
ARTICLE IN PRESS
0022-0248/$ - se

doi:10.1016/j.jcr

�Correspondi
E-mail addre
Journal of Crystal Growth 279 (2005) 213–228

www.elsevier.com/locate/jcrysgro
Numerical simulation of liquid phase electro-epitaxial
selective area growth

M. Khennera,�, R.J. Braunb

aDepartment of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900, USA
bDepartment of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 5 May 2003; accepted 28 January 2005

Available online 9 April 2005

Communicated by G.B. McFadden
Abstract

A computational model for semiconductor crystal growth on a partially masked substrate under simplified liquid

phase electroepitaxy conditions is developed. The model assumes isothermal diffusional growth, which is enhanced by

applied DC current through crystal-solution interface. A finite-difference, front-tracking method is used to numerically

evolve the interface. Computed examples show strong influence of the electromigration on growth rates in vertical and

lateral directions and the dependence of growth on electrical resistance of mask material, and on the wetting contact

angle.
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1. Introduction

In this paper, we numerically study crystal
growth on a patterned masked substrate. When
the substrate is partially masked, the epitaxial
crystals may be useful for process diagnostics or
for electronic devices ‘‘as grown’’ [1–3]. In the
growth process we model here, the semiconductor
e front matter r 2005 Elsevier B.V. All rights reserve

ysgro.2005.01.110

ng author.

ss: mkhenner@nsm.buffalo.edu (M. Khenner).
crystal to be grown is deposited on a subs-
trate which is exposed to the liquid through
etched windows in a mask (e.g., a deposited
metal or dielectric thin film). Liquid phase is
assumed to be a mixture (solution) of a molten
metal (solvent, say Bi) and two or more compo-
nents of which the epitaxial film is to be formed
(solute, say GaAs particles). Crystal growth
techniques which employ patterned substrates fall
in the category of so-called selective area growth
(SAG) techniques.
d.
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Fig. 1. A sketch of the mathematical situation. The free surface

of the growing crystal (curve in two dimensions) is sketched

such that a crystal overgrowth onto the mask is shown. f is the

angle that the unit normal, n; makes with the horizontal axis; n

points into the liquid phase. y is the angle that the crystal

surface makes with mask surface. This angle is assumed

constant for given material system (see text). The interface is

parametrized by arc length, s0:
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We consider growth from liquid phase which is
influenced by passing a DC current through the
interface between the solid and liquid phases. Such
crystal growth technique is called liquid phase
electroepitaxy (LPEE) when growth is on regular,
non-patterned substrates. LPEE was studied in-
tensively during the last two decades, see for
example [4–8]. Among physical processes which
may contribute to LPEE crystal growth are
diffusion, electromigration, convection, heat trans-
fer, and thermoelectric effects, e.g. Joule heat,
Peltier, Thompson, DuFour, Soret and Seebeck
effects.
In contrast to conventional LPEE, LPEE on

masked patterned substrate is studied much less.
We will refer to the latter process as LPEESAG.
Experimental studies of LPEESAG are described,
for example, in Refs. [9–12]. In contrast to the
number of computational studies carried out
for LPEE, there are relatively few theoretical
and computational studies of LPEESAG. A one-
dimensional diffusional model with electro-
migration [13] was studied by Sakai et al., and a
quasi-two-dimensional (2D) model was developed
subsequently [14]. Their 2D model based the
calculations on a representative crystal shape and
they concluded that the relative growth rate of the
crystal over the mask was increased due to surface
diffusion of material from the mask in comparison
with the direction perpendicular to the mask. Their
model did not take into account the crystal-
solution interface evolution; that is, the changing
crystal shape during growth did not affect the
diffusion fields around the crystal and vice versa.
The emphasis in this paper is on developing a
simple model and numerical method which poten-
tially is capable of handling the evolution and
interaction of the crystal growth, electric potential
and the diffusion fields in LPEESAG.
In our model, the diffusion of solute on both

sides of the interface, the electric potential, and the
properties of the boundaries and the crystal-
solution interface determine the evolution of the
interface. The mathematical problem is solved by
way of a modification of the approach of Juric and
Tryggvason for dilute binary alloy solidification
[15]. Some details of their approach appear in the
paper on solidification from a pure substance [16].
The paper proceeds as follows. In Section 2, a
simplified model of LPEESAG (that includes only
diffusion and electromigration as two major
processes) is presented. The numerical method is
briefly discussed in Section 3. Results of the
modeling are presented in Section 4 and discussed
in Section 5.
2. Mathematical model

In this section, we describe the mathematical
model which is an initial/boundary value problem
for a system of coupled partial differential
equations; the equations describe evolution of
concentration of solute and the electric potential
in the liquid solution and in the crystal.
Fig. 1 shows a sketch of the mathematical

situation; we examine the growth behavior on a
partial cross-section which is a line segment
extending from the center line of one mask surface
at x0 ¼ �‘ to the center of the adjacent open stripe
at x0 ¼ L: The mask region is ½�‘; 0Þ; the stripe
region is ½0;L�: We assume the surface behavior is
constant in the perpendicular direction since we
are interested in modeling the regular case of
crystal growth in long, parallel and straight etched
stripes [2,3,9–12]; thus the model operates in two
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dimensions. For simplicity, it is also assumed that
mask thickness is zero.
A starting point for our model is system of

equations derived in Ref. [17], the second of three
papers considering the stability of directional
solidification of binary alloy in the presence of
the electric field [18,19]. Alternatively, in Ref. [7],
authors used irreversible thermodynamics to ob-
tain a general formulation for the problem
including fluid motion. We refer the reader to
[17] for assumptions and details of the derivation.
Elastic stresses in the crystals (which may arise, for
example, due to lattice mismatch between sub-
strate and crystal materials) are ignored, and
constant supply of semiconductor material from
the source located at the top of the solution is
assumed (that is, the solution is never depleted).
We also assume, specifically for SAG, that there is
no interaction between growing (out of each
stripe) crystals since stripes are spaced sufficiently
far apart.
In the solution, we designate variables with a

subscript L; in the crystal, variables are designated
with a subscript S. Primes denote dimensional
variables.
Assuming that the interfacial temperature is

very closely approximated by the equilibrium
melting temperature of pure material, TM (at least
for LPEE of GaAs-like compound semiconduc-
tors), we investigate an isothermal model. Assume
that diffusion of the solute concentration and the
electromigration are important in both phases.
Under isothermal conditions, the problem formu-
lated in Ref. [17] greatly simplifies to the following
problem:

qc0L
qt0

¼ DLr
2c0L �

uL

sL
I0L � rc0L, (2.1)

r2c0
L ¼ 0, (2.2)

qc0S
qt0

¼ DSr
2c0S �

uS

sS
I0S � rc0S, (2.3)

r2c0
S ¼ 0. (2.4)

Here, c0L ðc0SÞ is solute concentration and c0
L ðc0

SÞ is
electrical potential in the liquid (solid) phase;
DL ðDSÞ and uL ðuSÞ are solute diffusivity and
electric mobility, and sL ðsSÞ are electrical con-
ductivities of liquid (solid) phases. I0L ¼ �sLrc

0
L

and I0S ¼ �sSrc
0
S are current densities.

2.1. Interfacial conditions

At the crystal-solution interface, both the
potential and the current are continuous:

c0
L ¼ c0

S, (2.5)

sLn � rc
0
L ¼ sSn � rc

0
S. (2.6)

We may take the view that the normal speed of
the interface, V 0

n; is set by a modified
Gibbs–Thomson condition

V 0
n=m ¼ mc0L � GK0, (2.7)

where m is the liquidus slope, G is the capillary
parameter, m is the kinetic coefficient (interface
mobility), and K0 is the curvature of the interface.
The solute must be conserved at the interface via

DLn � rc0L � DSn � rc0S þ ð1� kÞc0LV 0
n

¼
uLc0L
sL

I0L � n�
uSc0S
sS

I0S � n, ð2:8Þ

where k is the segregation coefficient. k is defined
as k ¼ c0S=c0L where the concentrations are eval-
uated at the interface; k measures how much of the
solute is rejected upon formation of a crystal.
2.2. Other boundary conditions

We first discuss the boundary conditions on the
electric potential. In the solution, a specified
current density I0 enters the top of the solution
(top of computational domain) at y0 ¼ hsolution (ref.
Fig. 1); in accord with regular convention, we
mean current of positive particles (e.g., electron
current is in�I direction). We then have

I0L ¼ I0nt ¼ �sLðqc
0
L=qy0Þnt, (2.9)

where nt is the unit outward normal to the top
boundary of the computational box. On either
vertical side of the computational box, at x0 ¼ �‘
and x0 ¼ L; we have the symmetry conditions

qc0
L=qx0 ¼ qc0

S=qx0 ¼ 0. (2.10)
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Table 1

Physical parameters for a GaAs-like material; we are not

attempting to exactly model GaAs. We choose TM ¼ 1073K

which is (i) close to the melting point of As (the latter is 1090K)

and (ii) coincides with the typical growth temperature (liquidus

or saturation temperature) [8]

Parameter Value at � 800 
C Units Reference

sL 2:5� 104 O�1 cm�1 [8]

sS 4000 O�1 cm�1 See text

DL 4� 10�5 cm2 s�1 [8]

DS 4� 10�7 cm2 s�1 See text

m 2:45� 10�4 K at%�1 [8]

k 10�4 — [21]

uL 0.027 cm2 V�1 s�1 [8]

uS 1:1� 104 cm2 V�1 s�1 [22]�

m 200 cm s�1 K�1 �

g 700 ergs=cm2 [9]

LV 1000 J cm�3 �

G ¼ gTM=LV 7:5� 10�5 cmK �

L 5� 10�4 cm [9]

‘ 5� 10�3 cm [9]

hsolution 1 cm [9]

I0 10 A cm�2 [8,9]

c1 2:23� 10�2 % [8]

y 0
2180
 —

LV is latent heat of fusion. The values marked with an asterisk

(�) are assumed because reliable data for semiconductors is

difficult to find. Also note that for the same reason we use value

of uS which corresponds to electron mobility and not to solute

electric mobility.
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At the bottom of the box at y0 ¼ 0 we must take
into account the possibility of overgrowth onto the
mask, as well as the possibility for the masking
material to be either dielectric (say, SiO2) or
conductive (tungsten [10]). We therefore adopt
the simplest model, as follows. Over the masked
portion of the substrate at ½�‘; 0Þ; we impose

I0L ¼ I0S ¼ �aI0nb, (2.11)

here nb is the unit outward normal to the bottom
boundary of the computational box. Over the
stripe region ½0;L�; we impose

I0S ¼ �ð1� aÞI0nb. (2.12)

a is a prescribed constant. Choosing 0pap0:5
allows to effectively vary the electrical resistance of
the masking layer. The limiting cases are: (i) a ¼ 0
corresponds to dielectric mask. Thus in this case
there is no electron current entering the masked
portion of the substrate from the liquid phase, and
electromigration over the mask vanishes. (ii) a ¼

0:5 stands for the situation when the masked and
open regions of the substrate support equal
fractions of the current density I0: That is possible
only when the mask is conductive, as in Mauk and
Curran [10], for example.
We now discuss the concentration boundary

conditions. At y0 ¼ hsolution; the concentration is
prescribed: cL ¼ c1: On vertical sides of the box,
qc0L=qx0 ¼ qc0S=qx0 ¼ 0 due to symmetry. At the
bottom of the box,

qc0L
qy0

�
uL

sLDL
c0LI

0
L ¼ 0, (2.13)

qc0S
qy0

�
uS

sSDS
c0SI

0
S ¼ 0, (2.14)

meaning that there is no mass flux through the
mask and the stripe.
We also have the constant equilibrium angle y

which the crystal surface forms with the mask at
the contact point ðx0

�; 0Þ; as given by the Young–
Dupré equation

cos y ¼
gms � gcm

gcs
. (2.15)
Here, gms; gcm and gcs are constant (independent of
orientation) energies of the mask-solution, crystal-
mask and crystal-solution interfaces.
2.3. Physical parameters and nondimensional

problem

Representative physical parameters for LPEE-
SAG of GaAs-like semiconductors are given in
Table 1. Self-diffusion in III–V compound semi-
conductors is, as a rule, very slow. For instance,
the diffusion coefficients of Ga and As in GaAs
are of the order 10�14–10�15 cm2=s at 1025 
C [20,
p. 197], and thus value of DS in Table 1 is
overestimated. However, for III–V systems there
are cases when self-diffusion is not as slow. For
instance, values for diffusion prefactors and
activation energies cited on p. 202 of [20] for In
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Table 2

Nondimensional parameters

Parameter Value

UL ¼ uLI0L=ðsLDLÞ 10�4

US ¼ uSI0L=ðsSDLÞ 300

D ¼ DS=DL 10�2

S ¼ sS=sL 0.1

M ¼ mc1=TM 5� 10�9

G ¼ G=ðLTMÞ 10�4

x0 ¼ mDL=ðLTMÞ 1:5� 10�2

d ¼ ‘=L 10

h ¼ hsolution=L 2� 103
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and As diffusion in InAs translate into self-
diffusion coefficient of the order 10�11 cm2=s for
T ¼ 900 
C: Impurities may diffuse even faster,
e.g. the typical diffusion coefficient of Zn in InAs
is of the order 10�7 cm2=s for T ¼ 800 
C: Taking
this into account, we believe there is justification
for using larger DS; another reason is that, within
the framework of two-sided model the numerical
computations are easier to perform if the coeffi-
cients of equation do not differ by many orders of
magnitude. We also wish to have the possibility of
taking into account diffusion in the solid phase, as
this may be required for modeling other groups of
semiconductors. Note also that the conductivity in
the solid is 100 times larger than the value of
40O�1 cm�1 given by Ref. [8]; we use this value
also to avoid large ratio of conductivities in order
to reduce the computational time needed to
iteratively solve the two-phase analog of Eqs.
(2.2), (2.4) which is Eq. (A.8), see Appendix A (and
sometimes, to avoid divergence of iterations in
multigrid cycle). The code MUDPACK [23]
(available from NETLIB) is used for the solution
of the Eq. (A.8).
Despite that all results presented in this paper

are obtained using artificially large values of DS

and sS; we show in Fig. 9 two cases of computa-
tion with DS ¼ 10�14 cm2=s and sS ¼ 40O�1 cm�1:
The discussion of this figure is included in the end
of the Section 4.
We nondimensionalize the problem as follows.

All lengths are scaled with the width L of substrate
(stripe) region; then, the computational domain is
over �dpxp1; 0pyph; where d ¼ ‘=L; h ¼

hsolution=L: The masked substrate occupies
�dpxo0; y ¼ 0; and the stripe occupies
0pxp1; y ¼ 0: The time is scaled with L2=DL;
the current density with the applied value I0; the
concentration with the far field boundary value
c1: We will also eliminate the current density as a
variable in favor of gradients of the electric
potential c: The nondimensional parameters are
shown in Table 2.
The nondimensional equations in the bulk of

either phase read:

qcL

qt
¼ r2cL þ ULrcL � rcL, (2.16)
r2cL ¼ 0, (2.17)

qcS

qt
¼ Dr2cS þ USrcS � rcS, (2.18)

r2cS ¼ 0. (2.19)

On the crystal-solution interface, we have

cL ¼ cS, (2.20)

qcL

qn
¼ S

qcS

qn
, (2.21)

Vn=x ¼ McL � GK, (2.22)

qcL

qn
� D

qcS

qn
þ ð1� kÞcLVn

¼ �ULcL
qcL

qn
þ UScS

qcS

qn
. ð2:23Þ

In Eq. (2.22), G is capillary parameter, x is
interface mobility. q=qn is directional derivative
along n: We allow for the anisotropy of x:

x ¼ x0½1þ �x cosðpfþ bxÞ�, (2.24)

where x0 is mean value (ref. Table 2). The constant
�x determines the degree of the anisotropy of x;
value of p specifies the type of anisotropy (for
example, p ¼ 4 corresponds to four-fold anisotro-
py). f is the angle that the unit normal to the
interface makes with the horizontal axis, and bx is
the phase shift. For our numerical experiments,
we take values for �x within [0,1) to avoid the
ill-posedness of the evolution problem [24]. Mathe-
matically sharp corners (missing orientations) on
crystal surface are therefore excluded from
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consideration. The anisotropy of the capillary
parameter can be incorporated in the model in
the similar fashion; however, this requires more
complicated Herring condition [25] at the tri-
junction crystal-mask solution. We did not
attempt to include this anisotropy in this work.
The nondimensional boundary conditions are as

follows. At x ¼ �d and 1, for 0oyoh; we have

qcL

qx
¼

qcS

qx
¼

qcL

qx
¼

qcS

qx
¼ 0. (2.25)

On �dpxp1; y ¼ h; we have

qcL

qy
¼ �1; cL ¼ 1. (2.26)

On �dpxox�; y ¼ 0; we have

qcL

qy
þ ULcLa ¼ 0;

qcL

qy
¼ a, (2.27)

on x�pxo0; y ¼ 0;

qcS

qy
þ UScS

ð1þ dÞa
DS

¼ 0;
qcS

qy
¼

ð1þ dÞa
S

,

(2.28)

on 0pxp1; y ¼ 0;

qcS

qy
þ UScS

ð1þ dÞð1� aÞ
DS

¼ 0,

qcS

qy
¼

ð1þ dÞð1� aÞ
S

. ð2:29Þ

Finally, at x ¼ x�; y ¼ 0; we have

y ¼ const. (2.30)
3. Numerical method

We employ a method closely related to those
developed by Tryggvason and coworkers, which
was successfully applied to many problems in
multiphase fluid flow (for a review, see [26]) and
for alloy solidification [15]. Their method is a two-
grid, front-tracking method. The field variables
(concentration and electrical potential in our case)
are resolved on 2D stationary, uniform, rectan-
gular finite-difference grid. The interface is ex-
plicitly tracked by a separate grid of marker
particles. The communications between grids are
done by a method that is known as the immersed

boundary technique [27]. The zero-thickness inter-
face is approximated by a smooth distribution
function which spreads the interface over a few
grid points surrounding the interface. The dis-
tribution function also interpolates the field
variables to the interface.
In Appendix A, we describe in detail the

modification of the approach of Juric and Trygg-
vason for alloy solidification [15] that is applied to
the present problem.
4. Results

In this section, our goal is to demonstrate how
changes of certain system parameters influence the
crystal surface shape and the growth rates. Due to
very large number of nondimensional parameters
involved, we fix most of these parameters.

4.1. Isotropic surface properties

To study isotropic surface evolution under
influence of the electric currents, we take �x ¼ 0:
We also take dielectric mask ða ¼ 0Þ; and the
contact angle y ¼ 60
: Other values of parameters
for this run were selected as in Table 2, with the
exception of values for d and h, which were taken
0.4 and 1, respectively. Also, quotient US=ðDSÞ in
Eqs. (2.28) and (2.29) is chosen small to the extent
that allows for absence of destabilization near the
contact line. The computation was done on a
192� 192 grid. The small dimensions of the
computational box were chosen to ensure high
enough grid resolution, especially in the region
near the contact point; simulations on much larger
domains are possible but impractical, since grids of
very large sizes are needed. The interfacial grid has
250 marker particles.
Fig. 2(a) shows crystal surface profiles at

nondimensional times t ¼ 0; 200, 400, 600, 800,
1000 for imposed current densities I0 ¼

0; 2; 10A=cm2 (values of UL and US in Table 2
are recomputed every time I0 is changed to a new
value). Fig. 2(b) shows crystal height at the center
of the stripe as function of time for these three
runs. Firstly, as is evident from both figures, the
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Fig. 2. Interface profiles (a) and crystal height in the middle of

the stripe, (b) for different imposed current densities I0: �x ¼ 0

(no anisotropy), a ¼ 0; y ¼ 60
:
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electromigration enhances growth in the vertical
direction, the enhancement being stronger for
stronger currents. Notice some overgrowth on
the mask. Due to numerical edge effect which
sometimes is pronounced for high current densities
(note the concave regions on dotted surface
profiles near x ¼ 1 in Fig. 2(a)), the dotted curve
in Fig. 2(b) is less steep than expected. The
increased computational accuracy there will elim-
inate this effect and make the dotted curve steeper.
For the case of I0 ¼ 2A=cm2; the growth rate is
constant for t4500; e.g. after the initial transient
phase, while for the no-current case the growth is
still in the transient phase up to t ¼ 1000:
Fig. 3 shows contour plots of the concentration

and electrical potential fields for I0 ¼ 10A=cm2

case of the Fig. 2. In Fig. 3(a), note nearly vertical
bands of progressively decreasing concentration as
one cuts across the solid from the contact point to
the symmetry boundary (middle of the crystal).
These vertical bands bend near the crystal surface,
particularly near the contact point, to follow the
local geometry there. There is clearly a gradient of
concentration across the crystal that is developing
as time goes on. A pronounced gradient in the
solid develops because the electromigration in the
solid phase is large compared to diffusion there;
the nondimensional coefficient of the solid electro-
migration term is about four orders of magnitude
larger than coefficient of the solid diffusion term,
and about six orders of magnitude larger than the
coefficient of the liquid electromigration term.
These relative sizes explain the relatively rapid
development of the concentration field in the solid
phase.
Fig. 4 shows the cross-sections, at different

times, of the potential in the entire domain by
vertical line x ¼ 0:5: The electrical potential curves
exhibit smoothed bends at the interface location
due to the change of the electrical conductivity
from 1.0 in the liquid to S ¼ 0:1 in the solid. The
gradient of the potential is toward the substrate at
y ¼ 0; and therefore the electron current in the
solution is also toward the substrate and growing
crystal, promoting the electromigration mass flux
in this direction. The latter results in the enhanced
growth rate, as will be seen below.

4.2. Anisotropic surface properties

Fig. 5 shows crystal surface for I0 ¼ 10A=cm2;
�x ¼ 0:95; p ¼ 4; bx ¼ 45
; y ¼ 60
 and two lim-
iting values of a: We selected four-fold anisotropic
interface mobility with the phase shift since our
studies [28] of SAG from vapor indicated that
under certain conditions such choice allows for the
maximal lateral growth rate.
The comparison of Fig. 2(a) (dotted curves) and

Fig. 5(a, b) shows that vertical growth rate is
indeed decreased in the anisotropic case (by a little
less than two times), and lateral growth rate is
increased. Also, the vertical growth can be
enhanced by decreasing a: That is, vertical growth
rate is maximal if mask is dielectric ða ¼ 0Þ and
thus no current enters the mask. The electro-
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Fig. 3. Contour plots of (a) concentration field and (b) electric potential field at t ¼ 250: Red curve on these plots shows the

approximate (sketched by hand) location of the crystal-solution interface. See more comments about this figure and Fig. 9 in the

Appendix B.
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migration thus occurs predominantly above the
stripe. The lateral growth rate is not affected by
the change in mask resistance; however, that will
change once the crystal poorly ‘wets’ the mask (see
below). Also note that the crystals developed two
slightly-curved surfaces resembling facets.
Fig. 6(a, b) demonstrate the electrical potential

fields for the crystal growth shown in Fig. 5(a, b),
respectively. For the insulating mask case
(Fig. 6(a)), the gradient of the potential (and thus
the current) occurs predominantly above the
stripe, forcing the electromigration that promotes
the growth there; for the conductive mask case,
(Fig. 6(b)) the current occurs more above the mask
(where there is no crystal yet), and thus the growth
on the stripe is slower. We view this result as a
more self-consistent computation supporting and
generalizing the conclusions of Sakai et al. [14].
Fig. 7(b, c) show electromigration-influenced ani-

sotropic growth with y ¼ 120
; the other parameters
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Fig. 5. Interface profiles for dielectric ((a), a ¼ 0) and

conductive ((b), a ¼ 0:5) masks. I0 ¼ 10A=cm2; �x ¼ 0:95; p ¼

4; bx ¼ 45
 (four-fold anisotropic interface mobility), contact

angle y ¼ 60
:
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are the same as for Fig. 5. Fig. 7(a) is included for
comparison. As a changes, we see drastic changes in
both film morphology and growth rates.
Fig. 7(b) shows results for a ¼ 0; only the
neighborhood of the contact point is shown. The
crystal grows fast vertically, and in this direction
the growth is faster than in the isotropic, ‘no
current’ case of Fig. 7(a); however, lateral over-
growth is extremely slow. Initially, crystal retracts
on the stripe instead of overgrowing onto the
mask. Physically, the retraction is possible due to
melting back the substrate; however, we do not
allow that in the model. The short retraction in
Fig. 7(b) is solely due to the rearrangement of the
interface from initial contact angle y0 ¼ 60
 to y ¼

120
: Once this equilibrium contact angle is
achieved, the retraction stops and the direction
of the contact point’s lateral movement reverses to
one on the mask. The retraction is generally
present in other runs with y490
 (see, e.g.
Fig. 7(a, c)) but is not shown on the graphs since
it takes place very fast there.
Fig. 7(c) shows the a ¼ 0:5 case. In this case, the

lateral growth rate is increased significantly at
the expense of vertical growth; the overgrowth on
the mask is almost completed by t ¼ 450:
We also performed a simulation with y ¼ 150


(not shown); the vertical growth rate changed
insignificantly compared to just discussed case of
y ¼ 120
; but lateral growth rate increased by a
factor of 2.
Our last set of numerical experiments was

conducted with reversed current, that is with
current from the solution into the substrate
ðI0o0Þ: In a real crystal growth process, applying
the current in this direction could result in
dissolution of the crystal instead of growth [6],
although in theory the reverse-direction current
could be superimposed on a transient cooling of
the solution to yield net growth. For our simple
model, reversed current induces interfacial in-
stability. Fig. 8(a, b) show this instability for the
cases of isotropic growth on dielectric and
conductive mask, respectively. It is obvious that
the stability of the interface above the substrate is
influenced by the degree of mask conductivity. In
fact, making the mask conductive makes the
instability less pronounced.
Finally, Fig. 9 shows isotropic computation with

US ¼ 3� 104; D ¼ 10�9; S ¼ 10�3: These values
of nondimensional parameters correspond to
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Fig. 6. Contour plots of the potential field at t ¼ 600: (a) case of Fig. 5(a); (b) case of Fig. 5(b). See caption to Fig. 3 for meaning of the
red curve.
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diffusivity and electrical conductivity in the solid
DS ¼ 10�14 cm2=s; sS ¼ 40O�1 cm�1; respectively.
Except for the anisotropy, interface profiles in
Fig. 9(a) are quite similar to profiles in Fig. 5(b)
obtained with larger values of DS and sS; the
former profiles are flatter in the central region.
Same can be said about profiles in Figs. 9(b) and
7(c). All growth habits and differences mentioned
above for the cases of weak and strong wetting of
the substrate and mask conductivities hold in the
case of more realistic values of DS and sS:
However it must be noted that absolute rate of
growth is faster in the case of small values of these
parameters.
5. Discussion and conclusions

In this paper, a numerical method suitable for
modeling electro-epitaxial selective area growth is
introduced, and some examples of semiconductor
thin film growth for a simplified LPEE process are
computed. Although being very simple, the model
we employed allows us to capture two phenomena
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migration is shown for comparison in (a).
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which occur in real crystal growth systems
influenced by passing the electric current through
them, namely diffusion and electromigration. We
investigated growth rates in vertical and lateral
directions as a function of (i) kinetic anisotropy,
(ii) applied current density, (iii) masking layer
resistance, and (iv) the contact angle. It is found
that the vertical growth rate can be greatly
enhanced through the electromigration by direct-
ing the electric current through the mask/substrate
into the solution. The enhancement is stronger
with stronger currents and with the resistance of
the mask. However, electromigration has little
effect on lateral overgrowth onto the mask unless
the crystal and mask materials are such that there
is poor wetting of the mask by the crystal (i.e.,
large contact angle). In the large contact angle
case, the rate of lateral overgrowth increases with
the decrease of the mask resistance, and the
vertical growth rate decreases accordingly. In our
simulation, the passage of the electric current in
the opposite direction (from the solution into the



ARTICLE IN PRESS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

x

t=0

t=60α =0.5

0

0.02

0.04

0.06

0.08

0.1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

x

t=0

t=60α =0.5

(a)

(b)

Fig. 9. Growth for conductive mask ða ¼ 0:5Þ: I0 ¼ 10A=cm2; �x ¼ 0: For values of US;D;S see text. (a) y ¼ 60
: The bulges near
symmetry boundary is the numerical edge effect. (b) y ¼ 120
:

M. Khenner, R.J. Braun / Journal of Crystal Growth 279 (2005) 213–228224
mask/substrate) produces growth front instability,
the extent of which may be decreased by directing
current not only into the stripe, but also into the
conductive mask. In real experiment, the contact
angle can be controlled by appropriate choice of
the mask material.
Our numerical results are consistent with

experimental observations in LPEESAG systems
[9,10,12]. In particular, the dependence of over-
growth rate on mask material was noticed in Ref.
[9]. There, the increased overgrowth rate over
tungsten masks (in comparison to silicon dioxide
masks) was detected and attributed to the wetting
phenomena. The films grown on tungsten masks
all feature non-wetting behavior, e.g. contact
angles larger than 90
: In Ref. [12] it was found
that application of conductive tungsten mask
results in much wider and thinner electro-epitaxial
layers than those grown on the substrates coated
by dielectric film. The explanation for this experi-
ment was provided based on the flow of current
into the film, consistent with our modeling. As
follows from the snapshots of the film, there is also
little wetting of the substrate.
An analytical study of the stability of the binary

alloy solidification in the electric field was carried
out in Ref. [17]. Fig. 9 of their paper shows
marginal stability curves in the plane ða; GL=cSÞ;
where a is nondimensional unstable wavenumber
and GL is temperature gradient at the interface for
a germanium–gallium alloy. This alloy has ther-
mophysical properties which resemble those of
III–V compound we use as an example in this
paper. The diagram is for the case of positive
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growth speed and I0o0: It is evident from this
figure that there is a wide range of unstable
wavenumbers ð0:05oao5000Þ for GL ¼ 0: On the
other hand, as Fig. 8 of Ref. [17] indicates, there is
even wider range of unstable wavenumbers for
I040; GL ¼ 0 case. Recall that we did not detect
instabilities for I040 case. The explanation of this
contradiction can probably be found in Fig. 5 of
Ref. [17]. There, two marginal stability curves are
presented in ðV ; GL=cSÞ coordinates, one for
I040 and another one for I0o0 case. While it is
not clear from this graph how the curves would
look for very small V, it can be observed that for
realistic values of V and nonzero GL the marginal
stability boundaries are straight, inclined parallel
lines with narrow gap between them. It can happen
that point ðV�; ðGL=cSÞ�Þ corresponding to the
particular realization of the growth falls in
between these stability lines, in which case growth
with I040 will be stable and growth with I0o0
will be unstable. It should be noted that formula-
tion of the problem in Ref. [17] differs from our
formulation in that there two semi-infinite regions
are considered, diffusion in liquid phase only is
accounted for (no diffusion in the solid), and
temperature gradients are present (our formula-
tion is isothermal). Stability analysis was also
carried out in Ref. [29], but all the results are given
there in terms of the temperature gradient and that
makes it difficult to apply them to our model.
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Appendix A. Numerical method

In this section, we outline the modification of
the approach of Juric and Tryggvason for alloy
solidification [15] to the current problem.
A.1. Reformulation of governing equations

To simplify numerical solution, we first restate
the mass transport on both sides of the interface
with a single equation [15]. To do this, we rescale
the concentration, the diffusion coefficients and
the electromigration coefficients, viz.,

~C ¼
cS=k in the solid;

cL in the liquid;

(
(A.1)

~D ¼
Dk in the solid;

1 in the liquid

(
(A.2)

and

~U ¼
USk in the solid;

UL in the liquid:

(
(A.3)

We then replace Eqs. (2.16) and (2.18) by

q ~C

qt
¼ r � ð ~Dr ~CÞ þ ~Urc � r ~C

þ

Z
A

~Cf ð1� kÞVndðx� xf ÞdA. ðA:4Þ

Note that in (A.4), ~C is continuous across the
interface. Also, c is the electric potential defined
throughout the domain. c need not be rescaled
because it is already continuous across the inter-
face, ref. Eq. (2.20). The last term is an integral
over the interface between the solid and the liquid,
which must be tracked. This integral accounts for
rejection or absorption of solute at the interface
due to the difference in miscibility of the solution
components in the liquid and solid. The subscript f

designates a quantity evaluated at the interface, so
that ~Cf ¼ ~Cðxf ðtÞÞ is the value of the transformed
concentration at the interface. dðx� xf Þ is a 2D
delta function which is non-zero only at the
interface where x ¼ xf : Obviously, the integral
source term is also nonzero only at the interface.
On a 2D grid, the delta function is approximated
in a standard way using Peskin’s distribution
function Fij [30]. In the limit of vanishing interface
thickness, Eq. (A.4) can be shown to recover the
interfacial mass balance condition (2.23). k ¼

CSðxf ðtÞÞ=CLðxf ðtÞÞ is assumed to be constant as
in [15].
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In order to compute with Eq. (A.4), we must
smooth the still-discontinuous ~D and ~U across the
interface. To do this, we define

D̂ ¼ ðkD � 1ÞrðxÞ þ
1þ kD

2
, (A.5)

Û ¼ ðkUS � ULÞrðxÞ þ
UL þ kUS

2
, (A.6)

where rðxÞ is the material indicator function,
which is �0.5 in the bulk liquid and 0.5 in the
bulk solid, and which has a smooth, thin transition
layer around the interface. The interface is, there-
fore, a zero level contour of rðxÞ: The indicator
function is updated every time step given the
location of the interface. For now, we replace ~D
and ~U in Eq. (A.4) with D̂ and Û to obtain, finally,
the equation which must be solved on 2D grid,
everywhere in the computational box:

q ~C

qt
¼ r � ðD̂r ~CÞ þ Ûrc � r ~C

þ

Z
A

~Cf ð1� kÞVndðx� xf ÞdA. ðA:7Þ

We also must solve

r � ŝrc ¼ 0, (A.8)

where

ŝ ¼ ðS� 1ÞrðxÞ þ
1þ S
2

(A.9)

is the smoothed electrical conductivity.
The fully specified mathematical problem con-

sists of five parts: (i) Eqs. (A.5)–(A.9); (ii)
associated problem for rðxÞ (see below), (iii) the
evolution law for the interface,

dxf

dt
¼ Vn, (A.10)

(iv) interfacial and boundary conditions
(2.20)–(2.30), (v) initial conditions for the concen-
tration, electrical potential and interface position
(specified below). Note that since the interface is
tracked, we can regain the original concentration,
diffusivity and electric mobility fields from the
known position of the interface by, for example,

C ¼
~C þ k ~C

2
þ ðk ~C � ~CÞrðxÞ, (A.11)

etc.

A.2. Discretization

Spatial derivatives in Eqs. (A.7), (A.8) are
discretized using centered, second order finite
differences. One-sided finite differences are used
where needed to compute derivatives at the
boundaries of the computational box. Second
order finite differences are also used for the
computation of the curvature of the interface,
given Cartesian coordinates of marker particles
and parameter (arclength) along the interface. For
details on parametrization, see [31]. Time deriva-
tives in Eqs. (A.7), (A.10) are approximated by the
forward Euler method. We therefore have an
explicit, forward-in-time-central-in-space finite dif-
ference scheme.

A.3. Treatment of the indicator function

As suggested in Ref. [30], the computation at
every time step of rðxÞ (for a closed curve) involves
computation of Peskin’s distribution function and
solution of the Poisson equation for rðxÞ: In our
case, the interface is open curve, and therefore it
was necessary to modify the method of computing
rðxÞ to account for the local geometry of the
interface near the contact point ðx�ðtÞ; 0Þ: These
modifications are described elsewhere [32]. Also
note that method of Ref. [30] has been extended to
an open curve in the context of a liquid drop
spreading on a substrate by Ref. [33].

A.4. Initial conditions for the interface shape y ¼

yðxÞ; concentration field ~C and potential c

The initial interface is a hyperbolic tangent
curve which makes angle y0 with the mask at
contact point:

yðx; 0Þ ¼ y0 tanh x
tan y0

y0

� �
; 0pxp1, (A.12)
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where y0 gives the small initial elevation of the
surface at x ¼ 1: For the simulations we take y0 ¼

0:04 and y0 ¼ y if yo90
: If y490
; we take y0 as
close to 90
 as possible. (It is important to mention
that the interface need not be a function at any
time; the method naturally handles curves and
surfaces which are not described by functions.
However, our implementation cannot handle
topological changes of the interface.) The initial
concentration is given by

~C ¼ 1=k, (A.13)

in the solid and

~C ¼ 1þ
1� k

k
exp

�1

jrrðxÞj

� �
(A.14)

in the liquid. The last two equations translate into
cS ¼ cL ¼ 1 at t ¼ 0 in the bulk solid and liquid
phases (for the original variables) by way of Eq.
(A.11) and (A.1). However, at the interface (that is

at rðxÞ ¼ 0) C ¼ ð1þ kÞ ~C=2; and thus C41 since

according to Eq. (A.14) ~C varies between 1 and
1=k in the interfacial region. Initial potential is
zero in both phases.
Appendix B. On smearing of the material

properties across the interface

Due to the properties of the distribution function,
the difference in the bulk values of the electrical
conductivity, electrical mobility and diffusivity is
smeared across the interface on a scale of 5–6 grid
points. The isocontours of the concentration field in
Fig. 3(a), and the interface shapes in Fig. 9 are
rough due to numerical and interpolation errors,
stemming from parameter values difference of
several order of magnitude across the interface.
This is particularly true in the case of Fig. 9, where
this difference is pushed to a limit and the
smoothing procedure of the method is incapable
to satisfactory compensate for abrupt changes. In
the case of Fig. 3(a), different interpolation methods
produced slightly different contours in the interface
vicinity, especially near regions of high curvature.
For the electrical potential the problem is less acute,
since the ratio of the the electrical conductivities,
S in Laplace equation (A.8) is not very small (0.1)
for all computations (except Fig. 9, where it is
smaller); however, the ratios DL=DS and UL=US in
the concentration evolution Eq. (A.7) are 10�2 and
3� 10�7; respectively (again, except Fig. 9). The
numerical errors tend to accumulate slowly and they
do not compromise the computation at large, at
least on the time scale of computed overgrowth.
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