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Hidden Surface Elimination: 
BSP trees

Outline

• Binary space partition (BSP) trees
– Polygon-aligned
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BSP Trees

• Basic idea: Preprocess geometric primitives in 
scene to build a spatial data structure such 
that tests from any viewpoint can be easily 
calculated later

• Examples of tests
– Visibility for painter’s algorithms
– Intersection testing for ray tracing

• Generalization of binary search trees (1-D) to 
higher dimensions

Painter’s algorithm

from  Shirley

Draw primitives
from back to

front to avoid
need for depth

comparisons
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BSP trees: Key property
• “Spatial sorting” keeps track of which side of lines/planes 

primitives are on
– Objects on the same side as the viewer can be drawn on top of 

objects on the opposite side
– Objects on one side cannot intersect objects on the other side

– “Polygon-aligned” means partitioning plane is always coplanar with 
a scene polygon, as opposed to arbitrarily positioned

T3

adapted from 
Shirley

“partitioning” plane

viewpoint

far side

near side

Building 2-D “line-aligned” BSP trees 

• Pick oriented line segment (i.e., has a normal) 
from list as the root

• Rest of lines partitioned 
according to which side they 
are on
– “Partitioning” line placed at root 

of subtree
– Sets of lines on “front” side and “back” side 

correspond to left & right subtrees, respectively
• Recurse on each child

from Foley et al.

front side

back side
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Building 2-D BSP trees: Issues

• How to pick line with which to partition 
• What to do with lines that cross 

partitioning line 
– Split them (standard)
– Or: Put a copy on each side of                   

boundary

• When to stop recursing
–n or fewer primitives per leaf (n = 1 is standard)

– Or: Threshold on recursion depth

from Foley et al.

2-D BSP tree: Building example

from Foley et al.



5

2-D BSP tree: Building example

from Foley et al.

2-D BSP tree: Building example

from Foley et al.
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Building 2-D BSP trees: Pseudocode
BSP_tree *BSP_makeTree(line *lineList) 
{

line root, l, backPart, frontPart, *backList, *frontList;

if (lineList == NULL)
return NULL; 

else {
root = BSP_selectAndRemoveLine(lineList);
backList = frontList = NULL;
for (each line l in lineList) {

if (l in front of root)
BSP_addToList(l, frontList);

else if (l in back of root)
BSP_addToList(l, backList);

else {
BSP_splitLine(l, root, frontPart, backPart);
BSP_addToList(frontPart, frontList);
BSP_addToList(backPart, backList);

} } }
return BSP_mergeTree(BSP_makeTree(frontList), root, BSP_makeTree(backList));

}

adapted from Foley et al.

Picking partitioning lines: Criteria

• Painter’s algorithm
– Every object must be drawn → Entire tree is 

traversed
– So overall tree size should be as small as possible

Minimize splitting
• Ray tracing (later in course…)

– Several paths from root to leaves traversed 
looking for intersections

– So tree depth more important than overall size
Balance primitives on each side
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Partitioning lines: “Least-crossed” heuristic

• For painter’s algorithm, we want to choose 
partitioning lines that minimize the number of splits

• A particular line can be tested to see how many lines 
cross it and therefore would have to be split if it 
were the partitioning line

• Good procedure in practice:
1. Randomly select a small number of 

candidate partitioning lines (e.g., 5-10 
out of 1,000)

2. Calculate number of lines that cross 
each candidate

3. Use candidate with least crossings as 
next partition

from Shirley

Crossings for two planes

Building 2-D BSP trees: Details

• How to parametrize partitioning line l from line segment p1p2?
– Homogeneous line form l = (a, b, c)T for segment is same as line it’s on
– We can obtain l from p1, p2 via  l = p1 × p2

– Normal vector of line l is n = (a, b)T

• How to decide which side of partitioning line l a line      
segment v1v2 is on?
– If both points v1, v2 are on the front side of l, line v1v2 is on front side 

– If both v1, v2 are on the back side, v1v2 is on back side

– If v1, v2 are on different sides, v1v2 crosses partitioning line l

p1

p2n

v2
v1
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Building 2-D BSP trees: Details

• How to split crossing lines?
– Find intersection point x of v1v2 with l

• Let l0 be homogeneous form of line defined by v1v2

• By definition, we want a point x that is on both lines l and l0.  This would 
imply that l · x = l0 · x = 0

• Just looking at these as vectors, a dot product of 0 means that x is 
orthogonal to both l and l0

• Because cross product is orthogonal to both multiplicands,  x = l × l0

satisfies this requirement and thus defines the point of intersection

– Given intersection x:
• If v1 is on front side of l: Output v1 x as front part and xv2 as back part

• If v2 is on front side of l: Output xv2 as front part and v1 x as back part

Painter’s algorithm: Tree traversal 

• Want farthest-to-nearest ordering of primitives for 
painter’s algorithm
– If view location is on front side of a partitioning line:

• Lines on back side are farther
• Lines on front side are nearer

– If view location is on back side of a partitioning line:
• Lines on front side are farther
• Lines on back side are nearer

• Which side of a partitioning line l is a point p on?
– Assuming l, p in homogeneous form, use homogeneous 

line test F(p) = l · p
• F > 0 ⇒ p is on back side of l
• F < 0 ⇒ p is on front side of l
• F = 0 ⇒ p is on line l (arbitrarily treat as back side)

p

l



9

Painter’s algorithm 2-D BSP tree traversal: Pseudocode

void BSP_displayTree(BSP_tree *tree, point viewLocation) 
{

if (tree != NULL) {
if (viewLocation is in front of tree->root) {

// Display back child, root, then front child

BSP_displayTree(tree->backChild, viewLocation);
displayLine(tree->root);
BSP_displayTree(tree->frontChild, viewLocation);

}
else {

// Display front child, root, then back child

BSP_displayTree(tree->frontChild, viewLocation);
displayLine(tree->root);    // back-facing line—can cull by skipping
BSP_displayTree(tree->backChild, viewLocation);

}
}

T3

nn

Painter’s algorithm: Example BSP tree traversal

from Foley et al.

e

Behind root (node 3), so display everything in front of (left subtree = nodes 1, 2, 5a), 
then root (node 3), then everything behind (right subtree = nodes 4 and 5b)

viewpoint
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Painter’s algorithm: Example BSP tree traversal

from Foley et al.

e

In front of root (node 2), so display everything behind (right subtree = node 1), 
then root (node 2), then everything in front of (left subtree = node 5a)

Painter’s algorithm: Example BSP tree traversal

from Foley et al.

e

In front of root (node 2), so display everything behind (right subtree = node 1), 
then root (node 2), then everything in front of (left subtree = node 5a)
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Painter’s algorithm: Example BSP tree traversal

from Foley et al.

e

Behind root (node 4), so display everything in front of (left subtree = NULL), 
then root (node 4), then everything behind (right subtree = node 5b)

Painter’s algorithm: Example BSP tree traversal

from Foley et al.

e

Behind root (node 4), so display everything in front of (left subtree = NULL), 
then root (node 4), then everything behind (right subtree = node 5b)
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Painter’s algorithm: Example BSP tree traversal

from Foley et al.

e

Every node is visited from back-to-front, so this is 
an O(n) operation (n is the number of primitives after splitting)

Final order: 1, 2, 5a, 3, 4, 5b

3-D BSP Trees

• Analog of 2-D method, but now we are 
talking about 3-D polygon primitives 
and partitioning planes 

• What’s different about this vs. lines?
– Must parametrize plane from polygon
– Point-plane “sidedness” test is analogous 

to point-line test
• Just use homogeneous form of plane equation

– Line (each edge of polygon)-plane 
intersection instead of line-line intersection

– Polygon splitting instead of line splitting

from
Shirley

Triangle splitting

Triangle crossing
partitioning plane
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3-D BSP Trees: Details

• Parametrize plane from polygon
– Cross product of edges gets plane normal n = (a, b, c)T

– Solve for d from single point on plane (x, y, z)T via plane 
equation ax + by + cz + d = 0

• Line-plane intersection 
– Unfortunately, there is no simple homogeneous                   

form for lines in 3-D like in 2-D
– Instead:

• Express point p on a ray as some distance t along direction d from 
origin o: p = o + td

• Use plane equation n · x + d = 0, substitute o + td for x, and 

solve for t
• Then plug t back into p = o + td to get p

o

d

t

BSP Trees: Notes

• Works best for static scenes
– Moving primitives can cross partitioning 

lines
– Dynamic adjustment of tree possible, but 

slows things down


