Hidden Surface Elimination: BSP trees

Outline

Binary space partition (BSP) trees
– Polygon-aligned

Building 2-D BSP trees: Details

- How to split crossing lines?
 - Find intersection point ${f x}$ of ${f v}_1{f v}_2$ with ${f l}$
 - Let l' be homogeneous form of line defined by v_1v_2
 - By definition, we want a point x that is on both lines l and l'. This would imply that $l\cdot x=l'\cdot x=0$
 - Just looking at these as vectors, a dot product of 0 means that \boldsymbol{x} is orthogonal to both l and l'
 - Because cross product is orthogonal to both multiplicands, $\,x=l\times l'\,$ satisfies this requirement and thus defines the point of intersection
 - Given intersection x:
 - If \bm{v}_1 is on front side of \bm{l} : Output $\bm{v}_1\,\bm{x}$ as front part and $\bm{x}\bm{v}_2$ as back part
 - If \mathbf{v}_2 is on front side of \mathbf{l} : Output \mathbf{xv}_2 as front part and $\mathbf{v}_1 \, \mathbf{x}$ as back part

