Hidden Surface Elimination:
BSP trees

Outline

e Binary space partition (BSP) trees
— Polygon-aligned

BSP Trees

e Basic idea: Preprocess geometric primitives in
scene to build a spatial data structure such
that tests from any viewpoint can be easily
calculated later

e Examples of tests
— Visibility for painter’s algorithms
— Intersection testing for ray tracing

e Generalization of binary search trees (1-D) to
higher dimensions

Painter’s algorithm

Draw primitives
from back to
front to avoid
need for depth | —
comparisons

Y

) [

“
Z

.

from Shirley

BSP trees: Key property

e “Spatial sorting” keeps track of which side of lines/planes
primitives are on

— Objects on the same side as the viewer can be drawn on top of
objects on the opposite side

— Objects on one side cannot intersect objects on the other side

“partitioning” plane_—-
plane containing T,M viewpoint
L
e
far side A ﬁ
Tz \- s .
-/ near side
p
p
p
d adapted from
Shirley

— “Polygon-aligned” means partitioning plane is always coplanar with
a scene polygon, as opposed to arbitrarily positioned

Building 2-D “line-aligned” BSP trees

e Pick oriented line segment (i.e., has a normal)

from list as the root I
» Rest of lines partitioned nGe '
according to which side they e v wnyls
are on ; 7oy
— “Partitioning” line placed at root > ,'I /
of subtree o RERET

— Sets of lines on “front” side and “back” side
correspond to left & right subtrees, respectively

e Recurse on each child

Building 2-D BSP trees: Issues

e How to pick line with which to partition

« What to do with lines that cross 3
partitioning line Py
— Split them (standard) e
— Or: Put a copy on each side of /‘(e
boundary

from Foley et al.

e When to stop recursing
—n or fewer primitives per leaf (n = 1 is standard)
— Or: Threshold on recursion depth

2-D BSP tree: Building example

54
el
\< 7 5b ()

2 ; front , = back
iy _/_f N
/3 1] 4 |

[2] |5 |

r e | —

1 Y /4(Sl

from Foley et al.

2-D BSP tree: Building example

N
L3

friryL back
2) [
fromﬂback! 5b
:ﬁf5a\: ﬁ\':
R N

from Foley et al.

2-D BSP tree: Building example

o)
oA

(2) 4)
front ~— back

back

from Foley et al.

Building 2-D BSP trees: Pseudocode

adapted from Foley et al.

BSP_tree *BSP_makeTree(line *lineList)
{

line root, 1, backPart, frontPart, *backList, *frontList;

if (lineList == NULL)
return NULL;
else {
root = BSP_selectAndRemovelLine(lineList);
backList = frontList = NULL;
for (each line I in lineList) {
if (I in front of root)
BSP_addToList(l, frontList);
else if (I in back of root)
BSP_addToList(l, backList);

else {
BSP_splitLine(l, root, frontPart, backPart);
BSP_addToList(frontPart, frontList);
BSP_addToList(backPart, backList);
} 3 3

return BSP_mergeTree(BSP_makeTree(frontList), root, BSP_makeTree(backList));

Picking partitioning lines: Criteria

e Painter’s algorithm
— Every object must be drawn — Entire tree is

traversed
— So overall tree size should be as small as possible
» Minimize splitting
e Ray tracing (later in course...)

— Several paths from root to leaves traversed
looking for intersections

— So tree depth more important than overall size
» Balance primitives on each side

Partitioning lines: “Least-crossed” heuristic

e For painter’s algorithm, we want to choose
partitioning lines that minimize the number of splits

e A particular line can be tested to see how many lines
cross it and therefore would have to be split if it
were the partitioning line

e (Good procedure in practice:

1. Randomly select a small number of
candidate partitioning lines (e.g., 5-10
out of 1,000)

2. Calculate number of lines that cross
each candidate

3. Use candidate with least crossings as
next partition

Trom Shirley

Crossings for two planes

Building 2-D BSP trees: Details

- How to parametrize partitioning line 1 from line segment PiPy?

— Homogeneous line form 1 = (a, b, C)Tfor segment is same as line it’s on
— We can obtain 1 from py, pyvia 1 = p; X p,

— Normal vector of linelisn = (a, b)T

* How to decide which side of partitioning line laline
segment V,V, is on?
— If both points V;, V, are on the front side of 1, line v, v, is on front side
- If both vy, v, are on the back side, vV, is on back side
- If v,, V, are on different sides, VvV, crosses partitioning line 1

Building 2-D BSP trees: Details

* How to split crossing lines?
— Find intersection point X of V;V, with 1
- Let I be homogeneous form of line defined by V{Vy
« By definition, we want a point X that is on both lines 1 and 1. This would
imply that] - x =1 -x =0
= Just looking at these as vectors, a dot product of 0 means that X is
orthogonal to both 1 and
« Because cross product is orthogonal to both multiplicands, x = 1 X U
satisfies this requirement and thus defines the point of intersection
— Given intersection X:
= If vy is on front side of 1: Output v, X as front part and XV, as back part
= If v, is on front side of 1: Output XV, as front part and V; X as back part

Painter’s algorithm: Tree traversal

e Want farthest-to-nearest ordering of primitives for
painter’s algorithm
— If view location is on front side of a partitioning line:
« Lines on back side are farther
« Lines on front side are nearer
— If view location is on back side of a partitioning line:
« Lines on front side are farther
» Lines on back side are nearer

 Which side of a partitioning line 1 is a point p on?
— Assuming L, pin homogeneous form, use homogeneous
line test (1;)) =1- P
* F'> 0 =p is on back side of 1
* F'< 0 = p ison front side of 1
e =0 =pisonlinel (arbitrarily treat as back side)

Painter’s algorithm 2-D BSP tree traversal: Pseudocode

void BSP_displayTree(BSP_tree *tree, point viewLocation)

if (tree !'= NULL) {

—>n
H
if (viewLocation is in front of tree->root) { Zﬁ& 2

// Display back child, root, then front child Z{:j
T

BSP_displayTree(tree->backChild, viewLocation);
displayLine(tree->root);
BSP_displayTree(tree->frontChild, viewLocation);

L~

¥

else {
// Display front child, root, then back child
BSP_displayTree(tree->frontChild, viewLocation);
displayLine(tree->root); // back-facing line—can cull by skipping
BSP_displayTree(tree->backChild, viewLocation);

¥

Painter’s algorithm: Example BSP tree traversal

viewpoint

2 4)
- front =< back “—<back
(e .'/L-\)
BO @

from Foley et al.

Behind root (node 3), so display everything in front of (left subtree = nodes 1, 2, 5a),
then root (node 3), then everything behind (right subtree = nodes 4 and 5b)

Painter’s algorithm: Example BSP tree traversal

from Foley et al.

In front of root (node 2), so display everything behind (right subtree = node 1),
then root (node 2), then everything in front of (left subtree = node 5a)

Painter’s algorithm: Example BSP tree traversal

from Foley et al.

In front of root (node 2), so display everything behind (right subtree = node 1),
then root (node 2), then everything in front of (left subtree = node 5a)

10

Painter’s algorithm: Example BSP tree traversal

o

front / 3 back

(2)

from%oack \back
(5a) (1) (50)

NSNS Qv

from Foley et al.

Behind root (node 4), so display everything in front of (left subtree = NULL),
then root (node 4), then everything behind (right subtree = node 5b)

Painter’s algorithm: Example BSP tree traversal

o

front / 3 back
(2)
from%oack \back
(5a) (1) &
AN @

from Foley et al.

Behind root (node 4), so display everything in front of (left subtree = NULL),
then root (node 4), then everything behind (right subtree = node 5b)

Painter’s algorithm: Example BSP tree traversal

Final order: 1, 2, 5a, 3, 4, 5b

‘\(/ 5b ' N
f 3
2 ;

€ front A" A_back
= ‘/3 hd /f 57‘\-.

_ (4)
front)~ back “—back
D

/T‘(o /4(¥ ‘ \5a) W, N
Ll |

from Foley et al.

Every node is visited from back-to-front, so this is
an O(n) operation (n is the number of primitives after splitting)

3-D BSP Trees

e Analog of 2-D method, but now we are
talking about 3-D polygon primitives
and partitioning planes

e What's different about this vs. lines?

b v
— Must parametrize plane from polygon Hiangle crossing
— Point-plane “sidedness” test is analogous partitioning plane

to point-line test '
« Just use homogeneous form of plane equation
— Line (each edge of polygon)-plane !
intersection instead of line-line intersection v
— Polygon splitting instead of line splitting

b

Triangle splitting

from
Shirley

12

3-D BSP Trees: Details

e Parametrize plane from polygon
— Cross product of edges gets plane normal n = (a, b, C)T

— Solve for d from single point on plane (x, Y, z)Tvia plane
equationax + by + cz+d =10
e Line-plane intersection
— Unfortunately, there is no simple homogeneous
form for lines in 3-D like in 2-D
— Instead:
« Express point p on a ray as some distance ¢ along direction d from
origino:p =0 + td
« Use plane equationn - X + d = 0, substitute 0 + ¢d for x, and

0]

solve for ¢
« Then plug ¢ back into p = 0 + td to get p

BSP Trees: Notes

e Works best for static scenes
— Moving primitives can cross partitioning
lines

— Dynamic adjustment of tree possible, but
slows things down

13

