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Abstract

Interest point detection has a wide range of applications, such as image retrieval and object recognition. Given an image, many previous
interest point detectors first assign interest strength to each image point using a certain filtering technique, and then apply non-maximum
suppression scheme to select a set of interest point candidates. However, we observe that non-maximum suppression tends to over-suppress good
candidates for a weakly textured image such as a face image. We propose a new candidate selection scheme that chooses image points whose
zero-/first-order intensities can be clustered into two imbalanced classes (in size), as candidates. Our tests of repeatability across image rotations
and lighting conditions show the advantage of imbalance oriented selection. We further present a new face recognition application—facial
identity representability evaluation—to show the value of imbalance oriented selection.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Interest point detection; Repeatability; Facial expression

1. Introduction

Interest point detection has a wide range of applications, such
as image retrieval [1] and object recognition [2,3]. Many de-
tectors have been presented before [2,4–15]. Most existing de-
tectors contain the following two basic components: (i) assign-
ing an interest strength to each image point, and (ii) selecting
candidates.

In the previous work on interest point detection, great effort
is focused on the study of strength (cornerness) assignments
using different filtering techniques, such as first or second order
Gaussian derivative [2], Gradient auto-correlation [4,10,16],and
Laplace [17]. The authors of Ref. [18] introduced unit step edge
function (USEF) to model straight line edges, and proposed
an accurate and flexible multi-corner detector. Interest point
detection can also be formulated as an optimization problem,
and then solved by Genetic Programming [19,20].

Non-maximum suppression is a popular method for selecting
good candidates in existing detectors [2,4,10]. Assume each
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image point has been assigned an interest strength. Non-
maximum suppression resets the strength of a point to zero,
i.e., eliminates its candidacy, if it is not a local maximum.
With non-maximum suppression, interest points tend to scatter
in the entire image plane. This may be desirable for highly
textured images that contain rich textures in the entire image
plane, but might not be desirable for weakly textured images
such as face images. In the latter situation, non-maximum
suppression over-suppresses good candidates. Another issue
of non-maximum suppression is that it can destroy local ge-
ometry information, as illustrated in Section 2.1. The authors
of Ref. [21] proposed adaptive non-maximum suppression to
obtain spatially well distributed interest points over images.
Instead of using a fixed-size suppression window, adaptive
non-maximum suppression dynamically decreases the size
of the suppression window. Adaptive non-maximum suppres-
sion has been shown to be competitive to the standard one in
image mosaicing. To address the nature of weak textures in
face images, the authors of Refs. [22,23] used the strategy of
thresholding strength maps without any candidate selection
scheme, where strength maps are computed using entropy and
local variance, respectively. The number of local image patches
extracted from a face image is thus very large, which has two
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limitations: (i) expensive cost in matching image patches; and
(ii) higher probability of mismatching.

In this paper, we propose an imbalance oriented scheme
that chooses image points whose zero-/first-order intensities
are clustered into two imbalanced classes (in size), as candi-
dates. Our basic motivation for imbalance oriented selection
is to minimize the occurrences of edge points. It is worth
noting that edge points are usually not considered as good
features since they have similar local appearances, which in-
creases uncertainty in matching local appearances. Besides the
increasing ambiguity, the number of edge points in an im-
age is usually large, which can result in high computational
cost in high-level applications such as recognition. Many ex-
isting interest point detectors involve certain mechanisms to
penalize edge response. For example, the Harris detector in-
volves a penalty term in the strength assignment to penalize
the edge response [4,10]; DoG applies second-order intensity
information, determined by a Hessian matrix, to verify edge
response and penalize edge points [2]. Our rationale is that
edge points can be characterized as points of balanced lo-
cal appearances, and they can be minimized via an imbalance
criterion.

Without involving any suppression window, imbalance ori-
ented selection can output interest points “non-uniformly”,
i.e., it may detect a larger number of points in certain regions
than other regions, and thus provide a wise alternative for non-
maximum suppression. In the literature, SUSAN [8] provides
an implementation for zero-order imbalance selection. Based
on a simple binary clustering approach, we propose a unified
scheme for imbalance oriented selection using zero or first order
local information. We combine three popular interest assign-
ments (Gradient auto-correlation, Gradient, and Laplace) with
three candidate selection schemes (non-maximum suppression,
zero- and first-order imbalance oriented selection), and derive
nine detectors. We perform repeatability tests, first proposed
by Schmid et al. [10], on these detectors, under two different
image variations: rotations and lighting conditions. Our results
show the advantage of imbalance oriented selection. For exam-
ple, in the test of repeatability across lighting conditions, the
average repeatability rate achieved by imbalance oriented se-
lection is 20% higher than the one achieved by non-maximum
suppression.

We also present a new face recognition application to show
the value of imbalance oriented selection. Note that face im-
ages are weakly textured. Most previous studies in face recog-
nition focused on how to represent appearance instances. Little
attention, however, was given to the problem of how to select
“good” instances for a gallery, which may be called the facial
identity representation problem. We will give an evaluation of
the identity representability of facial expressions. The identity
representability of an expression is measured by the recogni-
tion accuracy achieved by using its samples exclusively as the
gallery data. Feature distributions are used to represent appear-
ance instances. A feature distribution of a face image is based
on the number of occurrences of interest points in regular grids
of an image plane. Our study shows that certain facial expres-
sions, such as neutral ones, have stronger identity representabil-

ity than other expressions. (For convenience, we consider neu-
tral as a facial expression.)

The rest of the paper is organized as follows: Section 2 first
describes non-maximum suppression, and then gives a unified
scheme for imbalance oriented selection. Section 3 presents
nine detectors. Section 4 presents repeatability tests. Section
5 presents the evaluation of identity representability. Finally,
conclusions are given in Section 6.

2. Candidate selection schemes

Candidate selection schemes aim to select a set of reliable
candidates for the final interest point output. To decide the
candidacy of an image point, a selection scheme may or may
not use its interest strength. A popular scheme is maximum
oriented selection, such as non-maximum suppression, which
will be described in Section 2.1. Unlike maximum oriented
selection, imbalance oriented selection is based on zero- or first-
order imbalanced local information of a point, as described in
the Sections 2.2 and 2.3, respectively.

2.1. Maximum oriented selection

Maximum oriented selection has been widely used in previ-
ous detectors [2,4,8,10]. A typical implementation of maximum
oriented selection is non-maximum suppression. To decide the
candidacy of a point p, non-maximum suppression checks the
following condition:

strengh(p) > strength(q) ∀q ∈ Op\{p},
where Op is a small neighborhood of p (usually a 3×3 window
centered by p [10]). If the condition is false, then strength(p)
is reset to zero.

A limitation of non-maximum suppression is that it may de-
stroy the geometric structure of a local appearance, as shown
in Fig. 1, where a number indicates the strength of the asso-
ciated image point. The solid black circles have large strength
and are good candidates for interest points; the circles are not.
When non-maximum suppression is applied (using a 3×3 sup-
pression window, indicated as a dashed square), the only pos-
sible candidate in each case is the image point with strength
10, which fails to reveal the difference in geometric structures
in the two cases.

Furthermore, non-maximum suppression tends to over-
suppress many valuable candidates if an image is weakly
textured. Adaptive non-maximum suppression was recently
proposed to address these issues in non-maximum suppression,
where the basic goal is to achieve better distributed interest
points. More details can be found in Ref. [21].

2.2. Zero-order imbalance

As the name implies, zero-order imbalance selection decides
the candidacy of an image point p by measuring the imbalance
of the zero-order local intensity information. SUSAN [8] is
an implementation of this scheme. Given a point p and its
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Fig. 1. Non-maximum suppression destroys the geometric structure.

circular neighborhood Op, SUSAN first separates the Op into
two clusters, by measuring the condition |I (q)−I (p)|� t1, q ∈
Op, where t1 is a threshold. Then it basically computes the
ratio of the sizes of these two clusters (small size over large
size), denoted as rp. The point p with rp � t2 is chosen as a
candidate, where t2 is the imbalance threshold.

We propose an implementation of zero-order imbalance se-
lection by first sorting {I (q)|q ∈ Op} (in increasing order), and
then looking for the intensity whose difference with the next
intensity is maximum. The rank of this intensity will be called
the index of the maximum difference. The index of the maxi-
mum difference will be used to split the set of intensities into
two clusters later. The implementation includes a step of dis-
carding noisy points. There are two motivations for this formu-
lation. First, defining zero-order imbalance of a patch may not
be necessarily dominated by the intensity of the center point;
second, the clustering method can be naturally extended to de-
fine first-order imbalance, as described in Section 2.3. The im-
plementation is described in Algorithm 1.

In all experiments in this paper, we choose threshold1
= 10, and threshold2 = 0.45. A 3 × 3 window is used
to define the neighborhood points. We found that zero-
order balance is more appropriate for interest point detec-
tion in weakly textured images than highly textured ones.

Algorithm 1. Zero-order imbalance (proposed version)
1. For each image point p
2. Sort the intensities of neighboring points of p
3. Find the maxDiff and the index of maximum difference
4. If maxDiff < threshold1
5. strength(p)← 0 // discarding noisy points
6. Else
7. Compute rp
8. If rp > threshold2
9. strength(p)← 0 // discarding edge points

2.3. First-order imbalance

This scheme uses the first-order intensity information of an
image point p to decide its candidacy. In Ref. [15], we proposed
an implementation of first-order imbalance that first clusters
the magnitudes of first-order derivatives of p along n directions
into two classes: strong and weak, and then selects p as a can-
didate only if p has less than n/2 strong first-order changes.
The clustering method used in Ref. [15] is based on the mean
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Fig. 2. Two cases indicating desirable interest points and the sorted intensity
changes. The indices of maximum difference in the two cases are 3 and 1,
respectively.
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Fig. 3. Discarding redundant interest points. The indices of maximum differ-
ence in the two cases are 5 and 7, respectively.

change, i.e., the change that is larger (smaller) than the mean
change is considered to be strong (weak).

Using the same clustering method in Algorithm 1, we pro-
pose first-order imbalance oriented selection implementation,
as described in Algorithm 2. Fig. 2 gives an illustration of
two cases of selecting desirable candidates, where we consider
n = 8 directions. Intensities are supposed to change slightly
at the same side of an edge. A long (short) arrow indicates a
strong (weak) intensity change along the associated direction.
Fig. 3 gives illustrations of discarding redundant points that are
the co-occurrence of certain desirable points shown in Fig. 2.
Fig. 4 gives illustrations of edge points and noisy points.

The threshold in discarding noisy points is the only signif-
icant parameter for the first-order imbalance oriented selec-
tion. In all experiments in this paper, it is set to 0.5. We have
found that the parameter setting is not sensitive to input images.
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Algorithm 2. First-order imbalance
1. For each image point p
2. For each of n directions
3. Compute the change along that direction

(by convolving with the first derivative of a Gaussian)
4. Sort the n changes
5. Find the maxDiff and the index of maximum difference
6. If maxDiff < threshold
7. strength(p)← 0 // discarding noisy points
8. Else
9. If the index �n/2
10. strength(p) ← 0 // discarding edge points

and “redundant” interest points

3. Constructing interest point detectors

A detector can be formulated as a combination of a strength
assignment with a selection scheme, in addition to a threshold-
ing step. For example, the Harris detector is derived by combin-
ing the gradient auto-correlation assignment and non-maximum
suppression. We will construct nine detectors by combining the
above three selection schemes with the following three strength
assignments:

• Gradient auto-correlation: The interest strength of an image
point p is computed by the eigenstructure of p’s gradient
auto-correlation matrix

C(p)=
⎛
⎝

∑
q∈Op

wqI 2
x (q)

∑
q∈Op

wqIx(q)Iy(q)

∑
q∈Op

wqIx(q)Iy(q)
∑

q∈Op

wqI 2
y (q)

⎞
⎠ ,

where Ix and Iy are the horizontal and vertical derivatives,
respectively, Op is a neighborhood of p, and (wq)q∈Op

is
a smoothing filter. In the Harris detector [4], the interest
strength of a point p is defined to be the summation of
the eigenvalues of C(p). To reduce the computational cost,
the following equivalent form is more commonly used in

practice [10]:

strength(p)= det(C(p))− �trace2(C(p)), (1)

where � is a discriminant factor that is usually set to 0.06
[10].
• Gradient: Given a point p, the magnitude of its gradient
[Ix(p), Iy(p)] can be assigned as the interest strength of p. In
this paper, we use an alternative, i.e., the largest of the mag-
nitudes of first-order derivatives to p as the interest strength,
i.e.,

strength(p)= largest change(p). (2)

• Laplace: Given an image point p, the Laplace assigns the
strength to p as follows [17]:

strength(p)= |Ixx(p)+ Iyy(p)|. (3)

A close approximation of Laplace is DoG (Difference of
Gaussian) [2]. More details on Laplace and DoG can be found
in Refs. [2,17].

3.1. Combining a strength assignment and a candidate
selection scheme

Fig. 5 shows the interest strength maps of a face instance,
associated with three assignments, before and after three dif-
ferent selections are applied. Let us first consider the behavior
of three assignments by comparing the three maps in the first
column (i.e., before a selection). Gradient auto-correlation ap-
pears to localize potential interest points at the region level,
illustrated by the isolated white regions in the top figure. In
contrast to gradient auto-correlation, gradient and Laplace give
attention to edges.

Now let us consider the behavior of three selections. We can
observe that non-maximum suppression tends to sample candi-
dates in the entire image plane. Zero-order imbalance and first-
order imbalance appear to thin the isolated regions or edges in
the original strength maps. But clearly, the thinning effective-
ness of first-order imbalance is much more considerable than
the effectiveness of zero-order imbalance. Typically, first-order
imbalance significantly reduces the number of potential inter-
est points along the head boundary, which is important for a
detector to extract local descriptors of a face image taken with
a different background.

For a weakly textured image, it may be fair to say that non-
maximum suppression tends to over-suppress the candidates of
interest points, and zero-order imbalance tends to over-select
the candidates. We will observe that first-order imbalance out-
performs these two selection schemes, in the repeatability eval-
uation.

3.2. Thresholding

As shown in Fig. 5, the number of candidates may be large,
even for non-maximum suppression selection. Many of them
may contain similar local appearance (after all, a face image is
weakly textured), which increases the chance of mismatching
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Fig. 5. Interest strength maps under three assignment schemes, before and after candidate selection. First row, gradient auto-correlation; second row, gradient;
third row, Laplace. The values are scaled for visualization enhancement.

Fig. 6. One hundred interest points in a face image. Gradient auto-correlation is used as strength assignment.

Fig. 7. Thirty interest points in the image of a white board with a black background. Gradient auto-correlation is used as strength assignment.

in applications. Furthermore, a large number of interest point
outputs can significantly increase the computational cost in ap-
plications.

Two thresholding strategies can be used to determine the
final output of interest points from a candidate set, after being
sorted according to the strength. One strategy is to threshold the
strength, and the other is to threshold the number of outputs. In
our study, we choose the second one as thresholding the number
of outputs is convenient under different strength assignment
schemes.

Fig. 6 shows on the output of interest points via different
candidate selection schemes, using gradient auto-correlation as
the strength assignment. We can observe that non-maximum
suppression leads to the output of interest points scattered in a
large number of image regions while imbalance oriented selec-
tion schemes leads to the output of interest points gathered in

a few numbers of image regions. This observation can be fur-
ther justified by a comparison of the capability of the selection
schemes in suppressing edge points. Let us consider the follow-
ing simple example, a white board with a black background,
as shown in Fig. 7. In this circumstance, the edge points on the
four boundaries of the white board are expected to have dis-
tinctly larger strength than other points. Furthermore, due to the
reality of the existence of noise, the strength of an edge point
may be slightly different from the strength of its neighboring
edge points. (The image of a white board in Fig. 7 contains
0.1% noise.) So, after non-maximum suppression, the output of
interest points will consist of a subset of edge points scattered
around the four boundaries. However, with an imbalance ori-
ented scheme, the output of interest points will only consist of a
few image points around the four corners of the white board, due
to the stronger ability of the scheme in suppressing edge points.
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4. Repeatability evaluation

In this section, we test the repeatability of interest point
detectors under two kinds of transformations: rotations and
lighting conditions. More specifically, our focus is on the com-
parison between non-maximum suppression and imbalance
oriented selection schemes. We follow the definition of �-
repeatability rate proposed in Ref. [10], where �, in pixel units,
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Fig. 8. �-repeatability rates of nine detectors across rotations (from �1 =−45◦ to �10 = 45◦). S1, non-maximum suppression; S2, zero-order imbalance; and
S3, first-order imbalance. Note that GradientAuto/S1, Harris. (a) �1 = 0.5 and (b) �2 = 1.5.

Table 1
Three parameters for repeatability across rotations

Parameter Value

Rotation angles �i =−45◦ + (i − 1)× 10, i = 1 . . . 10
Tolerance �i = 0.5+ (i − 1), i = 1 . . . 5
Number of ni = 140+ (i − 1)× 20, i = 1 . . . 14
interest points
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Fig. 9. �-repeatability rates of nine detectors with respect to localization tolerances (from �1 = 0.5 to �5 = 4.5): (a) �1 =−45◦ and (b) �5 =−5◦.

is the tolerance in locating interest points under a transforma-
tion. For example, the transformation used in evaluation of re-
peatability across lighting condition is an identity transforma-
tion since an interest point detected under one lighting condi-
tion is expected to be detected in the same location under other
lighting conditions.

In the zero-order imbalance algorithm, the ratio threshold is
set to 0.5, and a 3× 3 window is used to define the neighbor-
ing points. In the first-order imbalance algorithm, we choose
n = 8 in the implementation (n is the number of directions),

as shown in the illustration in Fig. 2. (We observed that the in-
volvement of many interpolation operations with n > 8 brings
substantially higher computation cost, while not improving the
repeatability rate.)

For convenience, we introduce the conventions: S1= non-
maximum suppression, S2= zero-order imbalance, and
S3= first-order imbalance. Furthermore, we use the following
convention in naming nine detectors: Strength Assignment/Si.
For example, GradientAuto/Si indicates the detector con-
structed by gradient auto-correlation and Si selection scheme.
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Fig. 10. �2 = 1.5-repeatability rates of nine detectors with respect to interest point numbers (from n1 = 140 to n14 = 400): (a) �1 =−45◦ and (b) �5 =−5◦.

4.1. Repeatability rate across rotations

Similar to the design in Ref. [2], a rotated image is generated
synthetically. Nearest-neighbor backward rendering is used to
generate a rotated image. The dimension of the original face
image is 142×180. We will present the results on repeatability
across rotation angles, in addition to the results on repeatability
with respect to localization tolerance and the number of out-
put interest points. Table 1 lists the notations of three relevant
parameters.

Repeatability across rotation �i : We limit the output of in-
terest points to n14 = 400. Fig. 8 shows the repeatability rates

across �i , from �0 = −45◦ to �10 = 45◦. Fig. 8(a) and (b) are
associated with �1=0.5 and �2=1.5 pixels, respectively. Three
assignments appear to be competing with each other. Among
three selections, first-order imbalance usually outperforms the
others. The behavior of zero-order imbalance is interesting; it
appears to have “affinity” towards gradient auto-correlation and
Laplace assignments that make it outperform non-maximum
suppression. Among the nine detectors, Gradient/S3 performs
better than the others.

Repeatability with respect to �i : We consider two rotation
parameter settings: a large rotation �0 = −45◦, and a small
rotation �5 = −5◦. The output of interest points is limited to
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Fig. 11. Two data sets for repeatability evaluation across lighting conditions: (a) CMU-PIE 21 lighting conditions and (b) ALOI 8 lighting conditions.

n14 = 400. Fig. 9 shows the repeatability rates with respect to
�i , from �1 = 0.5 to �5 = 4.5. Fig. 9(a) and (b) are associated
with rotations −45◦ and −5◦, respectively. In most cases, first-
order imbalance shows better performance than others. Non-
maximum suppression and zero-order imbalance are competing
with each other—their performance depends not only on the
assignments but also on the rotation angles.

Repeatability with respect to ni : We consider two rotation
parameter settings: a large rotation �0 =−45◦, and a small ro-
tation �5=−5◦. The tolerance parameter is set to �2=1.5. Fig.
10 shows the repeatability rates, with respect to ni, i=1 . . . 14.
From Fig. 10, we can observe that, for the majority of detec-
tors, increasing the output ni is effective in lifting up the re-
peatability rates. In most cases, first-order imbalance outper-
forms the other two selection schemes. Zero-order imbalance,
combined with gradient auto-correlation or Laplace, is some-
how competing with the first-order imbalance if the rotation an-
gles are small. Among the nine detectors, gradient/S3 performs
the best.

From the tests on other face images, we observed similar
results. As a summary, our main observation is that, for face
images, the first-order imbalance achieves better performance
than the other two selections in this evaluation.

4.2. Repeatability across lighting conditions

We now evaluate the repeatability of the nine detectors across
lighting conditions on two different data sets: (i) CMU-PIE 21
lighting conditions [24]; and (ii) ALOI 8 lighting conditions
[25], as shown in Fig. 11(a) and (b), respectively. The dimen-
sions of CMU-PIE images are 220 × 175, and these images

are manually aligned using the raw images in CMU-PIE. The
dimensions of ALOI images are 288× 384.

For convenience, these images (PIE and ALOI) are indexed
from left to right and top to bottom. It is worth noting that the
0th face instance (i.e., the top leftmost one) is illuminated by an
extreme light source, which makes its appearance significantly
different from other instances. In the later repeatability test, we
will always compute the repeatability rate between 0th image
and the others.

We use similar parameter setting and presentation of results
as given in Section 4.1. We present repeatability rates across
lighting conditions, with respect to localization tolerance, and
with respect to interest point numbers.

On CMU-PIE images, Fig. 12 shows the repeatability rates
associated with indices i, from 1 to 20; Fig. 13(a) and (b) show
the repeatability rates with respect to tolerance and number
of interest points, respectively, where we consider the pair of
lighting conditions (0th, 10th). In Fig. 13(b), � is set to 1.5.

On ALOI images, Fig. 14 shows the repeatability rates asso-
ciated with indices i, from 1 to 7; Fig. 15(a) and (b) show the
repeatability rates with respect to tolerance and number of in-
terest points, respectively, where we consider the pair of light-
ing conditions (0th, 7th). In Fig. 15(b), � is set to 1.5.

On both data sets, it is clear that both imbalance oriented
selection schemes usually outperform the non-maximum sup-
pression. For example, with tolerance � = 1.5, the average re-
peatability rates achieved by imbalance schemes on CMU-PIE
(ALOI) are about 20% (40%) higher than by non-maximum
suppression. It is interesting to note that two imbalance se-
lection schemes on the lighting test are competitive to each
other. There is an exception on performance of the combina-
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Fig. 12. CMU-PIE: �-repeatability rates of nine detectors across lighting conditions: (a) �1 = 0.5 and (b) �2 = 1.5.

tion of gradient strength assignment and zero-order imbalance
oriented selection, that is, gradient degrades the performance
of zero-order imbalance (as shown in Fig. 14). This may imply
the difference in the nature of the appearance of a face and a
cup. This observation can somehow explain the fact that gradi-
ent auto-correlation and Laplace are much more popular than
gradient in the literature on interest point detection.

We tested other pairs of lighting conditions, and furthermore
images of other objects in the two data sets. We obtain simi-
lar results on the repeatability evaluation. We also tested DoG
method used in Ref. [2] on our data, which achieved comparable
repeatability to Harris, one of the nine tested detectors. Thus,

based on our comprehensive tests, we conclude the superiority
of imbalance oriented selection schemes over non-maximum
suppression. From the evaluation results, we also observe that
the first-order imbalance scheme achieves a higher repeatabil-
ity rate than zero-order imbalance in most cases. Recall that
first-order imbalance involves only one parameter that is used
to suppress noisy points. We set that parameter to be 0.5 in this
paper. But we had tried a range of parameter value from 0.5 to
2, and found that the variation of the repeatability rate is usually
less than 5%. Zero-order imbalance involves two parameters:
threshold1 is used to suppress noisy points, and threshold2 is
used to suppress edge points. It was found that these parame-
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Fig. 13. CMU-PIE: (a) �-repeatability rates of nine detectors with respect to localization tolerances (from �1 = 0.5 to �5 = 4.5); and (b) �2 = 1.5-repeatability
rates of nine detectors with respect to interest points numbers (from n1 = 140 to n14 = 400).

ters are relatively more sensitive to input images than the pa-
rameter in first-order imbalance. The variation of repeatability
rate may be over 5% with a slight change on a parameter (e.g.,
threshold2 is changed from 0.45 to 0.46). These facts show the
better robustness of first-order imbalance.

4.3. Discussion on richly textured images

We have addressed the issue of non-maximum suppression in
detecting interest points in weakly textured images. In the fol-
lowing, we give a discussion on richly textured images, which

can give us a more comprehensive view on non-maximum sup-
pression and imbalance oriented selection.

Fig. 16 shows the image Van Gogh’s sower that is used in
the evaluation of interest point detectors by Schmid et al. [10].
The sower image is richly textured. We apply Harris detector to
the sower image under different levels of noise, ranging from
2% to 10% (of 255), and obtain the repeatability with respect
to noise. Similarly, we apply Harris detector to the face image
used in Section 4.1 under different levels of noise. The results
are shown in Fig. 17. It is clear that the repeatability on the
sower image is much more robust with respect to noise than
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Fig. 14. ALOI: �-repeatability rates of nine detectors across lighting conditions. (a) �1 = 0.5 and (b) (a) �2 = 1.5.

the repeatability on the face image. Fig. 17 gives us a more
concrete view on the difference between weakly textured and
richly textured images.

Now, we give a comparison of three detectors—Harris, DoG
and GradientAuto/S3—on the sower image, testing their re-
peatability with respect to rotations. The results are shown in
Fig. 18. We can observe that all three detectors are robust with
respect to rotations on the sower image. It is also clear that
the performance of three detectors is comparable to each other.
This suggests that being applied to richly textured images, im-
balance oriented selection does not show superiority over non-
maximum suppression.

5. A new face recognition application: identity
representability

Facial identity representation addresses the problem on how
to select “good” facial instances for a gallery, as illustrated in
Fig. 19.

Much previous work on face recognition used the neutral
expressions as the gallery data, mostly motivated by the conve-
nience of collecting such data. For example, the study in Ref.
[26] is on the effect of the six important expressions as probe
data, while using the neutral expression as gallery data. The ap-
pearance representation proposed in Ref. [26] is the weighted
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Fig. 15. ALOI: (a) �-repeatability rates of nine detectors with respect to localization tolerances (from �1 = 0.5 to �5 = 4.5); and (b) �2 = 1.5-repeatability rates
of nine detectors with respect to interest points numbers (from n1 = 140 to n14 = 400).

global intensities via the optical flow technique. The authors
of Ref. [28] presented a study on simultaneous face and facial
recognition using facial expression decomposition, which did
not address the identity representation problem either. The au-
thors of Ref. [29] proposed an automatic feature localization
for facial expression recognition using thermal images.

As a step towards the identity representation problem, the
study in Ref. [30] is on the discriminant power of certain fa-
cial expressions, in terms of the Fisherface representation. The
discriminant power is basically defined by the trace of S−1

w Sb,
where Sw and Sb are the within-class and between-class scat-
ters of training expressions, respectively.

In this section, we present an evaluation of the identity
representability of facial expressions based on spatial distri-
butions of interest points. Our evaluation is currently focused
on three facial expressions: neutral, happiness, and anger.
The identity representability of an expression is measured by
the recognition accuracy achieved by using its samples as the
gallery data. Note that the identity representability of an ex-
pression can provide a quantified measurement of “goodness
of the expression” that is selected for the gallery. Our ex-
perimental result will provide a rationale under the common
utilization of neutral expression as gallery data in previous
work.
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5.1. Feature distributions

A feature distribution of an image is based on the number of
occurrences of interest points in regular grids of an image plane.
Fig. 20 shows the flow of generating a feature distribution for
a simple input image. Given a facial appearance instance A, a
feature distribution of A encodes its local and global appear-
ance information: the number of interest points in each grid

Fig. 16. Sower image [10].
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Fig. 17. Repeatability of Harris detector applied to Sower and Face images
under different levels of noise.
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(implicitly) encodes a certain local appearance, and the
alignment of all grids contributes to the global appearance
information.
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An appropriately large size of interest points collection P
usually contains more complete information on local and global
appearances. The grid size (m, n), however, should be small
enough to characterize the local appearance information accu-
rately. In the experimental evaluation, we use the following pa-
rameter settings: |P |=300 and (m, n)=(4, 8). The L1-norm is
used to measure the distance of two feature distributions. More
details on the parameter settings can be found in our previous
work [15].

5.2. Evaluation

The data sets used for the evaluation are JAFFE [27] and AR
[31]. The JAFFE data set contains 10 identities (all females)
[27]. The face regions in JAFFE images are well aligned, and
our experiments use the raw images directly. To evaluate the
identity representability of a specific expression, a single sam-
ple of the expression per identity is used as training and gallery
data, and all others are used as probe data.

The subset of AR contains 126 identities. The face regions in
AR images are not well aligned, and we manually aligned them.
Fig. 21 shows three aligned AR images. A single sample in a

Fig. 21. AR images of facial expressions.
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Fig. 22. Evaluation on: (a) JAFFE and (b) AR. GA, Gradient auto-correlation; G, Gradient; L, Laplace; S1, non-maximum suppression; S2, zero-order
imbalance; and S3, first-order imbalance.

specific expression per identity is used as training and gallery
data, and all others are used as probe data. The nearest neighbor
is used as the classifier. We use the following conventions in the
rest of the paper: NE=neutral, HA=happiness, and AN=anger.

Fig. 22(a) and (b) shows the evaluation results on JAFFE and
AR, respectively. We can observe that different feature distri-
butions agree on the strongest identity representability of the
neutral expression fairly consistently. There is an exception
that is associated with the distribution generated by the Gra-
dientAuto/S1 detector. (Recall that S1 indicates non-maximum
suppression.) We can also observe that different feature dis-
tributions agree on the weakest identity representability of the
anger expression consistently.

In contrast to non-maximum suppression, the feature dis-
tributions generated by first-order imbalance achieve not only
better consistency in the evaluation task but also higher recog-
nition accuracy. Recall that non-maximum suppression can de-
stroy local geometry (as illustrated in Fig. 1), and thus degrades
the reliability of the feature distribution that it contributes.

6. Conclusions

In this paper, we propose imbalance oriented selections to
detect interest points in weakly textured images. Without in-
volving any suppression window, imbalance oriented selections
can output interest points non-uniformly, i.e., it may detect a
larger amount of points in certain regions than other regions,
and thus provides a wise solution for the two issues of non-
maximum suppression. The results from the test of repeata-
bility across rotations and lighting conditions convince us the
superiority of imbalance oriented selection over non-maximum
suppression. We further present a new face recognition
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application where feature distributions are applied to evaluate
identity representability of facial expressions.
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