dummy coded. Think about it: 
What’s your code if you’re in Group 1? One. And 
what’s your code if you’re in Group 2? Zero. The 
y-intercept still gives you the mean of the last 
group (i.e., the group coded as 0). The regression 
coefficient still tells you the difference between 
the last group and the group coded as 1. And the t 

test for this regression coefficient still tells you if 
this difference is significant. So, every dichoto-
mous variable coded as 0 and 1 has already been 
dummy coded and yields all of the associated bene-
fits.

Other Coding Schemes

Earlier I mentioned that dummy coding is just 
one of a family of coding techniques that we can 
use for our categorical independent variables. Also 
mentioned were effect coding and orthogonal cod-
ing. How are they different? Not much. Are we go-
ing to discuss them? Not really. Effect coding is 
pretty much pointless – it’s almost identical to 
dummy coding but with different subgroup com-
parisons. Orthogonal coding allows the researcher 
to test any conceivable comparison among specific 
groups (i.e., Is the average of Groups 1 and 3 
greater than than Group 2?), something that can 
be done with a standard ANOVA via planned com-
parisons. It’s a nice bonus, but the main value of 
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any coding scheme is the enabling of regression 
analysis to be used with a categorical independent 
variable. The extra stuff (specific comparisons 
among the various groups) is superfluous.

Closing Thoughts

We’ve seen how to use dummy coding to en-
able regression analysis with a categorical inde-
pendent variable, something that can be analyzed 
quite well with ANOVA. If you think about it, this 
is actually more work than ANOVA. Seems like a 
waste of time. What’s the point? The point is this: 
We’re just setting the stage here. Sure, there’s 
nothing special about using regression analysis to 
replicate the functions of ANOVA. But can an 
ANOVA handle a continuous variable (including 
evaluating whether a linear relationship exists)? 
Under limited circumstances*, yes. But even for 
those conditions analysis with ANOVA is rather 
cumbersome. (To make matters worse, ANOVA is 
sometimes employed when the independent vari-

able is wholly unsuited for it, resulting in a catego-
rization of an unmapiulated continuous variable – 
something no one should ever do).

What is the point of this discussion of continu-
ous variables in a chapter on categorical variables? 
What if you have a dataset with a continuous inde-
pendent variable and a categorical independent 
variable? ANOVA is definitely not the best tool for 
the job. Regression is the way to go.

*What circumstances? Where the independent variable has discrete val-
ues (e.g., 0 minutes, 30 minutes, 60 minutes – no values in between – 
with n people at each level) assigned by the researcher.
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11 Categorical and continuous 
independent variables in 
the same equation? 
Madness.

Or is it?

ATI and ANCOVA



Overview

In this chapter, we will combine procedures 
from previous chapters to build something new: 
the analysis of data with both categorical and con-
tinuous independent variables. Depending on the 
research design (e.g., true experiment, quasi ex-
periment, non experiment), there are a number of 
names and goals for these procedures. The two 
most prominent are Attribute-Treatment Interac-
tion (ATI) and Analysis of Covariance (ANCOVA). 
Before we get to those, we must first lay the foun-
dation.

Two Types of Continuous Variables

There are two types of continuous variables in 
the data analysis world. One type is where the con-
tinuous variable is measured as a continuous vari-
ables, with more or less all possible values. For an 
example of this type consider height. We may not 
measure height as a true continuum (where no 

two people have the exact same height), but our 
measure of height approximates a continuum to 
some degree (e.g., rounding to the nearest millime-
ter). Contrast this to the other type of continuous 
variable, an independent variable in a true experi-
ment where selected values along the continuum 
are chosen by the researcher. For example, people 
in a learning experiment could be assigned to one 
of four levels of study time: 0, 1, 2, or 3 hours. 
The continuous independent variable has four 
clear categories and these categories are the result 
of a decision made by the experimenter when he 
or she assigned people to various levels of study 
time (using terminology from the old days, we 
would call this a fixed variable), four distinct lev-
els with no values in between. We don’t need to 
do any artificial categorizing; the data already exist 
in four clean categories. To summarize, there are 
two types of continuous variables: those that are 
not manipulated and are (more or less) measured 
as a true continuum and those that are assigned 
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and only include selected values from the contin-
uum.

Continuous Variables and ANOVA

As mentioned in earlier chapters, ANOVA is 
designed to analyze the relationship between a 
continuous dependent variable and a independent 
variable (or variables) with discrete levels (either 
a categorical variable or a continuous variable with 
values assigned by the researcher). How well does 
ANOVA handle a continuous independent vari-
able? Well, if it’s a variable manipulated by the re-
searcher with selected levels chosen by the re-
searcher, then ANOVA can handle this just fine. A 
plain vanilla analysis of variance will tell you 
whether there are differences on the dependent 
variable for different levels of the continuous inde-
pendent variable. All well and good. But wait, if 
you analyzed that variable with regression analy-
sis, you would be able to determine whether there 
were not just differences on the dependent vari-

able but whether there was a linear trend to the 
data (a fairly important issue given that this is a 
continuous independent variable). In fact, regres-
sion pretty much exists to do this sort of thing. 
(That said, people develop habits and like to use 
their favorite tool for every purpose. Can ANOVA 
be modified to determine whether there is a linear 
trend to the data? Yes, but it is definitely more 
trouble than a regular regression analysis.)

To summarize, at this point we can say that 
for a certain type of continuous independent vari-
able (one where people are assigned to various 
pre-determined levels of the continuous variable), 
you can properly analyze the data with ANOVA. 
But I don’t know why anyone would want to when 
we live in a world where regression analysis ex-
ists.

But what of the other type of independent vari-
able, the one that is measured as a truly continu-
ous variable? Well, there is a way to do that with 
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ANOVA, but doing so requires one to force an arti-
ficial categorization upon it, a grievous sin. Why? 
Because categorizing a continuous variable results 
in the removal of important information. Just as 
an example, consider height. Height is a continu-
ous variable. Now, let’s dichotomize it. All scores 
greater than six feet will be coded as tall (numeri-
cally, we could use a 1 for the code), and all scores 
less than six feet will be coded as short (we could 
use 0 for these). Thus, someone with a height of 5 
feet 11 inches is treated the same as someone at 5 
feet 2 inches; both are scored as 0. These very dif-
ferent scores are being treated as if they were the 
same. Of course, the same problem applies to the 
6 foot 1 inch person and the 6 foot 5 inch person. 
When data are dichotomized (or sliced into as 
many categories as you want), we throw out real 
information. This information removal reduces 
the accuracy and sensitivity of our measurement 
and analyses. Plus, the data no longer represent re-
ality very well. Dichotomizing or categorizing con-

tinuous variables just so that we can analyze them 
with ANOVA results in a far worse analysis than 
keeping them continuous and analyzing them the 
right way.

So if the continuous variable is not one with 
discrete, selected values (e.g., 0, 1, 2, or 3 hours) 
assigned by the researcher, then forget about 
ANOVA – if you want to analyze data where a con-
tinuous variable is measured in all of its continu-
ous glory, then regression is the only game in 
town. And if we have a continuous independent 
variable and a categorical independent variable in 
the same analysis, regression analysis is the best 
tool for the job. We’ll keep the continuous variable 
as it is and dummy code the categorical variable.

Continuous and Categorical Independent Vari-
ables: Testing for Interactions

The previous two chapters introduced us to 
testing for moderation (Chapter 9) and dummy 
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coding (Chapter 10). In our discussion of moder-
ated multiple regression, we mentioned that mod-
eration means almost exactly the same thing as in-
teraction. The only difference is one of causality: 
interaction implies causation, whereas moderation 
does not. Thus, we will test for interactions in the 
same way that we tested for moderation: create a 
product vector, regress the dependent variable on 
the two independent variables, regress the depend-
ent variable on the two independent variables and 
the product vector, and test the change in R2 for 
significance.

To this procedure we’re going to add dummy 
coding (see Chapter 10 for a refresher on the proc-
ess of dummy coding). The combination of these 
two procedures, interaction testing and dummy 
coding, will allow us to test for interactions and 
main effects for research designs that include both 
continuous and categorical independent variables. 
In essence, this will allow us to conduct the classic 
multi-factor ANOVA-type analysis (check for inter-

actions first, then check for main effects for each 
independent variable) for data situations that can 
not be addressed properly via ANOVA.

The steps for testing for an interaction in mul-
tiple regression are quite familiar by now. What 
follows are those steps, customized for data with a 
continuous and a categorical independent variable.

I. Dummy code the categorical independent 
variable.
II. Create product vector(s). This will be the 
simple product of each coded vector with the 
continuous independent variable. And yes, if 
there are multiple coded vectors, then there 
will be multiple product vectors.
III. Regress the dependent variable on the con-
tinuous independent variable and the dummy 
coded categorical independent variable.
IV. Regress the dependent variable on the con-
tinuous independent variable, the dummy 
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coded categorical independent variable, and 
the product vector(s).
V. Compute the change in R2 and test it for sig-
nificance using the familiar F test for ΔR2.

F =
(R2

big −R2
small)/(kbig −ksmall)

(1 −R2
big )/(N −kbig −1)

Continuous and Categorical Independent Vari-
ables: Testing for Main Effects

The test for main effects is even simpler. 
There are two independent variables, so there are 
two main effects to test. However, for reasons that 
will be clear later, the main effect with which we 
are more concerned is likely the one for the cate-
gorical independent variable. The steps for testing 
for the main effect for the categorical independent 
variable are:

I. Make sure that there is not an interaction. 
Yes, this means that the interaction test is 
step one for a main effect test.
II. Regress the dependent variable on the con-
tinuous independent variable.
III. Regress the dependent variable on the con-
tinuous independent variable and the dummy 
coded categorical independent variable.
IV. Compute the change in R2 and test it for 
significance using the familiar F test for ΔR2.

So those are the procedures for testing for in-
teractions and main effects on data with both cate-
gorical and continuous independent variables. We 
will reference these two procedures multiple times 
in the discussion of how they are applied to vari-
ous research designs.

Treatments-By-Levels Design

Just to be clear, this treatments-by-levels design 
name is not a standard name. Not many people 
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use it, but I think it describes the design of the pre-
vious example fairly well. To refresh our memo-
ries, the situation is a true experiment where peo-
ple are randomly assigned to various classes (or 
groups) of the categorical independent variable 
(i.e., the treatment) and various pre-determined 
levels of the continuous independent variable. 
Thus, the values on the continuous variable do 
not have a continuous range from some value to 
another; rather, they have clearly separated levels.

So that’s the setup for a treatments-by-levels 
design. How do we analyze it? Well, let’s see, how 
do we handle a categorical independent variable in 
regression analysis? We dummy code it (or use ef-
fect or orthogonal codes, if that’s your thing). And 
because there might be an interaction between our 
two independent variables, we’ll need to test for 
that first.

The steps for testing for an interaction when 
there are both continuous and categorical inde-

pendent variables were given at the start of the 
chapter. Long story short, if the addition of the 
product vector(s) to the model results in a signifi-
cant R2, then we have a significant interaction.

If the interaction is not significant, we may 
continue with analyses of main effects (e.g., Is 
there a significant relationship between the de-
pendent variable and either of the continuous inde-
pendent variables?). The test for main effects was 
also listed at the beginning of the chapter. Here’s 
the short version: Regress the dependent variable 
on the continuous independent variable, regress 
the dependent variable on the continuous inde-
pendent variable and the dummy coded categorical 
independent variable, test the change in R2 for sig-
nificance. If the change is significant, then there is 
a main effect for the categorical independent vari-
able. To test for a main effect for the continuous in-
dependent variable, there are a couple of ways, but 
the shortcut version is to just examine the t test 
for the continuous independent variable in the pre-
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vious regression analysis (the one with both inde-
pendent variables). (If you don’t like shortcuts, 
here’s the long version: Regress the dependent 

variable on the dummy coded categorical independ-
ent variable, regress the dependent variable on the 
categorical and continuous independent variables, 
and test the change in R2.)

Let’s get back to the interaction. What does 
an interaction mean in an analysis where one of 
the independent variables is continuous? It means 
that if we graph separate regression lines for each 
group, we would observe that the lines are not par-
allel (i.e., there are differences in slope). An exam-
ple of a graph displaying an interaction is shown 
in Figure 1. Note how each class (i.e., group) of 
the categorical independent variable has its own re-
gression line. As a point of contrast, Figure 2 
shows a graph of data where there is not an inter-
action. Another way to think about interactions is 
this: An interaction means that the relationship be-
tween the dependent variable and continuous inde-
pendent variable is different (different regression 
coefficients) for different categories of the categori-
cal independent variable.
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Graph of the relationship between a categorical independent variable 
(with separate lines for each class of the categorical variable; top line 
is Group 1, bottom line is Group 0), a continuous independent variable 
(X) and a continuous dependent variable (Y). Note how the lines have 
different slopes.

FIGURE 1 Separate Regression Lines by Group: Slope 
Differences
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And finally, what if the categorical independ-
ent variable has more than two groups? In our 
learning theory example we had just two training 
conditions. Let’s say there are three conditions. 
How do we analyze this? The steps are still the 
same: dummy code, create product vectors, re-
gress, regress again, and analyze ΔR2. The only dif-
ference is that we’ll have more coded vectors (two 
coded vectors in the three-condition example) and 
more product vectors (two of these for this exam-
ple). There is a product vector for every combina-
tion of coded vectors and continuous independent 
variables (e.g., D1 × X and D2 × X; where X is the 
continuous independent variable).

An example dataset showing coded vectors 
and product vectors is given below. Let’s say that 
the group to which each person is assigned is one 
of three different reward conditions and that the 
continuous independent variable is study time in 
minutes. The dependent variable is the score on a 
recall test. Group has been dummy coded into two 

coded vectors (D1 and D2). Product vectors have 
been formed.
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Graph of the relationship between a categorical independent variable 
(with separate lines for each class of the categorical variable; top line 
is Group 1, bottom line is Group 0), a continuous independent variable 
(X) and a continuous dependent variable (Y). Note how the lines have 
the same slopes but different y-intercepts.

FIGURE 2 Separate Regression Lines by Group: Same 
Slopes, Different Intercepts



Person Y Group X D1 D2 D1 x X D2 x X

Cutler 22 1 25 1 0 25 0
James 21 1 50 1 0 50 0
Hector 13 2 25 0 1 0 25
Edward 31 2 50 0 1 0 50
Bill 13 3 25 0 0 0 0
Mercer 12 3 50 0 0 0 0

All that remains are the two regression analy-
ses. The first analysis is the regression of Y on X, 
D1, and D2. The second is the regression of Y on X, 
D1, D2, D1 × X, and D2 × X. The difference between 
the two R2 values indicates the magnitude of the 
interaction effect. The ΔR2 F test determines the 
significance of it.

Attribute-Treatment Interaction

So that takes care of how we analyze data in a 
treatment-by-levels design. To refresh, the 
treatment-by-levels design occurs in a true experi-
ment where people are randomly assigned to vari-
ous, pre-determined classes or levels on both the 
continuous and categorical independent variables. 
The analytic procedure for regression analysis was 
not too complicated. Now it’s time to move to a 
new area, one where people are not randomly as-
signed to various levels on the continuous inde-
pendent variable. No longer a fixed variable, this 
variable is a random variable. Analysis of this de-
sign is called an attribute-treatment interaction, or 
ATI. It’s also called an aptitude-treatment interac-
tion. I’d like to call it a few other names, but let’s 
just stick with ATI. The good news is that as far as 
our analysis goes, nothing changes from the days 
of the treatment-by-levels design. Exact same 
analyses.
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An ATI analysis can be done with data from 
two types of experimental designs. Before I de-
scribe these, let me reiterate that in these designs 
people are not assigned (randomly or otherwise) 
to various levels of the continuous independent 
variable. A person’s score on the continuous inde-
pendent variable is a property of the person – the 
person brings that score to the table. We don’t as-
sign it. If that’s clear, let’s get back to the experi-
ment types. First, there is the true experiment, 
where people are randomly assigned to the various 
classes (i.e., groups) of the categorical independ-
ent variable by the experimenter. Second, there are 
the quasi experiment and the non experiment 
(both designs lumped together for this discussion) 
where people are not randomly assigned to the 
various classes (i.e., groups) of the categorical vari-
able by the experimenter; whatever manipulation 
being done here (and there is no manipulation 
with the non experimental design) is done with 
pre-existing groups.

There is some good news and bad news about 
these different research designs. The good news is 
that the ATI analytical procedure is the same as it 
was for treatments-by-level regardless of the ex-
perimental design (true experiment, quasi experi-
ment, and non experiment). The bad news is that 
drawing conclusions from these analyses is much 
more difficult with the quasi and non experimen-
tal designs. Which is pretty much always the case 
with those two designs. They’ve always been trou-
blemakers.

So why the weird names for ATI? It relates to 
the continuous independent variable, a variable 
which is not manipulated by the experimenter. 
Scores on this variable are a property of the per-
son, like height or intelligence. No one assigned 
people to a height of six feet or an intelligence of 
110. These scores are an attribute of the person. A 
common study using this design involves a treat-
ment of some sort being performed on people 
with varying levels of the continuous variable. The 
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question in an ATI analysis is whether there is an 
interaction between the characteristic of the per-
son (the continuous variable) and the treatment 
(the categorical variable) as they relate to the de-
pendent variable.

Two ATI Examples

Consider the following basketball-themed ex-
ample. We could perform a study on how two tech-
niques for shooting free throws (the treatment) 
for people of various heights (the attribute) relate 
to free-throw percentage (the dependent variable). 
We might think that there will be difference in the 
effectiveness between these two techniques. We 
might also think that there will be an effect for 
height such that taller people will be more success-
ful. Neither of these ideas represent an interac-
tion; they are both main effects. The interaction 
would be something like: Taller people perform 
better with Technique A, but shorter people per-

form better on Technique B. The ATI analysis tests 
for this interaction.

And for that second example, let’s say we 
want to explore whether there is a difference in 
achievement test scores between two school types 
(i.e., private versus public schools). School type is 
our categorical variable; however, in this study no 
one is assigned, randomly or otherwise, to one 
school type or another. Our continuous variable 
could be something like student intelligence, an at-
tribute of the person. This research design clearly 
falls into the quasi/non experiment category. Once 
again, we are interested in whether there is an in-
teraction between the categorical and continuous 
independent variables. Perhaps the relationship be-
tween student intelligence and scholastic achieve-
ment is different for the two school types. Maybe 
the intelligence-achievement relationship is 
stronger for students at public schools than for pri-
vate schools.
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ATI Details

We already know how this analysis proceeds 
from multiple previous parts of the chapter, so 
there is no need to list it again. Suffice it to say 
that it ends with a change in R2 significance test. If 
this change in R2 is significant, then we have a sig-
nificant interaction – the regression lines, when 
computed separately for each of the groups, do 
not have the same slope (see Figure 1 for an exam-
ple of slope differences). It’s just the same old pro-
cedure, only applied to different research contexts.

You may be wondering how exactly we obtain 
separate regression equations for each class (i.e., 
group) of the categorical variable. There are a few 
ways. I’ll share two. First, we could do exactly 
what the description suggests: Perform a regres-
sion analysis on members of each class separately. 
That is, we regress the dependent variable on the 
continuous independent variable for members of 
Group 1 only. From this we obtain a regression 

equation. We repeat this procedure for the rest of 
the groups. Each of these regression equations de-
scribe how the continuous independent variable re-
lates to the dependent variable for members of a 
given class of the categorical independent variable. 
As mentioned, a significant interaction means that 
the slopes are different among the different 
groups.

As for the second method for obtaining sepa-
rate regression equations, we can compute them 
from the overall regression equation. By overall re-
gression equation, I mean the one containing the 
interaction term. Consider the following equation:

Y′� = 27.1 + 5.2X + 1.6D1 + 13.4(D1 × X )

Where:
X is the continuous independent variable.
D1 is the dummy coded vector for the categori-
cal independent variable (because there are 
only two groups in this example, only one 
coded vector was necessary).
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D1 × X is the product vector of the categorical 
and continuous independent variable.

So how do we get those separate regression equa-
tions? By substituting the codes for the categorical 
variables and simplifying the equations. We’ll 
start with the easy one first. Using terminology 
from our basketball example, let’s say that the 
Technique A group is coded as 0 for D1. Substitut-
ing 0 every instance of D1 in the equation yields:

Y′� = 27.1 + 5.2X + 1.6(0) + 13.4(0 × X )

Because zero times anything is zero (the greatest 
property in mathematics – I’ll fight anyone who 
says otherwise), this simplifies to:

Y′� = 27.1 + 5.2X

Members of the Technique B group are coded at 1 
for D1. Thus, every time we encounter a D1, we’ll 
insert a 1.

Y′� = 27.1 + 5.2X + 1.6(1) + 13.4(1 × X )

Which simplifies to:

Y′� = 28.7 + 5.2X + 13.4X

But wait, we can simplify a bit more by combining 
X terms:

Y′� = 28.7 + 18.6X

Thus, the regression equation describing the rela-
tionship between the continuous independent vari-
able (height) and free-throw percentage for people 
taught how to shoot with Technique A is 
Y′� = 27.1 + 5.2X and the equation for people taught 
with Technique B is Y′� = 28.7 + 18.6X. Note how 
the y-intercepts for these regression lines are 
about the same, but the slopes are very different. 
The relationship between between the continuous 
independent variable and the dependent variable 
is different for members of different classes of the 
categorical independent variable.
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ATI Assumptions

The most important assumption of the ATI 
model is that there is not a causal relationship be-
tween the treatment (categorical independent vari-
able) and control attribute variable (continuous in-
dependent variable). To state this differently, a per-
son’s standing on one independent variable does 
not affect, or play any causal role, in his or her 
standing on the other variable. In a treatment-by-
levels true experiment (random assignment to 
groups), a causal relationship between the inde-
pendent variables isn’t possible as a person’s 
standing on both variables is under control of the 
researcher (assuming a fully-crossed design). In 
the version of ATI where people are randomly as-
signed to classes of the categorical (but not the 
continuous) independent variable, it is possible 
that the treatment could affect people’s scores on 
the attribute variable (although the converse isn’t 
possible in this design). Just think how easily that 
could happen if the attribute variable was a person-

ality measure. Such an effect would be a serious 
problem for our analyses. Fortunately, there is an 
easy solution: Measure the attribute variable (the 
continuous independent variable) before exposing 
people to the treatment. Long story short, do not 
measure the continuous independent variable af-
ter administering the treatment to people in the 
experiment.

That’s the good news version of this. What 
about the bad news? If this is a quasi or non ex-
periment, where people are not assigned to either 
variable, then there is no way to be certain that 
one variable didn’t affect the other. Like we’ve said 
many times before, life is tougher with those de-
signs. The analysis may be the same, but drawing 
a conclusion is a more difficult proposition.
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Analysis of Covariance

Alright, so enough about interactions. If this 
were a two-factor design in an ANOVA, and your 
interaction test was non significant, what would 
you do next? You would examine main effects. 
Well that’s what we’ll do with regression. The 
only difference is that when one of the variables is 
a continuous variable (and is considered to be a 
control variable), as is the the case with the attrib-
ute variable in an ATI design, the analysis of main 
effects takes on a special significance. This proce-
dure is called Analysis of Covariance, or AN-
COVA. To understand how this works, let’s go 
back to our two examples from our ATI discus-
sion, the basketball example and the scholastic 
achievement example.

Two ANCOVA Examples

First, the basketball example. The dependent 
variable is free throw percentage. The independent 
variables are shooting technique and height. Peo-
ple were randomly assigned to one of two shoot-
ing techniques. No one was assigned a height 
(they brought that score with them). So we tested 
for an interaction (the ATI analysis) and found 
none. Time to look for main effects. The big issue 
concerns whether there is a difference in free 
throw percentage rate between the two shooting 
techniques after controlling for height. It’s that last 
part that’s important. We measured height for a 
reason – we thought it might be related to success 
and we wanted to control for it. But wait, you say, 
weren’t people randomly assigned to groups? And 
as such, shouldn’t the heights of the members of 
these groups be about the same? And wouldn’t 
that make height pretty much an irrelevant vari-
able? The answers are yes, yes, and yes. And 
maybe another yes. I lost track of how many ques-
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tions you asked. So why go to trouble of measur-
ing and controlling for height? The answer is that 
there are still likely to be differences between the 
two groups (small though they may be) and con-
trolling for these differences increases the preci-
sion of the analysis. Random assignment to 
groups makes the groups equal on every variable 
in theory. In reality, the groups will not be exactly 
equal. Flip a coin a hundred times. The mathemati-
cal expectation is that you will obtain 50 heads. In 
theory. In practice, you are not very likely to ob-
serve exactly 50 heads. But you are very likely to 
see something close to 50 heads. Long story short, 
random assignment isn’t perfect. ANCOVA can be 
used to pick up the slack.

You see, we could analyze the data from our 
basketball study a different way. We could just for-
get the height variable and analyze the data with 
an ANOVA. Think about it. Without the continu-
ous independent variable, all we have left is a di-
chotomous independent variable and a continuous 

dependent variable, the very task for which 
ANOVA was designed (because there are only two 
groups in this example, we could even use a t 
test). But by controlling for this variable (height), 
we remove some irrelevant variance and end up 
with a more precise analysis. We are actually more 
likely to find an effect for training technique by 
controlling for this variable (with ANCOVA) than 
by ignoring it (ANOVA).

As for our other example, the scholastic 
achievement example, the concept is the same as 
it was for the basketball example. Drawing a con-
clusion is a little tougher. The control variable is 
student intelligence. The categorical independent 
variable is school type: public or private. The re-
search question is whether one type of school 
leads to better student achievement after control-
ling for student intelligence. Because students are 
not randomly assigned to school type, they are 
likely to be very different in terms of many individ-
ual difference variables, like intelligence. In this 
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analysis, ANCOVA is used to control for these 
pre-existing group differences. This means that 
the groups are different in terms of the continuous 
independent variable and then are statistically ad-
justed so that those differences are removed. 
Thus, when we investigate scholastic achievement 
by school type, we might find a large effect for 
school type, with private school students outper-
forming public school students. But we also find 
that the private school students have higher intelli-
gence test scores than the public school students 
have. When we control for this intelligence test 
score difference, we may find that the achievement 
test score difference between the schools has dis-
appeared. We would then conclude that school 
type, independent of student intelligence, is not re-
lated to student achievement. If, on the other 
hand, we still find a difference between the 
schools after controlling for intelligence, we would 
conclude that private schools, independent of stu-
dent intelligence, do lead to higher student 

achievement than public schools. As cool as this 
process sounds, there are too many assumptions 
that must be met (and aren’t met) for our conclu-
sions to be sound. More on these assumptions 
later.

Considering our two examples, we can see the 
two reasons for conducting an ANCOVA. The bas-
ketball example, a true experiment, used AN-
COVA to increase the precision of an analysis. The 
scholastic achievement example, featuring a non 
experimental design, used ANCOVA to control for 
pre-existing differences between groups as a way 
to make comparable what is not, in its native con-
dition, comparable. The first purpose works well, 
and the second, although sounding cool beyond 
words, does not.
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ANCOVA Details

So how do we execute the ANCOVA? It’s noth-
ing more than the test for main effects that we dis-
cussed at the beginning of the chapter. I’ll briefly 
list the steps. First, and this is most important, we 
check the to see if there is an ATI. If we find an in-
teraction (i.e., slope differences), we stop. We 
can’t control for a variable if it doesn’t have a con-
sistent relationship with the other variables (the 
very nature of an interaction is that the relation-
ship between two variables changes as a function 
of a third variable). This is the same logic that is 
found with any multi-factor ANOVA: Test for inter-
actions first. With the ATI procedure; if an interac-
tion is found, interpreting the main effects is 
greatly complicated (and pretty much impossible). 
If no interaction is found, then we can proceed 
with the ANCOVA proper: Regress the dependent 
variable on the continuous independent variable, 
regress the dependent variable on the continuous 
independent variable and the dummy coded cate-

gorical independent variable, and test the change 
in R2 for significance. If ΔR2 is significant, then we 
conclude that there are score differences on the de-
pendent variable among our groups (i.e., the cate-
gorical independent variable) after controlling for 
scores on the continuous independent variable. In 
terms of regression lines, these differences would 
be observed as differences in the y-intercepts.

Figure 3 is displays regression lines from data 
where the ANCOVA was significant (this is the 
same graph from Figure 2 – I’m repeating it here 
for convenience). Note how the regression lines 
are parallel (i.e., have the same slope). The similar 
slopes are found when the ATI is non significant, a 
first step to conducting an ANCOVA. Also note 
how the y-intercepts are not the same; that’s why 
the ANCOVA was significant.

As a point of contrast, Figure 4 displays regres-
sion lines taken from a dataset with a non signifi-
cant ATI and a non significant ANCOVA. Note 

210

figure:56A9FCE9-5C85-49E0-9AD7-2C1460151E4C
figure:56A9FCE9-5C85-49E0-9AD7-2C1460151E4C
figure:4262A57A-C6BE-49AE-B392-214EB3ED1664
figure:4262A57A-C6BE-49AE-B392-214EB3ED1664
figure:864C6A4F-0AA0-480E-B270-CE026313B2BA
figure:864C6A4F-0AA0-480E-B270-CE026313B2BA


how both lines have more or less the same slope 
and y-intercept. They’re not exactly the same, but 

the differences are trivial. Hence, the non signifi-
cant ΔR2 F tests.
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Graph of the relationship between a categorical independent variable 
(with separate lines for each class of the categorical variable; top line 
is Group 1, bottom line is Group 0), a continuous independent variable 
(X) and a continuous dependent variable (Y). Note how the lines have 
the same slopes, but different y-intercepts.

FIGURE 3 Separate Regression Lines by Group: Same 
Slope, Different Intercepts

Graph of the relationship between a categorical independent variable 
(with separate lines for each class of the categorical variable), a con-
tinuous independent variable (X) and a continuous dependent variable 
(Y). Note how the lines have the same slopes and the same y-
intercepts.

FIGURE 4 Separate Regression Lines by Group: No Dif-
ferences in Slope or Intercept



Let’s get back to the big picture of the AN-
COVA procedure. There’s an R2 based on one inde-
pendent variable. Then there’s an R2 based on 
both independent variables. We’re interested in 
the difference between these R2 values to see if the 
added independent variable has a significant rela-
tionship with the dependent variable after control-
ling for the other variable. Where have we heard 
this before? This is the same concept as semipar-
tial correlation. In fact, one of the ways we dis-
cussed for to computing a semipartial (a squared 
semipartial, to be exact) was with the following 
equation.

r2
Y(X.Z) = R2

YXZ −R2
YZ

In this equation, Z is the control variable, and X is 
the independent variable. If Z is a continuous vari-
able and X is a dummy coded categorical variable, 
then you have the ANCOVA procedure we just de-
scribed. Y is regressed on Z. Y is then regressed on 
Z and X. The difference between the R2 values indi-

cates the relationship X has with Y after control-
ling for Z. Thus, the ΔR2 from ANCOVA and the 
squared semipartial correlation are the same. 
Well, the procedures are the same. The goals of 
the study, the nature of the variables, and the inter-
pretations of the results may be very different.

ANCOVA Assumptions

As mentioned above, there are two reasons 
why researchers conduct ANCOVAs. The first is to 
increase the precision of an analysis of data within 
a true experiment. The second is to control for the 
sort of pre-existing group differences that would 
be found within a quasi or non experimental de-
sign. And, as mentioned, there are so many as-
sumptions that must be met that any conclusions 
drawn from an analysis done for the second pur-
pose are not likely to be correct. What are these as-
sumptions, you wonder. Careful what you ask 
for…

212



We’ll start with the most important assump-
tions. One of these is something we have already 
discussed: no causal relations between the two in-
dependent variables. As mentioned, this is easy to 
establish if people are randomly assigned to vari-
ous treatment classes and the continuous variable 
is measured before the treatment is administered. 
This is difficult to establish if the groups are pre-
existing (as is the case with the quasi and non ex-
perimental designs). So that’s strike one against 
those designs.

A second assumption is that we have not omit-
ted a relevant variable from the analysis. That is, 
did we control for all of the variables for which we 
should have controlled? If we left something rele-
vant out, then we will conclude that there is too 
much of an effect for the categorical independent 
variable. This error is a type of specification error, 
if you like fancy names. The only way to know if 
you controlled for everything relevant is to re-
search and identify the correct theoretical frame-

work for the problem at hand. If, in the course of 
your research, you missed something important 
and didn’t include that variable as a control vari-
able, you’re in trouble. Consider our public/
private school example from earlier: The only con-
trol variable was intelligence. Now, intelligence is 
an excellent control variable in this situation, but 
don’t you think there might be a few other vari-
ables that are also important? On what other vari-
ables might public and private school students dif-
fer? Maybe parental emphasis on scholastic achieve-
ment. Maybe access to tutors outside of school. 
Maybe the number of years spent in pre-school. 
Maybe about fifty other things. If our groups differ 
on one or more of these variables (i.e., correlate 
with them), and these variables have an effect on 
the dependent variable, then failing to control for 
them results in an overstated effect for the cate-
gorical independent variable. It is primarily for 
this reason that explanatory research within a 
quasi or non experimental design is so difficult.
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It gets worse. Another assumption is that the 
independent variables are measured without error. 
This isn’t much of a problem with categorical inde-
pendent variables. But it is a big problem with con-
tinuous independent variables (unless it’s a fixed 
independent variable in a true experiment, like 
study time). If a hundred years of measurement 
theory and research has taught us anything, it’s 
that any time we measure anything, there’s error. 
So that assumption is violated.

What are the effects measurement error in the 
independent variable? First, R2 will be reduced, 
but that’s not the bad part. The bad part is that 
when we use a poorly measured (i.e., too much 
random error) variable as a control variable, we do 
not make enough of an adjustment, and we con-
clude that the categorical independent variable has 
a greater effect on the dependent variable than it 
really does. Thus, the net result of this error is 
just like a model specification error (leaving our a 
relevant variable); it causes us to conclude that 

the categorical independent variable has a greater 
effect than it really does.

The remaining assumptions are child’s play by 
comparison. They include nonlinearity, extrapola-
tion errors, and the use of proxy variables. Let’s fo-
cus on the last one. Proxy variables are variables 
that we measure instead of the actual variables 
that we should be measuring. Proxy variables are 
merely correlated with the variables we should be 
measuring. As an example, consider the study 
mentioned in the first chapter (Armor, 1972). The 
results shows that owning a refrigerator was corre-
lated with student verbal achievement. It should 
be obvious that refrigerator ownership is a proxy 
for parental wealth. Although manipulating the 
real variable (wealth) may result in a change in ver-
bal achievement (and I’m not saying that it would, 
just may), manipulating the proxy variable (by, 
say, buying people refrigerators) is extremely un-
likely to result in a change in verbal achievement. 
Using a variable correlated with the actual rele-
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vant variable is, in essence, another form of meas-
urement error and will have the same result: an in-
sufficient degree of adjustment and an erroneous 
conclusion regarding the role of the categorical in-
dependent variable.

After considering all of these assumptions and 
the profound unlikeliness that some of them will 
ever be supported, I think the big question is: 
Why does anyone use ANCOVA for adjustment? 
And when they do, why would they think that any-
one else would accept the conclusions they draw 
from their analysis? I guess that’s two big ques-
tions, but you get the idea.

Concluding Thoughts

In this chapter we’ve discussed how to use re-
gression analysis to analyze data gathered within a 
variety of experimental designs. The common 
threads through these analyses are as follows. 
First, we have at least one continuous independ-

ent variable and at least one categorical independ-
ent variable. If all of the independent variables 
were categorical, then this would be an ANOVA 
chapter (although you could still do it with 
dummy coding and regression…). Second, regard-
less of experimental design and hypotheses, the 
first step is to check for an interaction between 
the independent variables and the dependent vari-
able (i.e., the ATI analysis). Third, if no interac-
tion is found, then we can examine main effects, 
including a type of analysis called ANCOVA where 
we examine whether there is a effect for one vari-
able after controlling for another. Fourth, the pro-
cedure for these analysis (ATI and ANCOVA) in-
volves dummy coding the categorical independent 
variable, creating product vectors (for ATI), con-
ducting a regression analysis, repeating the analy-
sis with a new term added to the regression equa-
tion (product vectors for ATI, coded vectors for 
the categorical independent variable for AN-
COVA), and testing the change in R2 for signifi-
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cance. And finally, what we can conclude from 
these analyses depends greatly on our research de-
sign (true experiment, quasi experiment, or non 
experimental design). It’s a simple matter to draw 
conclusions from the analysis of data collected 
within a true experimental design. It’s much more 
difficult to draw sound conclusions when the de-
sign is quasi or non experimental.

In closing, have you ever considered that some-
times we earnestly desire to find an interaction, 
and at other times an interaction is the last thing 
we want to see? If we hypothesized an interaction, 
conduct our ATI analysis, and fail to find an inter-
action, we’re disappointed. To the converse, if we 
hypothesized that there will be group differences 
after controlling for some variable, we test this hy-
pothesis with an ANCOVA, which can only be 
done if there is not an interaction. If we find an in-
teraction, we’re disappointed because the interac-
tion precludes us from conducting the analysis we 

desired and from testing the hypotheses we 
wanted to test. Life’s funny that way.
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12 If someone else hadn’t 
already thought of it, I’d 
never figure it out.
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