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Abstract

This paper proposes a method for the determi-
nation of Sensory-Motor Coordination (SMC) pa-
rameters through the teleoperation of a humanoid
robot designed for human-robot interaction. It is
argued that SMC in a complex environment must
be acquired rather than programmed. It is demon-
strated that the acquisition of SMC parameters
through teleoperation during a task can enable a
robot to determine the category of the outcome of
the task during autonomous operation. The out-
come can be determined without the a priori pro-
gramming by a person of sensory cues. That is,
the robot learns its own sensory cues.

1 Introduction

Researchers at the Intelligent Robotics Labora-
tory at Vanderbilt University have been develop-
ing a humanoid robot, ISAC, over the past sev-
eral years (Figure 1). The robot was designed
expressly for research in human-robot interac-
tion [1]. ISAC’s control architecture is an agent-
based, hybrid deliberative-reactive system. Like
many behavior-based robots, ISAC’s complex be-
haviors result from the interaction of indepen-
dent computational modules that operate asyn-
chronously in parallel [2].

To interact with people in a human-centered en-
vironment a robot must exhibit intelligent behav-
ior. This requires the ability to adapt its actions to
changing environmental conditions. A robot esti-
mates these conditions through sensing; therefore,
intelligent behavior requires the ability to coordi-
nate actions with the responses of sensors. That
is, intelligent behavior requires sensory motor co-
ordination (SMC).

At its lowest level SMC is a reflex, a direct mo-
tor response to sensory stimulation. If reflexes are
determined a priori by the robot designer the re-
sult is typically inefficient at best, or completely
wrong at worst. It it is difficult if not impossible,
for the designer to anticipate the sensory informa-
tion available to the robot which, in an unforeseen
situation, will be salient for action selection. To be
robust, the robot should acquire its own reflexes.

This paper reports a test of the hypothesis that
SMC can be acquired through teleoperation then
used for autonomous operation of the robot. The
goal is that, during repeated teleoperation trials of

Figure 1: Vanderbilt’s humanoid robot: ISAC.

a task, if the robot records all of its sensory signals,
then through statistical analysis, those sensory-
motor couplings which accompany purposeful mo-
tion can be identified. The SMC acquisition al-
gorithm determines which parts of that informa-
tion are significant and should be used, and which
are insignificant and can be ignored. The signif-
icant information can be used to find exemplars
of the SMC for the behaviors that comprise the
task. Different exemplars then characterize dif-
ferent categories of tasks. During a subsequent
autonomous execution of the task, the SMC in-
formation can be compared to the exemplars to
determine the category of the robot-environment
interaction.

2 Sensory Motor Coordination

Sensory-Motor Coordination (SMC) underlies
the physical behavior of an animal in response to
its environment. More than a response, SMC is a
feedback loop that changes both the animal and
the environment. An animal’s motions are caused
by muscle contractions. These contractions are
elicited by electro-chemical signals that are gener-
ated by circuits of motor neurons. When the ani-
mal moves, it causes a relative shift in the environ-
ment. As the environment shifts, energy patterns
sweep across the animal’s sensory organs. Sensory
organs are transducers that, in effect, transform
external, spatio-temporally dynamic energy fields
into electro-chemical signals carried by circuits of
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sensory neurons internal to the animal. These sen-
sory signals (more or less directly) modulate the
signals in the original motor circuits. Thus, an an-
imal senses the environment and acts. The action
changes the environment relative to the animal;
the animal senses those changes and acts accord-
ingly.

SMC is fundamental to behavior based robotics;
it underlies the concept of basic behavior. More-
over, it forms a foundation for higher level learning
and perception. In particular, the categorization
of sensory stimuli can be accomplished through
SMC [3]. A mobile agent can learn the sensory
patterns that correspond to an obstacle by asso-
ciating stimuli with its motor responses, as when
a characteristic stimulus pattern routinely accom-
panies the sudden inability to move. Similarly, as
Pfeifer has demonstrated, an agent can learn to
distinguish between objects that it can manipu-
late and those which it cannot [4]. If an internal
indicator of a need (a drive or a goal) having been
met accompanies a set of actions performed in the
presence of specific stimuli, those stimuli can be
recognized subsequently as beneficial to the agent
(e.g. an energy source – food). Recent exper-
iments by Pfeifer and others have demonstrated
that such SMC events (temporal coincidences of
sensory signals and motor actions) can be used to
learn classifications of objects and events in the en-
vironment more easily and more accurately than
can traditional machine sensing strategies such as
model-based vision [5, 6].

There are at least two approaches that might
enable a robot to acquire Sensory-Motor Coordi-
nation. One is to set up a reinforcement learn-
ing scheme which allows the robot to move ran-
domly. As the robot wanders, the sensory-motor
events that lead to purposeful motion are rein-
forced. Those couplings that do not are sup-
pressed. Eventually, the robot would learn useful
SMC. A second approach takes advantage of the
fact that a robot can be teleoperated. When a
person teleoperates a robot, the person’s SMC (in
effect) causes the robot to act purposefully. That
is, the teleoperator watches the robot and based on
his or her own observations, controls the motion of
the robot. If during such teleoperation the robot
records its own sensory information, it could, per-
haps, associate its own sensory signals with partic-
ular actions. This approach would bootstrap the
process of acquiring SMC and is analogous to a
parent helping a child to walk by holding her or
his hand while giving encouragement. The child
still must learn how to control her actions, but the
parent’s assistance and encouragement abets the
process.

3 Methods and Procedures

In previous work the researchers found that dur-
ing autonomous operation ISAC would often fail in
an attempt to grasp an object. It was found that
many failures occurred because the grasp axis of

the hand1 was not aligned with the principal axis
of the object. The failure rate could be reduced
if after reaching for an object, but prior to grasp-
ing, ISAC could determine that its hand were in-
correctly aligned. Through SMC the robot could
detect situation and adjust its wrist position ac-
cordingly.

The idea that SMC might be acquired by a
robot through teleoperation, led the researchers to
an experiment which enabled ISAC to detect pre-
grasp misalignment. ISAC was controlled by the
experimenter (Cambron) to reach for and attempt
to grasp a fixed vertical pole. Repeated trials were
run using three categories of reach outcome prior
to grasping: (1) The hand was correctly aligned -
- the grasp axis was parallel to the principal axis
of the pole. (2) The hand was tilted +10◦ with
respect to the pole. (3) The hand was tilted by
−10◦. Trials of category 1 nearly always resulted
in a successful grasp. Trials of category 2 and three
nearly always led to a failure to grasp the pole.
Values ±10◦ were chosen by the experimenter em-
pirically to make grasp failure likely. The experi-
ment enabled ISAC during autonomous operation
to recognize each of the reach outcomes prior to
grasping. If the outcome were incorrect the robot
would adjust its position.

SMC Parameter Acquisition. SMC parame-
ters were acquired as follows:

1. Teleoperated trials of the same task were run
repeatedly with each of the possible outcomes
represented equally. All sensory signals were
recorded.

2. The signal set for each trial was parti-
tioned (in time) into episodes by motor state
changes, which served as temporal markers.2
For any given trial of the task the sensory sig-
nal is a multimodal vector denoted:

�S(t; r, p) =
[

�S1(t; r, p) · · · �SM (t; r, p)
]

(1)

where subvector �Sn(t; r, p) (n = 1, . . . , M) is
the signal from sensor n, t is time, r is the
trial number, and p is the episode number.3

3. For each episode, p, the signals from each
trial, r, were resampled to normalize them in

1The grasp axis lies in the palm perpendicular to the
fingers.

2An episode is the set of sensory signals recorded during
the time between successive motor state changes.

3Some of the signals (e.g., force) are vector-valued with
multiple scalar components, while others (e.g., proximity)
have only one component. Nevertheless, the signal from
sensor n is denoted by the vector �Sn(t). Vector-valued
signals have scalar signal components which are denoted
Sj (without the arrow). There are M vector signals �Sn(t)
– one per sensor – and a total of N scalar signals Sj where
N > M .



duration and sampling rate. Then for a spe-
cific p scalar signal Sj(t; r, p) contained Kp
samples in each trial, r. We assume that the
number of samples exceeds the number of sig-
nals, that K > N .

4. Within episode p scalar signal Sn((t; r, p))
from a single sensor was compared across all
trials. That is, the set

{Sn((t; r, p))}N
r=1 (2)

was analyzed for fixed p and fixed n across all
trials, r. The analysis identified those sensors
whose signals were similar in each trial. Those
modalities were considered to be salient to the
episode. Their signals were retained. Those
sensors whose signals varied randomly across
the trials were considered to be uninformative
to the task during that episode; their signals
were not considered further.

5. The retained signals were averaged across all
trials. That is, within episode p, the scalar
signals, Sn((t; r, p)) from sensor n (one for
each trial, r) were averaged time-wise over r.
The result was a set of characteristic signals
χn(t; p), one for each relevant sensor and for
each episode.

The signals recorded during the experiment are
listed in Table 1.

Table 1: Signals measured during teleoperation.

�S1: Arm positions (X,Y,Z,roll,pitch,yaw)
�S2: Finger Positions
�S3: 6-axis Force-Torque sensor output
�S4: Proximity sensor 1 output
�S5: Proximity sensor 1 output
�S6: Finger touch sensor 1
�S7: Finger touch sensor 2

The grasping experiment used several behav-
iors: object fixation, visual servoing, and grasp
object (Figure 2).

Figure 2: Behaviors in grasping experiment.

Learning SMC. The motor control sequence in
a teleoperated trial determined the motor events
(times of transition between continuous motor op-
eration states) that partitioned the sensory signals
into episodes [7]. During teleoperation these tran-
sitions were initiated by the operator. Episode
boundaries are discernible not only by motor
events but also from sensor data. A sensory event
that precedes a motor state change can be used
by the robot to trigger the state change during
autonomous operation. For example, when the
hand hits an object there is a significant change
in the total force, Ftotal, or total torque, Ftotal.
In response to this event the robot should stop
moving.

To find the significant sensory-motor data all
the signals were processed. Once the SMC motor
events were determined, the signals were resam-
pled, filtered, and normalized.

Signal Warping. The signal set from each tele-
operated trial is partitioned into the same number
of episodes, but the durations of these vary. The
determination of the characteristic signal that re-
liably precedes or follows a particular motor state
change requires a comparative analysis of the sig-
nals from a given sensor over several trials. This,
in turn, requires that the signals have the same du-
ration (and the same number of samples) within
a specific episode over all the trials. Since the du-
ration of episode p varies from trial to trial, the
entire vector signal �S(t; r, p) must be resampled
so that the episode durations match and are thus
independent of the trial number r.

The episode durations were normalized by in-
terpolating the signal by a factor of U followed by
decimating the output of the interpolator by a fac-
tor of D. The result was smoothed by a 3rd order
difference filter.

Characteristic Signals. After R trials for
each of the three hand angle outcomes θ ∈
{0◦, 10◦,−10◦} were completed three character-
istic signals �χ 0, �χ 10, and �χ −10 were computed.
Each scalar component of these vector signals is
the amplitude-normalized time-wise average over
all trials with outcome θ of the jth episode-
duration-normalized scalar signal S θ

j (t).(Say that
quickly.) For each outcome, θ, and each episode,
p, let

χ ′ θ
j (t; p) =

1
R

R∑

r=1

S θ
j (t; r, p), (3)

where each S θ
j was previously duration normal-

ized. Each of these scalar characteristic signals is
amplitude normalized with respect to its energy
norm to get

χ θ
j (t; p) =

χ ′ θ
j (t; p)

‖χ ′ θ
j (t; p)‖ (4)



The characteristic vector signal for outcome θ and
episode p is then4

�χ θ(t; p) =
[

χ θ
1 (t; p) · · · χ θ

N (t; p)
]

(5)

4 Category Estimation

A signal, �S(t; p), collected during autonomous
operation is referred to as an observed signal.
�S(t; p) is the vector of N scalar sensor signals from
episode p (resampled and amplitude normalized).
To facilitate analysis the signal vector notation has
been changed to a signal matrix notation. For a
given episode, p, signal Sj(t; p) contains Kp sam-
ples. Write the samples in each Sj(t; p) as a col-
umn vector Sj(p). Let

S(p) = [ S1(p) S2(p) · · · SN (p) ] . (6)

Then S(p) is a Kp × N matrix where the row in-
dex corresponds to time and the column index to
sensor modality.

Each characteristic signal for episode p from
outcome θ has a matrix of the same dimensions:

χ θ(p) =
[

χ θ
1 (p) χ θ

2 (p) · · · χ θ
N (p)

]
. (7)

Several methods for comparing the observed sig-
nal to the three characteristic signal were tested.
Each of the N sensor scalar signals Sj(p) for
episode p are vectors in the Kp-dimensional space,

Sj(p) ∈ �Kp , (8)

as are the 3N characteristic signals χ theta
j (p). For

each θ the set of N characteristic signals span
an N -dimensional (or less) subspace of the Kp-
dimensional signal space. Thus there is one sub-
space per category. Within this vector space /
subspace context the category of the observed sig-
nal is estimated.

Cross-Correlation at Time Lag 0. The cross-
correlation at time lag 0 of observed signal S(p)
with characteristic signal χ θ(p) is given by the N×
N matrix

C(p, θ) = χ θ(p)S(p)T (9)

Element (i, j) of C(p, θ) (denoted Cij(p, θ)) is the
temporal cross-correlation of Si(t; p) with χ θ

j (t; p).
In terms of vector spaces, it is the projection
of Si(p) onto χj(p) (Figure 3). For a given θ,
|Cij(p, θ)| is a metric that indicates the similarity
between observed sensor signal i and characteristic
signal j.

The trace of the cross-correlation matrix is a
measure of how well each sensor sub-signal in the

4To distinguish between categories the superscript θ is
used. When the statement is true for all categories no su-
perscript is used.

Figure 3: Signal space for cross-correlation.

observed signal matches the corresponding sub-
signal in the characteristic signal. The average
correlation, E θ(p), between them is the trace of
the cross correlation matrix divided by the num-
ber of signals.

E θ =
1
N

trace {Cp, θ} (10)

Table 2 shows the results of Equation 9 in pre-
dicting the correct category. When using only the
force and the torque data the correct category was
selected 80% of the time. When the Z-position
signal was included the results did not change.
However, when both the Y - and Z-positions were
included, the results improved to 86.667%.

Table 2: Results of Correlation Method at lag 0.

Correct Incorrect
6 Dimension 80.00% 20.00%
7 Dimension 80.00% 20.00%
9 Dimension 86.67% 13.33%

Cross-Correlation with Non-Zero Time
Lags. To correct for possible time shifts between
the observed and characteristic signals nonzero lag
cross-correlations were computed. Table 3 shows
the results of the cross-correlation analysis where
each Cij(p, θ) was the maximum over over the lag
values. There was no difference in the percent of
correct outcomes between the zero-lag case and
the non-zero lag case.

Correlation less Auto Correlation. The
cross correlation approach described above used
only the correlations between similar sensor sig-
nals. That is, the only values used were Cii(p, θ).
To include the Cij(p, θ), j �= i coefficients in
the test, the cross-correlation matrix, C(p, θ) was



Table 3: Results of correlation method.

Correct Incorrect
6 Dimension 80.00% 20.00%
7 Dimension 80.00% 20.00%
9 Dimension 86.67% 13.33%

compared to the autocorrelation matrix, R(p, θ) of
the characteristic signals.

R(p, θ) = χ θ(p)χ θ(p)T (11)

the mean-square difference between χ θ(p) C(p, θ)
will be minimum for the characteristic signal that
correlates with the observed signal most like it cor-
relates with itself.

Q θ =
K∑

j=1

K∑

i=1

|Rij(p, θ) − Cij(p, θ)|2 (12)

The results of this approach were identical to
those of the previous two. (Table 4.)

Table 4: Results of correlation less auto-
correlation at lag 0.

Correct Incorrect
6 Dimension 80.00% 20.00%
7 Dimension 80.00% 20.00%
9 Dimension 86.67% 13.33%

Singular Value Decomposition. For each
outcome θ the set of N characteristic signals
{χ theta

j (p)}N
j=1 span an N -dimensional (or less)

subspace of the Kp-dimensional signal space. If
these subspaces are distinct then the projection
of the observed signal set {Sj(p)}N

j=1 onto each of
them can perhaps be used to distinguish between
the outcomes. The singular value decomposition
(SVD) of the characteristic spaces facilitates this
type of subspace analysis. The SVD for outcome
θ describes that characteristic signal subspace in
terms of an orthonormal basis set. The observed
signal vectors, Sj(p) are projected onto this basis
set to measure the degree to which the observed
signal lies in the characteristic signal subspace for
outcome θ (Figure 4).

Ψθ =
∑

i

∑

j

W 2
θ (i, j) (13)

The results listed in Table 5 reflect a poor perfor-
mance compared to the correlation methods.

Figure 4: Signal space for SVD.

Table 5: SVD method.

Correct Incorrect
6 Dimension 73.33% 26.67%
7 Dimension 73.33% 26.67%
9 Dimension 73.33% 26.67%

Neural Network. Another method for used
for category determination was a neural network
trained to map the characteristic signals to the
correct categories. A multi-layer perceptron net-
work was implemented. The network is trained
using using the backward error propagation (back-
prop) algorithm. The network works by partition-
ing the K dimensional space into 3 subspaces each
of which contains the N -vector characteristic sig-
nal set for one outcome (Figure 5).

Figure 5: Signal space for neural network.

Table 6 shows that the network using the 7-
signal characteristic set gave the correct result
93.75% while giving the wrong result 6.25%. Thus,
the neural net provides the best classification.

Effect of Noise An experiment was conducted
on the effect of noise on the quality of the charac-
teristic signals �χ θ(t; p). White gaussian noise was
added to each characteristic signal. The noise was
constructed to be of the same dimensionality and



Table 6: Neural network results.

Correct Incorrect
6 Dimension 87.50% 12.50%
7 Dimension 93.75% 6.25%
9 Dimension 87.50% 12.50%

energy as the signals used to construct the char-
acteristic signals. Figure 6 shows the results per-
centage noise versus the percentage correct using
the Cross-Correlation at Time Lag 0 method. The
figures shows the the results drop off dramatically
once the noise gets larger than 30%.
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Figure 6: Noise curve.

Exemplars Figure 7 shows the results of com-
paring the number of exemplars used to calcu-
late the characteristic signal versus the percent-
age correct using the Cross-Correlation at Time
Lag 0 method described previously in this chap-
ter. Three curves are presented.

The “best” curve shows using the signals which
have the highest correlation with the 3 character-
istic signals. As expected this curve gave results
that ranged from 73% to 86.67%. The “random”
curve shows the results of taking all combinations
for the 3 characteristic signals. The “worst” curve
used the lowest correlation with the 3 characteris-
tic signals. The results for the “worst” produced
results that started much lower (13.33%).

5 Conclusions

In this paper a method for acquisition of SMC
parameters via teleoperation was presented. The
robot was able to use these parameters to correctly
estimate the correct category during autonomous
operation of the task by the humanoid robot. It
was shown that the robot could determine its own
sensory cues.

This work has been partially funded by a
grant from NASA through the Research Institute

for Computing and Information Systems. For
more information, please visit our web page at
http://shogun.vuse.vanderbilt.edu.
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