TAPE SPOOL EXPLORATIONS

(Developed, Composed \& Typeset by: J B Barksdale Jr / 04-18-15)
Article 00.: Introduction. Imagine a Spool of Tape as in Figure_01 (below). Figure_01 illustrates a full spool of tape along with illustrations of: ONE, SINGLE typical tape ring LAYER which is highlighted with the color NAVY BLUE; the SPOOL CORE radius $=c$ which is highlighted with the color GREEN; and, ... the OUTER MOST TAPE RING Layer Radius $=R$ which is highlighted with the color RED. In addition to the illustrated quantity symbols, R and c, symbols for the Thickness of the tape and for the Length of the tape are also (here below) displayed. Hence,
$c=$ Core radius
$R=$ outer most ring layer Radius
$\boldsymbol{t}=$ tape Thickness
$L=$ tape Length

Now suppose that one wishes to formulate an algebraic relationship among these four quantities. There are, in fact, several undergraduate-level modeling schemes which accomplish such algebraic relationship; further, each such model is a clever application of undergraduate courses content.

Article 01.: Geometric Area Model. Applying this model, imagine equating two different area formulations of a single, area reference. Hence, imagine completely unrolling the entire tape spool; now, while holding that long length of tape horizontally, and while focusing on the tape length EDGE, the AREA of that RECTANGULAR EDGE is, of course:
(1.1) $L \cdot t=($ Length of TAPE $) \times($ Thickness of TAPE $)=$ Area of rectangular EDGE.

Now, observe that winding that rectangular edge back around the spool core creates the Annular Area bounded by the core circumference and the outer-most ring layer of the tape roll. For very
small values of t, the Area of the rectangular EDGE has simply experienced an Area Preserving Deformation into an Annular Area (for all practical purposes). Further, that Annular Area is described by:

$$
\begin{equation*}
\text { Annular Area }=\pi R^{2}-\pi c^{2}=\pi\left(R^{2}-c^{2}\right) \tag{1.2}
\end{equation*}
$$

So, ... since (for all practical purposes) these two areas are equal for small values of t, we declare that:

$$
\begin{equation*}
L \cdot t=\pi\left(R^{2}-c^{2}\right) \text {. } \tag{1.3}
\end{equation*}
$$

Hence, given a spool of thin tape, Item (1.3) does present an algebraic relationship among those four quantities (for all practical purposes); and, the objective has been accomplished.

Therefore, the Length of (thin) Tape, L, wound around the spool, can be very closely estimated by the formula:

$$
\begin{equation*}
L=\frac{\pi}{t}\left(R^{2}-c^{2}\right) . \tag{1.4}
\end{equation*}
$$

This particular model is only one of several geometric models which can cleverly accomplish said objective.

Article 02.: Arithmetic Sequence Model. Applying this model, imagine the full spool of tape as a collection of nested, concentric ring layers. Hence, the first tape ring layer would simply be the first, full tape wrap around the spool core. The second tape ring layer would, of course, simply be the second, full tape wrap. Now, suppose that the entire tape Length, L, is wrapped around the core after a number, say n, such tape ring layers. So, the value of L is simply the sum of the number, n, of tape ring circumferences.

The radius, r_{1}, must now be decided. One choice is to use the radius, $r_{1}=c$, of the Bottom side of that ring. Another choice would be to use the radius, $r_{1}=(c+t)$, of the Top side of that ring. Or, one could choose that first layer radius to be the intermediate value, $r_{1}=\left(c+\frac{1}{2} t\right)$. Supposing that the mean value of the extreme radii values would be preferable, we Adopt the Model which uses the mean radii values. Hence, for this Model, we declare that:

$$
\begin{equation*}
r_{1}=\left(c+\frac{1}{2} t\right) ; \quad r_{2}=\left(c+\frac{3}{2} t\right) ; \quad r_{3}=\left(c+\frac{5}{2} t\right) ; \quad \ldots, \text { and } r_{n}=\left(c+\frac{2 n-1}{2} t\right) \tag{2.1}
\end{equation*}
$$

Note that Item (2.1) displays an Arithmetic Sequence with common difference $=t$, since the tape mid-thickness levels are separated by the thickness value t. Therefore, the Length, L, is given by

$$
\begin{equation*}
L=\sum_{k=1}^{n} 2 \pi r_{k}=2 \pi \sum_{k=1}^{n} r_{k} \tag{2.2}
\end{equation*}
$$

At this point, we briefly digress to observe a property of Arithmetic Sequences. So, imagine an arithmetic sequence: $F, F+d, F+2 d, \ldots, F+(n-1) d$;
Note the first term value, F, and the last term value, $L=F+(n-1) d$.
Now, observe about the sum, $S: \quad \sum_{k=0}^{n-1}(F+k d)=S=\sum_{k=0}^{n-1}(L-k d)$.

$$
\text { Thus, } 2 S=\sum_{k=0}^{n-1}[(F+k d)+(L-k d)]=\sum_{k=0}^{n-1}[F+L]=n(F+L) \text {. }
$$

And, so: $S=n \cdot\left[\frac{F+L}{2}\right]$. Thus: Sum $=($ number of terms $) \times($ Mean of First $\&$ Last terms).

Now, appealing to the digression (2.3),

$$
\begin{equation*}
\sum_{k=1}^{n} r_{k}=n \cdot\left[\frac{r_{1}+r_{n}}{2}\right]=n \cdot\left[\frac{\left(c+\frac{1}{2} t\right)+\left(c+\frac{2 n-1}{2} t\right)}{2}\right]=\frac{n}{2} \cdot[2 c+n t] \tag{2.4}
\end{equation*}
$$

Referring to Figure_01, it follows that, $n t=(R-c)$; using this equality in (2.4), we see that

$$
\begin{equation*}
\sum_{k=1}^{n} r_{k}=\frac{(R-c)}{2 t}[2 c+(R-c)]=\frac{(R-c)}{2 t}(R+c)=\frac{\left(R^{2}-c^{2}\right)}{2 t} \tag{2.5}
\end{equation*}
$$

Therefore, from (2.2) and (2.5), we have that

$$
\begin{equation*}
L=\sum_{k=1}^{n} 2 \pi r_{k}=2 \pi \sum_{k=1}^{n} r_{k}=2 \pi \cdot \frac{\left(R^{2}-c^{2}\right)}{2 t}=\frac{\pi}{t} \cdot\left(R^{2}-c^{2}\right) \tag{2.6}
\end{equation*}
$$

Hence, from (1.4) and (2.6), we see that both Model_01 \& Model_02 yield the same formulations.

Article 03.: Archimedean Spiral Model. Applying this model, imagine the full spool of tape as a very tightly wrapped Archimedean Spiral. Figure_02, below, illustrates loosely wrapped red tape with widely spread spiral layer rings surrounding a green spool core.

An Archimedean Spiral is defined by the polar equation: $r=A \theta$. Thus, applying this model, the coefficient, A, must be determined so that the tape roll is tightly wrapped. Since each successive, wrapped layer of tape should increase the r-values by the tape thickness, t, then
(3.1) $t=r(\theta+2 \pi)-r(\theta)=A \cdot(\theta+2 \pi)-A \cdot \theta=2 \pi A$.

Hence, it follows that: $A=\frac{t}{2 \pi}$; and, so

$$
\begin{equation*}
r(\theta)=\left(\frac{t}{2 \pi}\right) \theta \tag{3.2}
\end{equation*}
$$

Let θ_{c} and θ_{R} denote the respective θ-values for the core radius $=c$ and outer ring radius $=R$.
Then, we have that

$$
\begin{equation*}
c=r\left(\theta_{c}\right)=\left(\frac{t}{2 \pi}\right) \theta_{c} \quad \text { and } \quad R=r\left(\theta_{R}\right)=\left(\frac{t}{2 \pi}\right) \theta_{R} \tag{3.3}
\end{equation*}
$$

and so
(3.4) $\quad \theta_{c}=\left(\frac{2 \pi}{t}\right) c$ and $\theta_{R}=\left(\frac{2 \pi}{t}\right) R$.

Next, we recall an Arc-Length Formula from first year Calculus;

$$
\begin{equation*}
d L=\sqrt{\left[\frac{d r}{d \theta}\right]^{2}+r^{2}} d \theta=\sqrt{\left(\frac{t}{2 \pi}\right)^{2}+\left(\frac{t}{2 \pi} \theta\right)^{2}} d \theta=\frac{t}{2 \pi} \sqrt{1+\theta^{2}} d \theta \tag{3.5}
\end{equation*}
$$

Now, we see that

$$
\begin{equation*}
L=\frac{t}{2 \pi} \int_{\theta_{c}}^{\theta_{R}} \sqrt{1+\theta^{2}} d \theta=\sqrt{\int_{c}^{R} \sqrt{1+\left(\frac{2 \pi}{t} u\right)^{2}}} d u \tag{3.6}
\end{equation*}
$$

after applying the change of variable substitution: $\theta=\frac{2 \pi}{t} u$.
OBSERVATIONAL NOTE: Again, by appealing to the underlying assumption that the tape thickness $=t$ is very small (i.e., $t \ll 1.0$), we conclude that
$\sqrt{1+\left(\frac{2 \pi}{t} u\right)^{2}} \approx \frac{2 \pi}{t} u,(c \leq u \leq R)$. And, using this approximation along with (3.6), we have

$$
\begin{equation*}
L=\int_{c}^{R} \sqrt{1+\left(\frac{2 \pi}{t} u\right)^{2}} d u \approx \int_{c}^{R} \frac{2 \pi}{t} u d u=\left.\frac{\pi}{t} u^{2}\right|_{c} ^{R}=\frac{\pi}{t} \cdot\left(R^{2}-c^{2}\right) \tag{3.8}
\end{equation*}
$$

Hence, by appealing to the assumption of a thin value for tape thickness, we note that Items (1.3), (2.6), and (3.8) declare that ALL three Models yield the same relationships (and formulations for L).

Article 04.: Exploring and Investigating Other Models. What is interesting, novel, and intriguing about this Tape Spool Exploration is not only the above presented, cleverly applied models; but, further, that the above list does NOT exhaust the list of analytical models. So, ... just for fun, ... explore further clever modeling notions regarding this very Tape Spool Exploration.

(* * * TAPE MODELS CALCULATIONS * **)

(* Sample computations, below, illustrate that the AreaModel \& SpiralModel applications render virtually the same calculated results.
IF 2748 inches of tape were Wrapped around a Core of Radius $c=1.5$ inches AND the Tape OUTER RING Layer had Radius $R=2.0$ inches, THEN ... the Tape THICKNESS $t=$?
*)

Clear [L, R, c, t]
AreaModel $\left[L_{-}, R_{-}, c_{-}, t_{-}\right]:=t * L-\pi\left(R^{2}-c^{2}\right)$
$R=2.0 ;$
$\mathrm{c}=1.5$;
(* $\mathrm{t}=$? ; *)
L = 2748 ;

Solve[AreaModel[L, R, c, t] == 0, t]
$\{\{t \rightarrow 0.00200065034344328163 `\}$
(* Hence, the TAPE THICKNESS calculates to $\mathrm{t}=0.002$ (TWO THOUSANDTHS INCHES). Now, ... the below Calculation uses the SprialModel to CONFIRM the THICHNESS CALCULATION.
*)

Clear[L, R, c, t]
SpiralModel $\left[L_{-}, R_{-}, c_{-}, t_{-}\right]:=L-\operatorname{Integrate}\left[\sqrt{1+\left(\frac{2 \pi}{t} u\right)^{2}},\{u, c, R\}\right]$
R=2.0;
$\mathrm{c}=1.5$;
$\mathrm{t}=0.002$;
(* L = ? *) ;

Solve[SpiralModel[L, R, c, t] == 0, L]
\{ \{L $\rightarrow 2748.89361767709194$ \} \}
(* VOILA !!! We see that the SprialModel CONFIRMS the THICKNESS CALCULATION determined by the AreaModel !!!

