## Image Transformation

## Outline

- Geometric
- Photometric
- Application: Mosaicing


## Geometric

- Estimate 2D transformation

$$
T(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)
$$

## 2-D Transformations

- Types
- Translation
- Scaling
- Rotation
- Shear


## 2-D Translation



## 2-D Translation



## 2-D Translation



$$
\binom{x}{y}
$$

2-D Translation


$$
\binom{x}{y}+\binom{\Delta x}{\Delta y}
$$

$$
\begin{gathered}
\text { 2-D Translation } \\
\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{\Delta x}{\Delta y}
\end{gathered}
$$

2-D Scaling



## 2-D Scaling



Horizontal shift proportional to horizontal position

## 2-D Scaling



Vertical shift proportional to vertical position

## 2-D Scaling




## 2-D Rotation



This is a counterclockwise rotation

2-D Rotation


This is a counterclockwise rotation



## 2-D Shear (horizontal)



## 2-D Shear (horizontal)



## 2-D Shear (horizontal)



$$
\binom{z}{z}=\binom{1}{y}
$$

## Representing Transformations

- Note that we've defined translation as a vector addition but rotation, scaling, etc. as matrix multiplications
- It's inconvenient to have two different operations (addition and multiplication) for different forms of transformation
- It would be desirable for all transformations to be expressed in a common form


## Representing Transformations

- Note that we've defined translation as a vector addition but rotation, scaling, etc. as matrix multiplications
- It's inconvenient to have two different operations (addition and multiplication) for different forms of transformation
- It would be desirable for all transformations to be expressed in a common form
- Solution: Homogeneous coordinates


## Homogeneous Coordinates

- Let $\mathbf{x}=\left(x_{1}, x_{2}\right)^{T}$ be a point in 2D space
- Change to homogeneous coordinates:

$$
\mathbf{x}=>\left(\mathbf{x}^{T}, 1\right)^{T}
$$

- Defined up to scale

$$
\left(\mathbf{x}^{T}, 1\right)^{T}=>\left(w \mathbf{x}^{T}, w\right)^{T}
$$

- Can go back to non-homogeneous representation as follows:

$$
\left(\mathbf{x}^{T}, w\right)^{T}=>\mathbf{x} / w
$$

Homogeneous Coordinates: Translations

- 2-D translation of a point was expressed as a vector addition $\mathbf{x}^{\prime}=\mathbf{x}+\mathrm{t}$
- Homogeneous coordinates allow it to be written as a multiplication by a $3 \times 3$ matrix:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
\mathbf{I d} & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right) \mathbf{x}
$$

Example: Translation with homogeneous coordinates

- Old way: $\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{\Delta x}{\Delta y}$
- New way:

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & \Delta x \\
0 & 1 & \Delta y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

## Homogeneous Coordinates: Rotations, etc.

- A 2-D rotation, scaling, shear or other transformation normally expressed by a 2 x 2 matrix R is written in homogeneous coordinates with the following $3 \times 3$ matrix:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
\mathbf{R} & 0 \\
\mathbf{0}^{T} & 1
\end{array}\right) \mathbf{x}
$$

## General Formulation

- General formulation

$$
\begin{aligned}
\left(\begin{array}{c}
\tilde{x} \\
\tilde{y} \\
\tilde{z}
\end{array}\right) & =\left(\begin{array}{lll}
t_{1} & t_{2} & t_{3} \\
t_{4} & t_{5} & t_{6} \\
t_{7} & t_{8} & t_{9}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \\
x^{\prime} & =\frac{t_{1} x+t_{2} y+t_{3}}{t_{7} x+t_{8} y+t_{9}} \\
y^{\prime} & =\frac{t_{4} x+t_{5} y+t_{6}}{t_{7} x+t_{8} y+t_{9}}
\end{aligned}
$$

## Compute the Transformation

$$
\begin{aligned}
&\left(t_{7} x+t_{8} y+t_{9}\right) x^{\prime}=t_{1} x+t_{2} y+t_{3} \\
&\left(t_{7} x+t_{8} y+t_{9}\right) y^{\prime}=t_{4} x+t_{5} y+t_{6} \\
&\left(\begin{array}{lllllllll}
x & y & 1 & 0 & 0 & 0 & x x^{\prime} & y x^{\prime} & x^{\prime} \\
0 & 0 & 0 & x & y & 1 & x y^{\prime} & y y^{\prime} & y^{\prime}
\end{array}\right)\left(\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4} \\
t_{5} \\
t_{6} \\
t_{7} \\
t_{8} \\
t_{9}
\end{array}\right)=\mathbf{0}
\end{aligned}
$$

## Compute the Transformation

When there are n corresponding points available, we have a linear system:

$$
\left(\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & x_{1} x_{1}^{\prime} & y_{1} x_{1}^{\prime} & x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & x_{1} y_{1}^{\prime} & y_{1} y_{1}^{\prime} & y_{1}^{\prime} \\
& & & & \vdots & & & & \\
& & & & \vdots & & & & \\
& & & & & & \\
x_{i} & y_{i} & 1 & 0 & 0 & 0 & x_{i} x_{i}^{\prime} & y_{i} x_{i}^{\prime} & x_{i}^{\prime} \\
0 & 0 & 0 & x_{i} & y_{i} & 1 & x_{i} y_{i}^{\prime} & y_{i} y_{i}^{\prime} & y_{i}^{\prime} \\
& & & & \vdots & & & & \\
& & & & \vdots & & & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & x_{n} x_{n}^{\prime} & y_{n} x_{n}^{\prime} & x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & x_{n} y_{n}^{\prime} & y_{n} y_{n}^{\prime} & y_{n}^{\prime}
\end{array}\right)\left(\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4} \\
t_{5} \\
t_{6} \\
t_{7} \\
t_{8} \\
t_{9}
\end{array}\right)=\mathbf{0}
$$

## Compute the Transformation

Simplified representation

$$
M u=\mathbf{0}
$$

Find the transformation unknowns by SVD decomposition of the correlation matrix, and optimal $u$ is the orthornomal axis associated with smallest singular value.

$$
\min _{u}\|M u\|^{2}=\min _{u}\left(u^{T} M^{T} M u\right)
$$

## Photometric

- How to compute new pixel values when non-integral $T^{-1}\left(x^{\prime}, y^{\prime}\right)$
- Nearest neighbor: Value of closest pixel
- Bilinear interpolation ( $2 \times 2$ neighborhood)
- Bicubic interpolation ( $4 \times 4$ )


## Bilinear Interpolation

- Idea: Blend four pixel values surrounding source, weighted by nearness

$\underbrace{\mathbf{I}\left(x^{\prime}, y^{\prime}\right)=(1-b, b)}_{\text {Vertical blend }} \begin{array}{cc}\mathbf{I}(x, y) & \mathbf{I}(x+1, y) \\ \mathbf{I}(x, y+1) & \mathbf{I}(x+1, y+1)\end{array}]\binom{1-a}{a}]$. Horizontal blend,



