Thin solid films: PDE models of surface instabilities and surface dynamics

Mikhail Khenner

WKU SIAM Student Chapter Seminar

April 3, 2017
Modeling formation of pits in the Si thin film on the quartz or sapphire substrate
Semiconductor Si thin films form the basis of most micro and nanoelectronic devices, such as LEDs, thermal actuators, transistors and optical waveguides; they are also used in solar cells.

All such devices operate at high T: about $1000^\circ - 1100^\circ C$, which is below the melting T of silicon: $1414^\circ C$.

High T causes **surface diffusion of atoms**, which results in changes to the film height; that is, $h = h(x, t)$.
Atomic Force Microscope images of the Si film surface (top-down view) one hour after raising the temperature to 550 C.

(a) $h_0 = 5 \text{ nm}$; (b) $h_0 = 20 \text{ nm}$. (from [5]). Pits form in the film!
View of the film surface from the side

Mikhail Khenner
Thin solid films: PDE models
Evolution Partial Differential Equation for $h(x, t)$

The nonlinear, 6th-order evolution PDE for the height of a thin film:

$$
\frac{h_t}{= B} \frac{\partial}{\partial x} \left[(\cos \theta) \frac{\partial}{\partial x} (M_w + M_\gamma) \right]
\equiv F (h(x, t), h_x, h_{xx}, ..., h_{xxxxxxx}), \text{ where }
$$

$B = \text{const.}$ is Mullins’ number; $\cos \theta = (1 + h_x^2)^{-1/2}$,

$$
M_w = \frac{\partial \gamma(h, \theta)}{\partial h} \cos \theta = \left(\gamma^{(f)}(\theta) - G \right) e^{-h} \cos \theta,
$$

$$
M_\gamma = (\gamma(h, \theta) + \gamma_{\theta\theta}(h, \theta)) \kappa, \quad \kappa = -h_{xx}/(1 + h_x^2)^{3/2},
$$

$$
\gamma(h, \theta) = \gamma^{(f)}(\theta) + \left(G - \gamma^{(f)}(\theta) \right) e^{-h},
$$

$$
\gamma^{(f)}(\theta) = 1 + A \cos 4\theta + \frac{\Delta}{2} \kappa^2, \quad \cos 4\theta = f(\cos \theta) = 8 \cos^4 \theta - 8 \cos^2 \theta + 1.
$$

M_w and M_γ are the chemical potentials.
Computer simulations of pit formation and evolution

Use the 6th-order nonlinear evolution PDE \(h_t = F(h, h_x, h_{xx}, ...) \) as derived, or the parametric re-formulation to account for non-graph pit shapes

The initial condition:

\[
h(x, 0) = 1 - d \exp \left[- \left(\frac{x - 5}{w} \right)^2 \right], \quad 0 \leq x \leq 10
\]

\(d = 0.5 \) (shallow pit) AND one of the following:

\(w = 0.15 \) (narrow pit), or

\(w = 1 \) (intermediate pit), or

\(w = 2 \) (wide pit)

Periodic b.c.’s at \(x = 0 \) and \(x = 10 \)

\(G = 0.5, \quad A = 1/12, \quad B = 3.57 \times 10^{-3} \)

The numerical method: Method of Lines, using a stiff ODE solver
The pit shapes

(a): $w = 2$, (b): $w = 1$, (c): $w = 0.15$
Rotate sample, expose different crystallographic orientation:

\[\gamma^{(f)}(\theta) = 1 + A \cos 4(\theta + \beta) + \frac{A}{2} \kappa^2 \]

4. M. Rost, “Continuum models for surface growth”, preprint

