(Simple) BROKEN-LINE Diagonals of Rectangles

(Developed, Composed & Typeset by: J B Barksdale Jr / 05-26-15)

Article 00.: Introduction. Imagine the image of a rectangle (say, in \mathbb{R}^2) with the diagonals drawn as (*simple*) broken-lines which SHARE a SINGLE, COMMON breakpoint, say D (see Figure_01, below). Now, suppose the expression (e + f) denotes the sum of the segment lengths of the first broken-line diagonal; and that the expression (g + h) denotes the sum of the segment lengths of the other broken-line diagonal. The purpose of this developmental excursion is to demonstrate a rather curious and novel attribute of such broken-line diagonals; namely, regarding such broken-line diagonal segments, it always follows that

(0.1) $e^2 + f^2 = g^2 + h^2$, (for arbitrary <u>Rectangle \mathcal{R} </u> and <u>arbitrary Point D</u>).

From the above description, one would imagine the *break-point*, D, through which the *broken-line diagonals pass*, to be an *interior point* of the *rectangle*. However, the following developments establish that the *point*, D, can actually be an *arbitrary point of* \mathbb{R}^2 (regarding the above, given details); hence, the *point*, D, can be an *interior point*, *exterior point*, or edge point of the given rectangle.

Article 01.: Equality & Sums of Squared Segments. *Figure_01*, below, visually illustrates the descriptions of an *arbitrary rectangle* (in \mathbb{R}^2), and (*simple*) broken-line diagonals which pass through a single *arbitrary break-point*, *D*, as presented in *Article_00*, above.

By appealing to the *distance formula* (for \mathbb{R}^2), the following formulations regarding the *broken*line diagonal segment lengths are clearly rendered.

(1.1)
$$e^2 = x^2 + y^2$$
 and $f^2 = (x-a)^2 + (y-b)^2$.

Also,

(1.2)
$$g^2 = x^2 + (y-b)^2$$
 and $h^2 = (x-a)^2 + y^2$.

Now, by adding the pairs of equations in each of Items (1.1) and (1.2), it follows that

(1.3)
$$e^2 + f^2 = [x^2 + (y-b)^2] + [y^2 + (x-a)^2] = g^2 + h^2.$$

The preceding developments establish the following

<u>Theorem 1</u>. Given a *rectangle*, $\mathcal{R} = \{ (\kappa a, \lambda b) \mid \kappa, \lambda \in [0, 1] \} \subset \mathbb{R}^2$

with <u>horizontal edges = a units</u> and with <u>vertical edges = b units</u>, suppose that arbitrary internal <u>broken-line diagonal-segment length pairs</u> have measures of <u>e and f</u> for a first broken-line diagonal, and value measures of <u>g and h</u> for the other broken-line diagonal. Then,

(1.4)
$$e^2 + f^2 = g^2 + h^2$$

<u>*Proof*</u>: The development of Items (1.1) - (1.3), and reference to *Figure_01*, above, establishes the conclusion as a consequence of the given hypothesis.

<u>COROLLARY (1-A)</u>. Item (1.4) is a consequence of the hypothesis of *Theorem 1* for *an arbitrary break-point*, $D \in \mathbb{R}^2$.

Proof: Although *Figure_01* depicts the *break-point* restriction, $D \in \mathcal{R}$; actually, the development of Items (1.1) – (1.3) remains unaltered for *an arbitrary point*, $D \in (\mathbb{R}^2 \setminus \mathcal{R})$ as well. Therefore, the conclusion of *Theorem 1* remains intact for *any point* $D \in \mathbb{R}^2$. \Box

Article 02.: Broken-line Diagonal Results via Vector Methods. A vector diagram version of Figure-01 is now presented via Figure_02, below. Consider the rectangle $\mathcal{R} = \{ (\kappa \mathbf{\overline{a}} + \lambda \mathbf{\overline{b}}) \mid \kappa, \lambda \in [0, 1], \mathbf{\overline{a}} \perp \mathbf{\overline{b}} \}$ and a given arbitrary point D which has position vector $\mathbf{\overline{e}}$. Now, with given vector diagram references $\mathbf{\overline{f}}$, $\mathbf{\overline{g}}$ and $\mathbf{\overline{h}}$, we define

From $\vec{\mathbf{a}} \perp \vec{\mathbf{b}}$ (so that $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$) and the equalities appearing in Item (2.1), we have

(2.2)
$$\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\mathbf{h}} = (\overrightarrow{\mathbf{e}} - \overrightarrow{\mathbf{b}}) \cdot (\overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{e}}) = \overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{e}} - \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{e}}$$

$$= \overrightarrow{\mathbf{e}} \cdot (\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{e}}) = \overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{f}}.$$

Thus, the vector diagram (Figure_02) together with Items (2.1) and (2.2) clearly establish

Theorem 2. Given a rectangle $\mathcal{R} = \{ (\kappa \mathbf{\overline{a}} + \lambda \mathbf{\overline{b}}) \mid \kappa, \lambda \in [0, 1], \mathbf{\overline{a}} \perp \mathbf{\overline{b}} \} \subset \mathbb{R}^2$ and arbitrary point $D \in \mathbb{R}^2$ with position vector $\mathbf{\overline{e}}$, then the broken-line diagonal-segment vectors $\mathbf{\overline{e}}$ and $\mathbf{\overline{f}}$, $\mathbf{\overline{g}}$, $\mathbf{\overline{h}}$ as defined in Item (2.1) satisfy the equality,

(2.3)
$$\overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{f}} = \overrightarrow{\mathbf{g}} \cdot \overrightarrow{\mathbf{h}}$$

Further examination of Item (2.1) and the vector diagram in Figure_02 effectively render

Theorem 3. Given the *hypothesis of Theorem 2*, Item (2.1) and the *vector diagram in Figure_02*, it follows that

(2.4)
$$\|\vec{\mathbf{e}}\|^2 + \|\vec{\mathbf{f}}\|^2 = \|\vec{\mathbf{g}}\|^2 + \|\vec{\mathbf{h}}\|^2 \iff \vec{\mathbf{e}} \cdot \vec{\mathbf{f}} = \vec{\mathbf{g}} \cdot \vec{\mathbf{h}}$$

<u>Proof</u>: Suppose the hypothesis; now, inspect Figure_02, and Item (2.1), to conclude that

(2.5)
$$\vec{\mathbf{e}} + \vec{\mathbf{f}} = \vec{\mathbf{a}} + \vec{\mathbf{b}}$$
 and $\vec{\mathbf{a}} - \vec{\mathbf{b}} = \vec{\mathbf{g}} + \vec{\mathbf{h}}$.

Since $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = 0$, we can conclude that,

(2.6)
$$\|\mathbf{\vec{a}} + \mathbf{\vec{b}}\|^2 = \|\mathbf{\vec{a}}\|^2 + \|\mathbf{\vec{b}}\|^2 + 2(\mathbf{\vec{a}} \cdot \mathbf{\vec{b}})$$

= $\|\mathbf{\vec{a}}\|^2 + \|\mathbf{\vec{b}}\|^2 - 2(\mathbf{\vec{a}} \cdot \mathbf{\vec{b}}) = \|\mathbf{\vec{a}} - \mathbf{\vec{b}}\|^2$.

Now, from Items (2.5) and (2.6) we have

(2.7)
$$\|\vec{\mathbf{e}} + \vec{\mathbf{f}}\|^2 = \|\vec{\mathbf{a}} + \vec{\mathbf{b}}\|^2 = \|\vec{\mathbf{a}} - \vec{\mathbf{b}}\|^2 = \|\vec{\mathbf{g}} + \vec{\mathbf{h}}\|^2.$$

Item (2.7) now yields

(2.8)
$$\|\vec{\mathbf{e}} + \vec{\mathbf{f}}\|^2 = \|\vec{\mathbf{e}}\|^2 + \|\vec{\mathbf{f}}\|^2 + 2(\vec{\mathbf{e}} \cdot \vec{\mathbf{f}})$$

$$= \|\vec{\mathbf{g}}\|^2 + \|\vec{\mathbf{h}}\|^2 + 2(\vec{\mathbf{g}} \cdot \vec{\mathbf{h}}) = \|\vec{\mathbf{g}} + \vec{\mathbf{h}}\|^2.$$

Item (2.8) then renders

(2.9)
$$\left[\left(\| \overrightarrow{\mathbf{e}} \|^2 + \| \overrightarrow{\mathbf{f}} \|^2 \right) - \left(\| \overrightarrow{\mathbf{g}} \|^2 + \| \overrightarrow{\mathbf{h}} \|^2 \right) \right] = (-2) \left[\left(\overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{f}} \right) - \left(\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\mathbf{h}} \right) \right].$$

The biconditional conclusion of Item (2.4) is now thus asserted by Item (2.9) \Box

Theorem 4. Given a rectangle $\mathcal{R} = \{ (\kappa \mathbf{\vec{a}} + \lambda \mathbf{\vec{b}}) \mid \kappa, \lambda \in [0, 1], \mathbf{\vec{a}} \perp \mathbf{\vec{b}} \} \subset \mathbb{R}^2$ and arbitrary point $D \in \mathbb{R}^2$ with position vector $\mathbf{\vec{e}}$, then the broken-line diagonal-segment vectors $\mathbf{\vec{e}}$ and $\mathbf{\vec{f}}$, $\mathbf{\vec{g}}$, $\mathbf{\vec{h}}$ as defined in Item (2.1) satisfy the equality,

(2.10)
$$\| \overrightarrow{\mathbf{e}} \|^2 + \| \overrightarrow{\mathbf{f}} \|^2 = \| \overrightarrow{\mathbf{g}} \|^2 + \| \overrightarrow{\mathbf{h}} \|^2$$

<u>*Proof:*</u> Suppose the hypothesis and then apply <u>Theorems 2 and 3</u>, above. \Box

Article 03.: Extensions to Euclidean \mathbb{R}^n Spaces. The above displayed vector method developments clearly assert that the above *Theorems & Results* rely only on the *vector definitions, relationships, and inner product properties*. In order to illustrate this declaration for, say \mathbb{R}^3 , consider vectors specified as in *Figure_02*, and given by

(3.1)
$$\overrightarrow{\mathbf{a}} = (a, 0, 0); \quad \overrightarrow{\mathbf{b}} = (0, b, 0); \quad \overrightarrow{\mathbf{e}} = (x, y, z).$$

Then, by applying the *definitions* of \vec{f} , \vec{g} , \vec{h} as displayed in Item (2.1), it follows that

(3.2)
$$\overrightarrow{\mathbf{f}} = (a-x, b-y, -z); \quad \overrightarrow{\mathbf{g}} = (x, y-b, z); \text{ and } \quad \overrightarrow{\mathbf{h}} = (a-x, -y, -z)$$

Appealing to the *notations and inner product definitions* for \mathbb{R}^3 , *Items (2.3) and (2.10)* can be established by *direct calculation*. Hence, by applying these vector presentations for \mathbb{R}^3 ,

(3.3)
$$\vec{\mathbf{e}} \cdot \vec{\mathbf{f}} = (x, y, z) \cdot (a - x, b - y, -z) = ax - x^2 + by - y^2 - z^2$$

= $ax - x^2 - y^2 + by - z^2 = (x, y - b, z) \cdot (a - x, -y, -z) = \vec{\mathbf{g}} \cdot \vec{\mathbf{h}}$.

Also, note that,

(3.4)
$$\|\vec{\mathbf{e}}\|^2 + \|\vec{\mathbf{f}}\|^2 = [x^2 + y^2 + z^2] + [(a - x)^2 + (b - y)^2 + z^2]$$

$$= [x^2 + (y - b)^2 + z^2] + [(a - x)^2 + y^2 + z^2] = \|\vec{\mathbf{g}}\|^2 + \|\vec{\mathbf{h}}\|^2.$$

Reviewing this present development, observe that the *vector references* reside in \mathbb{R}^3 ; thus, the *line segment (vector shafts)* constitute the <u>rectangle edges and the polyhedral edges</u> connecting the given point, D, to the <u>rectangle's vertices</u>. Hence, imagine point D of Figure_01 as a point in \mathbb{R}^3 which is elevated out of the xy-plane by having, say, a positive z-coordinate. Then, the opposite, broken-line diagonal <u>red segments, **e** and **f**</u>, and the opposite, broken-line <u>green</u> <u>segments, **g** and **h**</u>, of Figure_01 are actually opposite (non-adjacent) polyhedral edges. Curiously, however, Item (3.4), again, establishes that the lengths of such edges satisfy the equality therein presented.

Article 04.: Generalizations to Inner Product Spaces. Although extensions of the preceding developments to an arbitrary inner product space are *somewhat artificial* without the *spatial notions* of the supporting geometry, the preceding theorem results do remain intact by supplying the appropriate *vector notions and relationships* to replace that geometric support. Hence, let (\mathbb{V}, \odot) denote an *inner product space*. Note that *Figure_02* of a *preceding Article* illustrates the following *geometric aspects* of that displayed rectangle for the *given orthogonal vectors* $\overline{\mathbf{a}}$ and $\overline{\mathbf{b}}$,

- (4.1) (i) vectors $\overline{\mathbf{a}}$ and $\overline{\mathbf{b}}$ are the edge vectors of the rectangle \mathcal{R} .
 - (*ii*) $(\vec{\mathbf{a}} + \vec{\mathbf{b}})$ and $(\vec{\mathbf{a}} \vec{\mathbf{b}})$ are the *diagonal vectors* of the *rectangle* \mathcal{R} .
 - (iii) vector $\mathbf{\overline{e}}$ is the position vector of the given arbitrary break-point, D.
 - (*iv*) vectors $\vec{\mathbf{e}}$, $\vec{\mathbf{f}}$, $\vec{\mathbf{g}}$ and $\vec{\mathbf{h}}$ as defined by *Item* (2.1) illustrate the *broken-line* diagonal-segment vectors in the vector diagram so that: $\vec{\mathbf{e}} + \vec{\mathbf{f}} = \vec{\mathbf{a}} + \vec{\mathbf{b}}$ (diag from **0**) and $\vec{\mathbf{g}} + \vec{\mathbf{h}} = \vec{\mathbf{a}} - \vec{\mathbf{b}}$ (diag from **B**).

Observe that by *defining and implementing* the *notions and relationships* of the expressions described in *Items* (2.1) and (4.1), the state of all developments displayed in *Article_02* remain complete, unaffected and in force. This enforced state follows, of course, because the referenced vectors, definitions and relationships are *preserved and unchanged* in the developmental details of *Article_02*. Hence, by appealing to *notions and relationships* here discussed, we see a rather abstracted formulation of the above results which is stated below and presented as

<u>Theorem 5.</u> Given a rectangle $\mathcal{R} = \{ (\kappa \mathbf{\overline{a}} + \lambda \mathbf{\overline{b}}) \mid \kappa, \lambda \in [0, 1], \mathbf{\overline{a}} \perp \mathbf{\overline{b}} \} \subset \mathbb{V},$ an arbitrary-point vector $\mathbf{\overline{e}} \in \mathbb{V}$, and broken-line diagonal-segment vectors $\mathbf{\overline{e}}, \mathbf{\overline{f}},$ $\mathbf{\overline{g}}, and \mathbf{\overline{h}}$ as defined in Item (2.1), it follows that

(4.2) $||\overrightarrow{\mathbf{e}}||^2 + ||\overrightarrow{\mathbf{f}}||^2 = ||\overrightarrow{\mathbf{g}}||^2 + ||\overrightarrow{\mathbf{h}}||^2$

<u>*Proof*</u>: Suppose the *hypothesis*; now, simply appeal to the *given definitions and relationships* of the *vectors*, and the implementation of the *inner product* (\odot) *properties*; then, *mimic* the developmental details appearing in *Article_02*.

Article 05.: Metric Formulations. In the presence of *Figure_03* (*next page*), metric relationships and formulations among the *broken-line diagonal segment lengths*, the rectangle *edge lengths*, the *angle* θ , and the *coordinate values of the break-point D*, as modeled in *Figure_03*, can be formulated. In the preceding *Articles*, it was established that given an *arbitrary rectangle* and *an artitrary point*, D(x, y), within such rectangle, the *Broken-Line Diagonal segment lengths:* e, f, g and h satisfy the *BLD equality:* $e^2 + f^2 = g^2 + h^2$.

Clearly, given the presence of the *BLD equality*, only three of the *BLD segments* need be given in order to determine the fourth such segment. Hence, we proceed to investigate the modeling developments resulting from being given, say: e, g and h. In the spirit of convenience and simplicity of formulation, one vertex of the given, aribitrary rectangle is placed at the Origin. Also, this modeling development locates the shortest *BLD segment* at the origin. Further, this modeling supposes that the *BLD break-point lies inside* the rectangle. With these modeling details specified, proceed to join *BLD segments*: g and h to the *Break-Point*, D; then, rotate: h and g about point D so that segment h contacts the x-axis, and segment g contacts the y-axis. Label those contact points: A(a, 0) and B(0, b). The resulting point C(a, b) completes the fourth vertex of a rectangle whose broken-line diagonal segments: e, f, g, h satisfy the *BLD* equality.

In order to establish metric relationships among: e, g, h, a, b, x, y and θ ; from *Figure_03*, observe that,

(5.11) (A):
$$a = x + (a-x) = x + \sqrt{h^2 - y^2}$$
 (B): $b = y + (b-y) = y + \sqrt{g^2 - x^2}$

Note that alternative presentations of the equalities in Item (5.11) can be formulated by inspecting: $(a - x)^2 = h^2 - y^2$ and $(b - y)^2 = g^2 - x^2$; now, recalling *this model* declares $x^2 + y^2 = e^2$, it follow that,

(5.12) (X):
$$x = \frac{a^2 + e^2 - h^2}{2a}$$
 and (Y): $y = \frac{b^2 + e^2 - g^2}{2b}$

By viewing Figure_03, observe that,

(5.2) (A):
$$x = e \cdot \cos \theta$$
 and (B): $y = e \cdot \sin \theta$.

Then, applying Item (5.2) to the equations displayed in Item (5.11), it follows that,

(5.3) (A):
$$a(\theta) = e \cdot \cos \theta + \sqrt{h^2 - e^2 \sin^2 \theta}$$
 (B): $b(\theta) = e \cdot \sin \theta + \sqrt{g^2 - e^2 \cos^2 \theta}$

Since this model supposes that the *point* D *lies inside* the rectangle, then the *e-radius angle* θ lies in the *first quadrant;* hence, $\theta \in [0, \frac{\pi}{2}]$. Observe that the *e-radius* is *hinge-linked* to the *BLD-segments*, *g* and *h*. Also, by the *model description*, *g* and *h* remain in contact with their respective axes; thus, as the *e-radius* pivots *counter-clockwise* from $\theta = 0$ to $\theta = \frac{\pi}{2}$, the *points A* and *B* track the axes and (consequently) graphically illustrate all of the *BLD rectangles* which satisfy the *BLD equality:* $e^2 + f^2 = g^2 + h^2$.

By implementing the formulated relationships of the *modeling framework* presented in Items (5.11), the dimensions: width = a and height = b, of an accommodating rectangle can be determined from the given metrics data: e, g and h, with x and y such that: $x^2 + y^2 = e^2$. Hence, for each first quadrant point D(x, y) on the circle: $x^2 + y^2 = e^2$, there exist a rectangle satisfying the BLD equality for the given data metric values: e, g and h. Note that the value f is specified by the BLD equality: $f^2 = g^2 + h^2 - e^2$.

Alternatively, by declaring a θ -value, the coordinates of an interior point D(x, y) and the accommodating rectangle dimensions are both rendered by applying Items (5.2) and (5.3).

Article 06.: BLD-Quadratures. This *Article_06* is devoted to exploring the notion of deciding the *existence* of a *Square*, and/or the *edge length* of a *Square*, and/or *declaring breakpoint coordinates* associated with a *Square* which satisfies the *BLD equality* for given *brokenline diagonal segment lengths: e, g* and *h*. A *Square* achieved by *continuously altering* the *dimensions of an accommodating rectangle (by increasing the θ-angle)* until it becomes an *accommodating Square* is hereby declared to be a *BLD-Quadrature (Broken-Line Diagonal Quadrature)*. (Note: Here, *Quadrature DOES NOT* refer to an integral nor integration method).

Inspecting *Figure_03* and Item (5.3), it is noted that $a(\theta)$ decreases and $b(\theta)$ increases for increasing $\theta \in [0, \frac{\pi}{2}]$. Hence,

(6.1) $z(\theta) = b(\theta) - a(\theta)$,

is a *strictly increasing* function over $[0, \frac{\pi}{2}]$. Application of the *Intermediate Value Theorem* appears to render the following conclusions:

(6.2) (i) z(0) > 0 or $z(\frac{\pi}{2}) < 0 \Rightarrow NO BLD-Quadratures exist.$

(ii) z(0) < 0 and $z(\frac{\pi}{2}) > 0 \Rightarrow$ a unique BLD-Quadrature does exist.

Application of the formulations in Item (5.3) render,

(6.3) (i)
$$z(0) = \sqrt{g^2 - e^2} - (e+h)$$
 and (ii) $z(\frac{\pi}{2}) = (e+g) - \sqrt{h^2 - e^2}$.

From Item (6.3), it now follows that

(6.4) (i) z(0) < (g-h-e) and (ii) $z(\frac{\pi}{2}) > (g-h+e)$.

Thus, if the *relative values* for the *BLD-segments*: e, g, h are such that

(6.5) (i) (g-h-e) < 0 and (ii) (g-h+e) > 0,

then, it appears that: a unique BLD-Quadrature does exist for that family of BLD rectangles. Similary: $[e^2 + (e+h)^2 < g^2 \text{ or } h^2 > e^2 + (e+g)^2] \Rightarrow NO BLD-Quadratures exist.$ A Vertex Graph Plot which includes a Quadrature occurrence is presented on the next page.

Article 07.: Computational Illustrations. In the presence of *Figure_03*, imagine that the *e-radius rotates* so that the *θ-angle increases from 0 to* $\frac{\pi}{2}$. Given numerical values for: *e*, *g* and *h*, an animated illustration of the family of *BLD rectangles* thus created by such rotating motion can be *mentally visualized*. By appealing to the formulations presented in the preceding articles of this composition, all of the *metrics* of such family members can be numerically computed. The *computational examples* regarding this composition are hereto attached among the last pages of this composition.

<u>Computational Example: 01</u>. Given data: e = 25; g = 39; h = 52. For these data values, there are *infinitely many BLD rectangles*. However, for a *specified point D*, there will exist a *unique BLD rectangle* for this data. So, ... Suppose θ is GIVEN by declaring that: $\cos \theta = .8000$. This example presents the computational details to determine: (i) point D(x, y); and (ii) $a(\theta) = rectangle$ width & $b(\theta) = rectangle$ height.

<u>Computational Example: 02</u>. Given data: e = 25; g = 39; h = 52; also, ... the *BLD rectangle* has a *Given Width of:* a = 70. DETERMINE: (i) Does such *BLD rectangle actually exist?* (ii) If so, ... Compute point D(x, y); (iii) If so, ... Compute Height = b.

Computational Example: 03. Given data: e = 25; g = 39; h = 52.

(i) Does this data support the Existence of a BLD Quadrature?

(*ii*) If so, ... DETERMINE: the Edge Length = q of such BLD Quadrature.

Article 08.: Concluding Remarks. In the presence of the geometric visualization of a rectangle as imagined in \mathbb{R}^2 , or \mathbb{R}^3 , and an imagined arbitrary internal or external given point, D, Theorem 5 harbors a somewhat curious, mystic and novel tone. However, when stated in terms of a general inner product space (\mathbb{V}, \odot) , then the conclusion is simply a result from the exercise of implementing vector definitions and the properties of an inner product, \odot . Hence, the generalization does not appear to have any hidden surprises and/or curious aspects.

In this example, the variable "t" is used instead of the symbol "theta." Note that from the Given Data: 8 = e + h (is the largest value of a *BLD rectangle Width* at t = 0; and, 7 = e + g (is the largest value of a *BLD rectangle Height* at t = Pi/2.

The <u>BLD Quadrature Vertex</u> for this Data Set occurs at: t = 0.961; (angle degree-measure of about 55 degrees).

Referencing the above Formulations and Computations, note that:

- (i) the *vertex function v*[*t*] calculates coordinates of Point C(a,b);
- (ii) $z[t^*] = 0$ declares: Rectangle Width = $a[t^*] = b[t^*] = Rectangle Height;$
- (iii) Hence, the <u>BLD Quadrature Edge Length</u> = q; where: $a[t^*] = q = b[t^*]$.

BLDrect_ex01a.nb Computational Example: 01

1

```
(*
     This COMPUTATIONAL DEVELOPMENT illustrates how to compute
      the: WIDTH = a ; HEIGHT = b ; AND POINT D (x,y) of a
      BLD-rectangle from GIVEN DATA which includes:
      e, g, h and the e-radius angle = \theta .
    ٧
    Given: e, g, h and specify \theta by: \cos\theta = 0.8000
(*
                                                                                            C(a,b)
                                                            B(0,b)
Clear[aA, bB, a, b, e, g, h, x, y, \cos\theta, \sin\theta]
                                                                                    f
e = 25 ; (* e = OD by declaration *)
g = 39 ;
                                                                          D(x,y)
h = 52;
                                                                                      h
f = \sqrt{g^2 + h^2 - e^2}; (* The FOURTH BLD-segment from D to C .
                                                            O(0,0)
                                                                                           A(a,0)
(* Calculate a (\theta) and b (\theta) from: \cos\theta = 0.8000;
   Hence: \sin\theta = 0.6000 = \sqrt{1 - (0.8)^2}. Formulate
   values for x and y to compute Width = a and Height = b *)
Clear[aA, bB, x, y, \cos\theta, \sin\theta]
\cos\theta = 0.8000;
\sin\theta = 0.6000;
x = e \cos\theta;
y = e \sin \theta;
aA[h_{g}, x_{y}] := x + \sqrt{h^2 - y^2};
bB[h_{,g_{,x_{,y_{}}}] := y + \sqrt{g^2 - x^2};
(* Compute values for the pair: { aA , bB }
                                                                 *)
a = aA[h, g, x, y];
b = bB[h, g, x, y];
{a, b} //N
{69.7896, 48.4813}
(* Hence: a = Width = 69.7896 and b = Height = 48.4813
     Now, List coordinates x and y for Point D (x,y) .
                                                                *)
\{x, y\}
\{20., 15.\}
(* So, ... Point D has coordinates: D (20, 15)
                                                                 *)
(* Now, ... Display Computed Values for: { a, b, x , y, f }. *)
{a, b, x, y, f} // N
{69.7896, 48.4813, 20., 15., 60.}
```

(* Distance Formula Verification for: g, h and f

$$\left\{ g - \sqrt{(b-y)^2 + x^2} , h - \sqrt{(a-x)^2 + y^2} , f - \sqrt{(b-y)^2 + (a-x)^2} \right\} / / N$$

$$\{0., 0., 0.\}$$

(* Values {0,0,0} confirm the Formulated Descriptions for
{ x , y , b } do create the correct Calculated Values
which do compute the correct measures for the
BLD-segments: g, h, e, and f and for the Height = b *)

*)

Computational Example: 02 BLDrect_ex02a.nb

(*

(*

g = 39 ; h = 52;

Given: e, g, h

given e, g and h values;

This COMPUTATIONAL DEVELOPMENT illustrates how to compute the HEIGHT of a BLD-rectangle from GIVEN DATA which includes: e, g, h and the Width-Value = a . *) and declared width-value = a C(a,b) B(0,b) Clear[bB, xD, yD, a, b, e, g, h, x, y] ÷ e = 25 ; (* e = OD by declaration *) D(x,y) $f = \sqrt{g^2 + h^2 - e^2}$; (* The FOURTH BLD-segment from D to C . h θ - X O(0,0) A(a,0) (* Calculate Possible Width and Height Ranges from the Possible Ranges for: { width-range = a , height-range = b } *) $\left\{ \left\{ \sqrt{h^2 - e^2}, h + e \right\}, \left\{ \sqrt{g^2 - e^2}, g + e \right\} \right\} / / N$ {{45.5961, 77.}, {29.9333, 64.}} a = 70; (* Declared a-Value is possible Rectangle Width-Value. *) (* Break-Point Coordinate Functions : D (x,y), where $x^2+y^2=e^2$ *) $xD[e_, g_, h_] := (1/(2a)) * (a^2 + e^2 - h^2)$ *)

1

(* Functions for y-axis Height Point: B (0,b) $bB[x_, y_, g_] := y + \sqrt{g^2 - x^2}$ (* Calculate: x-, y-Values for D (x,y); and b-Value for B (0,b) *) x = xD[e, g, h];y = yD[e, x]; b = bB[x, y, g];Display Computed Values for: { x, y, a , b, f } (* *)

{x, y, a, b, f} // N

 $yD[e_, x_] := \sqrt{e^2 - x^2}$

{20.15, 14.7979, 70., 48.1892, 60.}

(* Distance Formula Verification for: g, h and f

$$\left\{ \mathbf{g} - \sqrt{(\mathbf{b} - \mathbf{y})^2 + \mathbf{x}^2} , \mathbf{h} - \sqrt{(\mathbf{a} - \mathbf{x})^2 + \mathbf{y}^2} , \mathbf{f} - \sqrt{(\mathbf{b} - \mathbf{y})^2 + (\mathbf{a} - \mathbf{x})^2} \right\} / / \mathbf{N}$$

 $\{0, 0, 0\}$

(* Values {0,0,0} confirm the Formulated Descriptions for
{ x , y , b } do create the correct Calculated Values
which do compute the correct measures for the
BLD-segments: g, h, e, and f and for the Height = b *)

*)

2

Computational Example: 03

BLDrect_ex03a.nb(Revised Copy)

(* This COMPUTATIONAL DEVELOPMENT illustrates how to determine
if There Exists a RLD-Quadrature which will admit AND accommodate
GIVEN DATA Measures for: e, g and h.
STMEDCLS: aA, DB, ZZ, XD, YD are FUNCTIONS; a, b, e, g, h, 0]
e = 25; (* e = 0D by declaration *)
g = 33;
h = 52;
f =
$$\sqrt{g^2 + h^2 - e^2}$$
; (* The FOURTH ELD-segment from D to C. *)
(* Referring to Item (5.3) of Article 05, the function a (d)
is NOM DENOTED by Aa[0] in order to distinguish the
PARAMETR *** from The FUNCTIONAGE ***, etc. ; NOW, FOURTH ELD-segment from D to C. *)
(* Referring to Item (5.3) of Article 05, the function a (d)
is NOM DENOTED by Aa[0] in order to distinguish the
PARAMETR *** from the FUNCTIONAGE ***, etc. ; NOW, FOURTH *** ** (a Now DENOTED by Aa[0];
Note that here: zZ (0) < g - h - e < 0 ; and, also
zZ ($\frac{1}{2}$) > g - h + e > 0; hence by Item (6.5), this Family
of ELD Rectangles does have a ELD Quadrature. Hence,
now proceed to Solve the equation; zZ (0) = D for 0.
Formulating the Mathematica Code, ... **
(* The (a - 1.07276); ($\sqrt{y^2} - (eCs[0])^2$;
zZ [0] := $bs[0] - aA[0]$;
Solve[zZ[0] := 0, 0] //N
(($(0 - 1.07248)$; ($0 - 3.02276$))
(* Use 06 = 1.07276 [0, $\frac{\pi}{2}$] to Compute: a = aA[0] and b= bB[0] *)
 $e = 1.07248;$
a = Aa[0];
b = bh[0];
q = a ;
(a, b, q) //N
((y.043, 59.0443, 59.0443) = D, so: Quadrature edge = q = 59.0843 *)
(* Now, Formulate functions xD and yD to compute D(x,y) *)
xzD[e, 0] ;
xzD[e, 0] ;
xzD[e, 0];
(x, y)
(11.9487, 23.9477)

(* Hence ... the Coordinates of D are: x = 11.9487 and y = 21.9597 . Now list {a, b, q, x, y} *) {a, b, q, x, y} {59.0843, 59.0842, 59.0843, 11.9487, 21.9597} (* Distance Formula Verification for: g, h and f *) $\left\{g - \sqrt{(b-y)^2 + x^2}, h - \sqrt{(a-x)^2 + y^2}, f - \sqrt{(b-y)^2 + (a-x)^2}\right\} // N$

 $\{0., 0., 1.42109 \times 10^{-14}\}$

(* Values {0, 0, 1.421×10⁻¹⁴} confirm the Formulated Descriptions for {a, b, q, x, y} do create the correct Calculated Values which do compute the correct measures for the BLD-segments: g, h, e, and f and for the Edge Length = q *)