Hidden Surface Elimination: BSP trees

Outline

- Binary space partition (BSP) trees
 - Polygon-aligned
BSP Trees

- Basic idea: Preprocess geometric primitives in scene to build a spatial data structure such that tests from any viewpoint can be easily calculated later.
- Examples of tests:
 - **Visibility** for painter's algorithms
 - **Intersection testing** for ray tracing
- Generalization of binary search trees (1-D) to higher dimensions

Painter’s algorithm

Draw primitives from back to front to avoid need for depth comparisons.
BSP trees: Key property

- “Spatial sorting” keeps track of which side of lines/planes primitives are on
 - Objects on the same side as the viewer can be drawn on top of objects on the opposite side
 - Objects on one side cannot intersect objects on the other side

- “Polygon-aligned” means partitioning plane is always coplanar with a scene polygon, as opposed to arbitrarily positioned

Building 2-D “line-aligned” BSP trees

- Pick oriented line segment (i.e., has a normal) from list as the root
- Rest of lines partitioned according to which side they are on
 - “Partitioning” line placed at root of subtree
 - Sets of lines on “front” side and “back” side correspond to left & right subtrees, respectively
- Recurse on each child
Building 2-D BSP trees: Issues

• How to pick line with which to partition
• What to do with lines that cross partitioning line
 – Split them (standard)
 – Or: Put a copy on each side of boundary
• When to stop recursing
 – n or fewer primitives per leaf ($n = 1$ is standard)
 – Or: Threshold on recursion depth

2-D BSP tree: Building example
2-D BSP tree: Building example

2-D BSP tree: Building example

from Foley et al.
Building 2-D BSP trees: Pseudocode

```c
BSP_tree *BSP_makeTree(line *lineList)
{

    if (lineList == NULL)
        return NULL;
    else {
        root = BSP_selectAndRemoveLine(lineList);
        backList = frontList = NULL;
        for (each line l in lineList) {
            if (l in front of root)
                BSP_addToList(l, frontList);
            else if (l in back of root)
                BSP_addToList(l, backList);
            else {
                BSP_splitLine(l, root, frontPart, backPart);
                BSP_addToList(frontPart, frontList);
                BSP_addToList(backPart, backList);
            }
        }
        return BSP_mergeTree(BSP_makeTree(frontList), root, BSP_makeTree(backList));
    }
}
```

Picking partitioning lines: Criteria

- **Painter’s algorithm**
 - Every object must be drawn → Entire tree is traversed
 - So overall tree size should be as small as possible
 - Minimize splitting
- **Ray tracing** (later in course...)
 - Several paths from root to leaves traversed looking for intersections
 - So tree depth more important than overall size
 - Balance primitives on each side
Partitioning lines: “Least-crossed” heuristic

• For painter’s algorithm, we want to choose partitioning lines that minimize the number of splits
• A particular line can be tested to see how many lines cross it and therefore would have to be split if it were the partitioning line
• Good procedure in practice:
 1. Randomly select a small number of candidate partitioning lines (e.g., 5-10 out of 1,000)
 2. Calculate number of lines that cross each candidate
 3. Use candidate with least crossings as next partition

Building 2-D BSP trees: Details

• How to parametrize partitioning line \(\mathbf{l} \) from line segment \(\mathbf{p}_1 \mathbf{p}_2 \)?
 - Homogeneous line form \(\mathbf{l} = (a, b, c)^T \) for segment is same as line it’s on
 - We can obtain \(\mathbf{l} \) from \(\mathbf{p}_1, \mathbf{p}_2 \) via \(\mathbf{l} = \mathbf{p}_1 \times \mathbf{p}_2 \)
 - Normal vector of line \(\mathbf{l} \) is \(\mathbf{n} = (a, b)^T \)

• How to decide which side of partitioning line \(\mathbf{l} \) a line segment \(\mathbf{v}_1 \mathbf{v}_2 \) is on?
 - If both points \(\mathbf{v}_1, \mathbf{v}_2 \) are on the front side of \(\mathbf{l} \), line \(\mathbf{v}_1 \mathbf{v}_2 \) is on front side
 - If both \(\mathbf{v}_1, \mathbf{v}_2 \) are on the back side, \(\mathbf{v}_1 \mathbf{v}_2 \) is on back side
 - If \(\mathbf{v}_1, \mathbf{v}_2 \) are on different sides, \(\mathbf{v}_1 \mathbf{v}_2 \) crosses partitioning line \(\mathbf{l} \)
Building 2-D BSP trees: Details

- How to split crossing lines?
 - Find intersection point \mathbf{x} of $\mathbf{v}_1\mathbf{v}_2$ with \mathbf{l}
 - Let \mathbf{l}' be homogeneous form of line defined by $\mathbf{v}_1\mathbf{v}_2$
 - By definition, we want a point \mathbf{x} that is on both lines \mathbf{l} and \mathbf{l}'. This would imply that $\mathbf{l} \cdot \mathbf{x} = \mathbf{l}' \cdot \mathbf{x} = 0$
 - Just looking at these as vectors, a dot product of 0 means that \mathbf{x} is orthogonal to both \mathbf{l} and \mathbf{l}'
 - Because cross product is orthogonal to both multiplicands, $\mathbf{x} = \mathbf{l} \times \mathbf{l}'$ satisfies this requirement and thus defines the point of intersection
 - Given intersection \mathbf{x}:
 - If \mathbf{v}_1 is on front side of \mathbf{l}: Output $\mathbf{v}_1 \mathbf{x}$ as front part and $\mathbf{x}\mathbf{v}_2$ as back part
 - If \mathbf{v}_2 is on front side of \mathbf{l}: Output $\mathbf{x}\mathbf{v}_2$ as front part and $\mathbf{v}_1 \mathbf{x}$ as back part

Painter’s algorithm: Tree traversal

- Want farthest-to-nearest ordering of primitives for painter’s algorithm
 - If view location is on front side of a partitioning line:
 - Lines on back side are farther
 - Lines on front side are nearer
 - If view location is on back side of a partitioning line:
 - Lines on front side are farther
 - Lines on back side are nearer

- Which side of a partitioning line \mathbf{l} is a point \mathbf{p} on?
 - Assuming \mathbf{l}, \mathbf{p} in homogeneous form, use homogeneous line test $F(\mathbf{p}) = \mathbf{l} \cdot \mathbf{p}$
 - $F > 0 \Rightarrow \mathbf{p}$ is on back side of \mathbf{l}
 - $F < 0 \Rightarrow \mathbf{p}$ is on front side of \mathbf{l}
 - $F = 0 \Rightarrow \mathbf{p}$ is on line \mathbf{l} (arbitrarily treat as back side)
void BSP_displayTree(BSP_tree *tree, point viewLocation) {
 if (tree != NULL) {
 if (viewLocation is in front of tree->root) {
 // Display back child, root, then front child
 BSP_displayTree(tree->backChild, viewLocation);
 displayLine(tree->root);
 BSP_displayTree(tree->frontChild, viewLocation);
 } else {
 // Display front child, root, then back child
 BSP_displayTree(tree->frontChild, viewLocation);
 displayLine(tree->root); // back-facing line—can cull by skipping
 BSP_displayTree(tree->backChild, viewLocation);
 }
 }
}

Painter’s algorithm: Example BSP tree traversal

Behind root (node 3), so display everything in front of (left subtree = nodes 1, 2, 5a), then root (node 3), then everything behind (right subtree = nodes 4 and 5b)
In front of root (node 2), so display everything behind (right subtree = node 1), then root (node 2), then everything in front of (left subtree = node 5a)
Behind root (node 4), so display everything in front of (left subtree = NULL), then root (node 4), then everything behind (right subtree = node 5b)
Painter’s algorithm: Example BSP tree traversal

Final order: 1, 2, 5a, 3, 4, 5b

Every node is visited from back-to-front, so this is an $O(n)$ operation (n is the number of primitives after splitting)

3-D BSP Trees

- Analog of 2-D method, but now we are talking about 3-D polygon primitives and partitioning planes
- What’s different about this vs. lines?
 - Must parametrize plane from polygon
 - Point-plane “sidedness” test is analogous to point-line test
 - Just use homogeneous form of plane equation
 - Line (each edge of polygon)-plane intersection instead of line-line intersection
 - Polygon splitting instead of line splitting
3-D BSP Trees: Details

- Parametrize plane from polygon
 - Cross product of edges gets plane normal \(\mathbf{n} = (a, b, c)^T \)
 - Solve for \(d \) from single point on plane \((x, y, z)^T\) via plane equation \(ax + by + cz + d = 0\)

- Line-plane intersection
 - Unfortunately, there is no simple homogeneous form for lines in 3-D like in 2-D
 - Instead:
 - Express point \(\mathbf{p} \) on a ray as some distance \(t \) along direction \(\mathbf{d} \) from origin \(\mathbf{o} \): \(\mathbf{p} = \mathbf{o} + t\mathbf{d} \)
 - Use plane equation \(\mathbf{n} \cdot \mathbf{x} + d = 0 \), substitute \(\mathbf{o} + t\mathbf{d} \) for \(\mathbf{x} \), and solve for \(t \)
 - Then plug \(t \) back into \(\mathbf{p} = \mathbf{o} + t\mathbf{d} \) to get \(\mathbf{p} \)

BSP Trees: Notes

- Works best for static scenes
 - Moving primitives can cross partitioning lines
 - Dynamic adjustment of tree possible, but slows things down