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Motivations: Nanoscale Physics & Technology of Thin Film Crystal Growth

Substrate growth of high-quality thin solid films and crystals is
extremely challenging due to very tough environments:

temperatures higher than 1000 C, local stresses in the MPa range

30 years of crystal growth research:

Growth mechanisms still are not well understood →
Long delay in the transition of imagined applications from the
growth experiment stage to a nanoscale semiconductor
device-building stage

Example: Formation of single-crystal, nanometer-sized “islands”
from the initially continuous single-crystal film grown on a

single-crystal substrate made from different material than the film
(Stranski-Krastanow heteroepitaxial thin film growth)
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Motivations, continued: Thin Film Crystal Growth

Figure : Flat, single-crystal semiconductor film (Si1−xGex on Si) grown
by MBE or CVD to height h0.

and then, suddenly, ... Instability and pattern formation

Figure : AFM images of 10nm-thick Si0.82Ge0.18/Si alloy films annealed
at 850 C for (a) 1 min, (b) 5 min, (c) 20 min, and (d) 2 h (from [1]).
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Motivations, continued: Thin Film Crystal Growth

The ultimate goal: production of uniform, defect-free superlattices
of nicely-shaped crystal islands (pyramids, domes, cubes, etc.)

Methods of shape and order control must be perfected

Factors influencing pattern formation and pattern
coarsening must be fully understood

Figure : Computer simulation results of a mathematical model (from [2]).
(a) Stationary hexagonal lattice; (b) Stationary square lattice. This is
MUCH better than the best experiments to-date !
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Motivations, continued: Mathematics

High-order, very nonlinear ”geometric” evolution PDEs comprise
the models of thin solid films → complicated mathematics
What is a geometric PDE?
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Modeling approaches

Continuum: this talk. Provides qualitative information on the
process
Atomistic (Molecular Dynamics, Kinetic Monte-Carlo):
computationally expensive, thus limited to a few thousand
atoms and short time scales (microseconds)
Atomistic/continuum multiscale methods: state-of-the art,
combine best of both worlds

The simplest continuum approach: PDE IBVP for the film height
function h = h(x , y , t), 0 ≤ x ≤ X , 0 ≤ y ≤ Y :

ht = F (h, hx , hy , hxx , hyy , ...)

+ the initial condition: h(x , y , 0) = h0(x , y)
+ the boundary conditions:
h(0, y , t), h(X , y , t), h(x , 0, t), h(x ,Y , t) are prescribed

This approach works iff the films surface does not overhang onto
itself (is a graph); otherwise, a parametric formulation (the
previous slide)
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Physical factors: Epitaxial Stress

1. Compressive or tensile stress generated by lattice mismatch of
the film and the substrate

Figure : A heteroepitaxial thin-film structure. The mismatch between the
lattice parameters of the film and substrate is accommodated by a
(compressive) elastic stress in the film (from [1]).
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Physical factors, continued: Surface diffusion I

2. Diffusive mass transport of adatoms along the film surface.

Is very fast due to the high-T environment

Causes the morphology (= shape) of the film surface to
evolve continuously

Figure : Continuum and atomistic view of surface diffusion (from [1]).
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Physical factors, continued: Surface diffusion II

Introduce the surface chemical potential
M(h, hx , hy , ...) =Mγ +Me +Mw + ..., where

γ : surface energy density;

e : elastic energy density; w : wetting energy density

Gradients of M drive the diffusion flux of adatoms along the
surface: j = −∇M(h, hx , hy , ...) (thermodynamic Fick’s law)

Thus surface height h(x , y) changes

Mikhail Khenner Studies of surface shape dynamics ...



Physical factors, continued: Surface diffusion III

When either Me 6= 0, or Mw 6= 0, or Me =Mw = 0, but the surface
energy γ is anisotropic, the planar film is the unstable equilibrium,
because:

In equilibrium the surface diffusion flux vanishes,

j = −∇M(h, hx , hy , ...) = 0→M(h, hx , hy , ...) = const.,

where value of const. depends on film volume and boundary conditions.

Solution of this elliptic PDE gives equilibrium surface shape h(x , y),
termed the Wulff shape

Figure : Wulff shape of a free-standing, micrometer-sized Pb crystal
(from [3]).
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Physical factors, continued: Surface diffusion IV

Planar film surface is the stable equilibrium only when
Me =Mw = 0, and the surface energy γ is isotropic → the PDE
M(h, hx , hy , ...) = const. has the single linearly stable solution
h = h0 = const. (will be shown later)

Mγ and Mw are easy to model since they are local quantities
(defined on the film surface)

Me is very difficult to model since it is non-local:

Solve the elasticity problem for deformations and stresses in
the bulk of the film

Take the solution on the film surface h(x , y , t) (which is itself
the problem unknown)

→ a free-boundary problem
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Physical factors, continued: Anisotropy of surface energy
density I

The film surface is the geometrical boundary of the crystalline solid
→

Inherits the short- and long-range order of the arrangement of
atoms in the crystal lattice →
A surface is a collection of finite-size atomic planes, called
facets. Each facet has distinct surface energy γ, which is
different from the surface energy of another facet with
different orientation →
3. γ = γ(θ(x , y), φ(x , y)), where θ and φ are two angles of
the unit normal to the surface at point (x , y)
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Physical factors, continued: Anisotropy of surface energy
density II

Figure : Wulff shape of a free-standing, micrometer-sized Pb crystal
grown from a seed (from [3]).

Figure : Facetted surface of a film. Facets appear as regions of uniform
color (from [4]).
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Physical factors, continued: Anisotropy of surface energy density III

Dimensionless anisotropic surface energy for typical 1D surfaces:

γ(f )(θ) = 1 + A cos 4θ, A is the anisotropy strength

For A > 1/15 (strong anisotropy) there exist solutions of

γ(f ) + γ
(f )
θθ < 0:

At such θ there is a corner (formed by two facets) on the
equilibrium Wulff shape (Wulff’1901, Herring’1950s)

It is said that these orientations are missing from the equilibrium
shape
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Physical factors, continued: Anisotropy of surface energy
density IV

β̃ = γ(f ) + γ
(f )
θθ : the surface stiffness

Evolution PDEs are ill-posed when the Wulff shape of a crystal
has corners (when β̃ < 0)

Ill-posedness means (some) solutions are exponentially growing.
Example: the backward heat equation ht = −hxx →
h(x , t) = exp (k2t) cos kx

Question: how to compute surface dynamics with corners ?

Answer: need to regularize (penalize corners) ... will discuss later
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Physical factors, continued: Wetting energy I

4. Energy of a long-range molecular repulsion or attraction
between the atoms of the film surface and the atoms of the
substrate surface

Long-range ≡ larger than atomic length: 0.1 - 10 nm

For some film-substrate materials an interaction is repulsive → film
always covers the substrate everywhere: substrate can’t get
exposed. The film wets the substrate. Example: SiGe alloy on Si

For other film-substrate materials an interaction is attractive →
film tries to expose substrate. The film does not wet the
substrate. Example: Si on amorphous SiO2 (silicon-on-insulator)
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Physical factors, continued: Wetting energy II

Dewetting = dynamical transition from “wetting” to “non-wetting”
To account for W , let the surface energy be a function of
film thickness: γ = γ(θ(x , y), φ(x , y), h(x , y)).
1D crystal surface: the two-layer interpolation model (1990s):

γ(h, θ) = γ(f )(θ)+
(

G − γ(f )(θ)
)

e−h, G is the energy of the substrate

γ(f )(θ) = 1 + A cos 4θ, lim
h→∞

γ(h, θ) = γ(f )(θ), lim
h→0

γ(h, θ) = G

Now:

Mw =
∂γ(h, θ)

∂h
cos θ =

(
γ(f )(θ)− G

)
e−h cos θ
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Historical background I

Stages of concept/modeling framework development

Surface energy (including anisotropy), surface diffusion:
1950’s and 1960’s (William Mullins, Conyers Herring, others)

Stress: 1970’s and 1980’s (Asaro, Tiller, Grinfeld, Srolovitz,
others), 1990’s (Spencer, Voorhees, Tersoff, Freund, others)

Wetting energy: 2000’s (Ortiz, Golovin, others)

Also, alloy composition/segregation effects have been studied since
1990s
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Historical background II: Mullins-Herring problem

PDE for shape evolution by high-T surface diffusion (note: surface
energy γ = const. !)∗

∗ Derivation on request

z = h(x , t), ht cos θ = ht

(
1 + h2

x

)−1/2
= V = −Ωjs ,

∂

∂s
= cos θ

∂

∂x

j = −Dν

kT
Ms , M≡Mγ = Ωγκ, κ =

−hxx

(1 + h2
x)3/2

Thus ht = B
∂

∂x

(
(1 + h2

x)−1/2
[
−hxx

(1 + h2
x)3/2

]
x

)
, B =

Ω2νDγ

kT

Next, make the PDE dimensionless →h0 = 1
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Historical background II: Mullins-Herring problem (continued)

Linear Stability Analysis:

h = 1 + ξ(x , t) → ξt = −Bξxxxx

Let
ξ(x , t) = eωt cos kx ≡ eωtRe

(
e ikx
)

Solution is shape-preserving:

h(x , t) = 1 + exp
(
−Bk4t

)
cos kx , ω(k) = −Bk4

The dispersion curve ω(k)
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Problem: Dewetting of silicon-on-insulator (Si on amorphous SiO2); strong surface

energy anisotropy

AFM images at t = 1 h after the start of annealing at T = 550C .
(a) h0 = 5 nm; (b) h0 = 20 nm. (from [5]). Pits form in the film !
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Problem: Dewetting of silicon-on-insulator, continued

Lattice mismatch of Si and SiO2 is zero → there is no
epitaxial stress in the film → Me = 0 → no need to solve the
free-boundary elasticity problem

Alloy composition/segregation effects are not present →
Only two components of the chemical potential are relevant:
Mγ and Mw

How is pitting initiated and how it proceeds ? What are the factors
influencing pit width and depth ? More generally, what are the
factors influencing instability of Si surface ?
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Problem: Dewetting of silicon-on-insulator, continued

Nonlinear evolution PDE (dimensionless):

ht = B(1 + h2
x)1/2

∂2

∂s2
(Mw +Mγ) ,

∂

∂s
= (cos θ)

∂

∂x

With the two-layer interpolation model for the surface energy:

Mw =
∂γ(h, θ)

∂h
cos θ =

(
γ(f )(θ)− G

)
e−h cos θ,

Mγ = (γ(h, θ) + γθθ(h, θ))κ = β̃
(

1− e−h
)
κ+ Ge−hκ,

κ = −hxx/(1 + h2
x)3/2, cos θ = (1 + h2

x)−1/2

However, the PDE is ill-posed when β̃ ≡ γ(f ) + γ
(f )
θθ < 0: next

slide, the cure
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Problem: Dewetting of silicon-on-insulator, continued

To regularize the PDE we add the squared curvature dependence
to γ(f )(θ):

γ(f )(θ) = 1+A cos 4θ+
∆

2
κ2, ∆ > 0 if A > 1/15; cos 4θ = f (cos θ)

The last term in γ(f )(θ) is the energy penalty to form a corner,
arising from repulsive interaction of micro-steps inside the corner
(Golovin et al.’98)

With regularization, corners are smooth on a small length scale and
ill-posedness is removed ... but 6th-order derivative terms appear
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Problem: Dewetting of silicon-on-insulator, continued

Plan for Linear Stability Analysis (LSA):

(ii) Perturb the surface about the equilibrium constant height h0

by the perturbation ξ(x , t), obtain PDE for ξ

(iii) Linearize PDE for ξ and obtain linear PDE
ξt = F (ξ, ξx , ξxx , ...)

(iv) Take ξ = eωt cos kx and substitute in PDE → ω(h0, k ,A)

(v) Examine for what values of h0, k ,A the growth rate is positive
or negative. ω < 0: surface is stable; ω > 0: surface is
unstable
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Problem: Dewetting of silicon-on-insulator, continued

The perturbation growth rate from LSA:

ω(h0, k ,A) = B
[(

Λ− (G + Λ)e−h0
)

k4 − (G − 1− A) e−h0k2 −∆k6
]

Λ = 15A− 1,∆ > 0 when A > 1/15 (strong anisotropy)

Attractive surface-substr. interaction (non-wetting film): 0 < G < 1

k_c

ω

k

The dispersion curve ω(k); kc =
√

Λ/∆: the cut-off wavenumber
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Problem: Dewetting of silicon-on-insulator, continued

If perturbation wavenumber k > max
(

kc , k
(u)
c

)
, where

kc =
√

Λ/∆, k
(u)
c =

√
−(G − 1− A)/(G + Λ),

then film of any thickness is stable

If kc < k
(u)
c and kc < k < k

(u)
c , then film is stable if

h0 > h
(c1)
0 and unstable otherwise, where

h
(c1)
0 = −ln

Λk2 −∆k4

G − 1− A + (G + Λ)k2
, typically 2− 4nm

If kc > k
(u)
c and k

(u)
c < k < kc , then the film is stable if

h0 < h
(c1)
0 and unstable otherwise → typically seen in

experiments

If k < min
(

kc , k
(u)
c

)
, then the film of any thickness is

unstable
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Problem: Dewetting of silicon-on-insulator, continued

Computer simulations of a pit using the nonlinear evolution PDE
ht = F (h, hx , hxx , ...)

The initial condition:

h(x , 0) = 1− d exp

[
−
(

x − 5

w

)2
]
, 0 ≤ x ≤ 10

d = 0.5 (shallow pit) AND one of the following:

w = 0.15 (narrow pit), or

w = 1 (intermediate pit), or

w = 2 (wide pit)

Periodic b.c.’s at x = 0 and x = 10

G = 0.5, A = 1/12, B = 3.57× 10−3
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Problem: Dewetting of silicon-on-insulator, continued

Numerical method: Non-graph (overhanging) surface shapes are possible
at large deviations from (planar) equilibrium → PDE in parametric form

Let (x , z) be the components of the position vector of a point (a marker
particle) on the evolving surface:

xt = V
zu
g

(1)

zt = −V
xu
g
, 0 ≤ u ≤ U : the parameter (2)

V = B
∂2

∂s2
(Mw +Mγ) , g =

√
x2
u + z2

u ,
∂

∂s
=

1

g

∂

∂u

Use Method of Lines:

Discretize PDE in u using FDs, leave time continuous → system of
coupled ODEs in time

Integrate using the stiff ODE solver (IRK-RADAU by Hairer &
Wanner)

To maintain accuracy, must remesh the surface grid to keep marker
particles optimally spaced (ideally, equidistant in the arclength)
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Problem: Dewetting of silicon-on-insulator, continued

Computer simulation results: Pit shapes
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Problem: Dewetting of silicon-on-insulator, continued

Computer simulation results: Pit shapes

Rotate sample, expose different crystallographic orientation:
γ(f )(θ) = 1 + A cos 4(θ + β)
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Problem: Dewetting of silicon-on-insulator, continued

Other models of wetting interactions have been proposed, for instance:

Two-layer algebraic model

γ(h, θ) =
1

2

(
γ(f )(θ) + γS

)
+

1

2

(
γ(f )(θ)− γS

)
f (h/`)

lim
h→∞

f (h/`) = 1, lim
h→−∞

f (h/`) = −1

Let

f (h/`) =
2

π
arctan

[(
h

`

)m]
, m = 1, 3, 5, . . .

Note that

f (h/`) = 1− 2

π
(h/`)−m + . . . as h→∞.

i.e., this tends to the limiting value +1 as an algebraic power. Then,

Mw ∼ 1/hm+1, forh� 1

Increased stability of the equilibrium h = 1

only wide and deep pinholes dewet for the same set of parameters,
and only for m = 1
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