## (Simple) BROKEN-LINE Diagonals of Rectangles

Article 00.: Introduction. Imagine the image of a rectangle (say, in $\mathbb{R}^{2}$ ) with the diagonals drawn as (simple) broken-lines which SHARE a SINGLE, COMMON breakpoint, say $D$ (see Figure_01, below). Now, suppose the expression $(e+f)$ denotes the sum of the segment lengths of the first broken-line diagonal; and that the expression $(g+h)$ denotes the sum of the segment lengths of the other broken-line diagonal. The purpose of this developmental excursion is to demonstrate a rather curious and novel attribute of such broken-line diagonals; namely, regarding such broken-line diagonal segments, it always follows that
(0.1) $e^{2}+f^{2}=g^{2}+h^{2}$, (for arbitrary Rectangle $\mathcal{R}$ and arbitrary Point $\mathcal{D}$ ).

From the above description, one would imagine the break-point, $D$, through which the broken-line diagonals pass, to be an interior point of the rectangle. However, the following developments establish that the point, $D$, can actually be an arbitrary point of $\mathbb{R}^{2}$ (regarding the above, given details); hence, the point, $D$, can be an interior point, exterior point, or edge point of the given rectangle.

Article 01.: Equality \& Sums of Squared Segments. Figure_01, below, visually illustrates the descriptions of an arbitrary rectangle (in $\mathbb{R}^{2}$ ), and (simple) broken-line diagonals which pass through a single arbitrary break-point, $D$, as presented in Article_00, above.


Figure_01: Rectangle with broken-line diagonals
By appealing to the distance formula (for $\mathbb{R}^{2}$ ), the following formulations regarding the brokenline diagonal segment lengths are clearly rendered.

$$
\begin{equation*}
e^{2}=x^{2}+y^{2} \text { and } f^{2}=(x-a)^{2}+(y-b)^{2} \tag{1.1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
g^{2}=x^{2}+(y-b)^{2} \text { and } h^{2}=(x-a)^{2}+y^{2} . \tag{1.2}
\end{equation*}
$$

Now, by adding the pairs of equations in each of Items (1.1) and (1.2), it follows that

$$
\begin{equation*}
e^{2}+f^{2}=\left[x^{2}+(y-b)^{2}\right]+\left[y^{2}+(x-a)^{2}\right]=g^{2}+h^{2} . \tag{1.3}
\end{equation*}
$$

The preceding developments establish the following
Theorem 1. Given a rectangle, $\mathcal{R}=\{(\kappa a, \lambda b) \mid \kappa, \lambda \in[0,1]\} \subset \mathbb{R}^{2}$
with horizontal edges $\equiv a$ units and with vertical edges $\equiv b$ units , suppose that arbitrary internal broken-line diagonal-segment length pairs have measures of $\underline{e}$ and $f$ for a first broken-line diagonal, and value measures of $g$ and $h$ for the other broken-line diagonal. Then,

$$
\begin{equation*}
e^{2}+f^{2}=g^{2}+h^{2} \text {. } \tag{1.4}
\end{equation*}
$$

Proof: The development of Items (1.1) - (1.3), and reference to Figure_01, above, establishes the conclusion as a consequence of the given hypothesis.

COROLLARY (1-A). Item (1.4) is a consequence of the hypothesis of Theorem 1 for an arbitrary break-point, $D \in \mathbb{R}^{2}$.

Proof: Although Figure_01 depicts the break-point restriction, $D \in \mathcal{R}$; actually, the development of Items (1.1) - (1.3) remains unaltered for an arbitrary point, $D \in\left(\mathbb{R}^{2} \backslash \mathcal{R}\right)$ as well. Therefore, the conclusion of Theorem 1 remains intact for any point $D \in \mathbb{R}^{2}$.

## Article 02.: Broken-line Diagonal Results via Vector Methods. A vector

 diagram version of Figure-01 is now presented via Figure_02, below. Consider the rectangle $\mathcal{R}=\{(\kappa \overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}) \mid \kappa, \lambda \in[0,1], \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}\}$ and a given arbitrary point $D$ which has position vector $\overrightarrow{\mathbf{e}}$. Now, with given vector diagram references $\overrightarrow{\mathbf{f}}, \overrightarrow{\mathbf{g}}$ and $\overrightarrow{\mathbf{h}}$, we define

Figure_02: Vector Diagram with broken-line diagonal vectors

$$
\begin{equation*}
\text { (i): } \overrightarrow{\mathbf{f}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{e}} \quad \text { (ii): } \overrightarrow{\mathbf{g}}=\overrightarrow{\mathbf{e}}-\overrightarrow{\mathbf{b}} \quad \text { (iii): } \overrightarrow{\mathbf{h}}=\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{e}} \tag{2.1}
\end{equation*}
$$

From $\overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}$ (so that $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$ ) and the equalities appearing in Item (2.1), we have

$$
\begin{align*}
\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\mathbf{h}} & =(\overrightarrow{\mathbf{e}}-\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{e}})=\overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{e}}-\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{e}}  \tag{2.2}\\
& =\overrightarrow{\mathbf{e}} \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{e}})=\overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{f}} .
\end{align*}
$$

Thus, the vector diagram (Figure_02) together with Items (2.1) and (2.2) clearly establish
Theorem 2. Given a rectangle $\mathcal{R}=\{(\kappa \overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}) \mid \kappa, \lambda \in[0,1], \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}\} \subset \mathbb{R}^{2}$ and arbitrary point $D \in \mathbb{R}^{2}$ with position vector $\overrightarrow{\mathbf{e}}$, then the broken-line diagonal-segment vectors $\overrightarrow{\mathbf{e}}$ and $\overrightarrow{\mathbf{f}}, \overrightarrow{\mathbf{g}}, \overrightarrow{\mathbf{h}}$ as defined in Item (2.1) satisfy the equality,

$$
\begin{equation*}
\overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{f}}=\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\mathbf{h}} . \tag{2.3}
\end{equation*}
$$

Further examination of Item (2.1) and the vector diagram in Figure_02 effectively render
Theorem 3. Given the hypothesis of Theorem 2, Item (2.1) and the vector diagram in Figure_02, it follows that

$$
\begin{equation*}
\|\overrightarrow{\mathbf{e}}\|^{2}+\|\overrightarrow{\mathbf{f}}\|^{2}=\|\overrightarrow{\mathbf{g}}\|^{2}+\|\overrightarrow{\mathbf{h}}\|^{2} \Longleftrightarrow \overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{f}}=\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\mathbf{h}} \tag{2.4}
\end{equation*}
$$

Proof: Suppose the hypothesis; now, inspect Figure_02, and Item (2.1), to conclude that
(2.5) $\overrightarrow{\mathbf{e}}+\overrightarrow{\mathbf{f}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{g}}+\overrightarrow{\mathbf{h}}$.

Since $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0$, we can conclude that,
(2.6) $\|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}\|^{2}=\|\overrightarrow{\mathbf{a}}\|^{2}+\|\overrightarrow{\mathbf{b}}\|^{2}+2(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})$

$$
=\|\stackrel{\rightharpoonup}{\mathbf{a}}\|^{2}+\|\overrightarrow{\mathbf{b}}\|^{2}-2(\stackrel{\rightharpoonup}{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})=\|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}\|^{2} .
$$

Now, from Items (2.5) and (2.6) we have
(2.7) $\|\overrightarrow{\mathbf{e}}+\overrightarrow{\mathbf{f}}\|^{2}=\|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}\|^{2}=\|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}\|^{2}=\|\overrightarrow{\mathbf{g}}+\overrightarrow{\mathbf{h}}\|^{2}$.

Item (2.7) now yields

$$
\begin{align*}
\|\overrightarrow{\mathbf{e}}+\overrightarrow{\mathbf{f}}\|^{2} & =\|\overrightarrow{\mathbf{e}}\|^{2}+\|\overrightarrow{\mathbf{f}}\|^{2}+2(\overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{f}})  \tag{2.8}\\
& =\|\overrightarrow{\mathbf{g}}\|^{2}+\|\overrightarrow{\mathbf{h}}\|^{2}+2(\mathbf{g} \cdot \overrightarrow{\mathbf{h}})=\|\overrightarrow{\mathbf{g}}+\overrightarrow{\mathbf{h}}\|^{2} .
\end{align*}
$$

Item (2.8) then renders

$$
\begin{equation*}
\left[\left(\|\overrightarrow{\mathbf{e}}\|^{2}+\|\overrightarrow{\mathbf{f}}\|^{2}\right)-\left(\|\overrightarrow{\mathbf{g}}\|^{2}+\|\overrightarrow{\mathbf{h}}\|^{2}\right)\right]=(-2)[(\overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{f}})-(\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\mathbf{h}})] . \tag{2.9}
\end{equation*}
$$

The biconditional conclusion of Item (2.4) is now thus asserted by Item (2.9)

Theorem 4. Given a rectangle $\mathcal{R}=\{(\kappa \overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}) \mid \kappa, \lambda \in[0,1], \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}\} \subset \mathbb{R}^{2}$ and arbitrary point $D \in \mathbb{R}^{2}$ with position vector $\overrightarrow{\mathbf{e}}$, then the broken-line diagonal-segment vectors $\overrightarrow{\mathbf{e}}$ and $\overrightarrow{\mathbf{f}}, \overrightarrow{\mathbf{g}}, \overrightarrow{\mathbf{h}}$ as defined in Item (2.1) satisfy the equality,

$$
\begin{equation*}
\|\overrightarrow{\mathbf{e}}\|^{2}+\|\overrightarrow{\mathbf{f}}\|^{2}=\|\overrightarrow{\mathbf{g}}\|^{2}+\|\overrightarrow{\mathbf{h}}\|^{2} \tag{2.10}
\end{equation*}
$$

Proof: Suppose the hypothesis and then apply Theorems 2 and 3 , above.

Article 03.: Extensions to Euclidean $\mathbb{R}^{\mathbf{n}}$ Spaces. The above displayed vector method developments clearly assert that the above Theorems \& Results rely only on the vector definitions, relationships, and inner product properties. In order to illustrate this declaration for, say $\mathbb{R}^{3}$, consider vectors specified as in Figure_02, and given by

$$
\begin{equation*}
\overrightarrow{\mathbf{a}}=(a, 0,0) ; \quad \overrightarrow{\mathbf{b}}=(0, b, 0) ; \quad \overrightarrow{\mathbf{e}}=(x, y, z) \tag{3.1}
\end{equation*}
$$

Then, by applying the definitions of $\overrightarrow{\mathbf{f}}, \overrightarrow{\mathbf{g}}, \overrightarrow{\mathbf{h}}$ as displayed in Item (2.1), it follows that

$$
\begin{equation*}
\overrightarrow{\mathbf{f}}=(a-x, b-y,-z) ; \quad \overrightarrow{\mathbf{g}}=(x, y-b, z) ; \text { and } \quad \overrightarrow{\mathbf{h}}=(a-x,-y,-z) \tag{3.2}
\end{equation*}
$$

Appealing to the notations and inner product definitions for $\mathbb{R}^{3}$, Items (2.3) and (2.10) can be established by direct calculation. Hence, by applying these vector presentations for $\mathbb{R}^{3}$,

$$
\begin{align*}
\overrightarrow{\mathbf{e}} \cdot \overrightarrow{\mathbf{f}} & =(x, y, z) \cdot(a-x, b-y,-z)=a x-x^{2}+b y-y^{2}-z^{2}  \tag{3.3}\\
& =a x-x^{2}-y^{2}+b y-z^{2}=(x, y-b, z) \cdot(a-x,-y,-z)=\overrightarrow{\mathbf{g}} \cdot \overrightarrow{\mathbf{h}} .
\end{align*}
$$

Also, note that,

$$
\begin{align*}
\|\overrightarrow{\mathbf{e}}\|^{2}+\|\overrightarrow{\mathbf{f}}\|^{2} & =\left[x^{2}+y^{2}+z^{2}\right]+\left[(a-x)^{2}+(b-y)^{2}+z^{2}\right]  \tag{3.4}\\
& =\left[x^{2}+(y-b)^{2}+z^{2}\right]+\left[(a-x)^{2}+y^{2}+z^{2}\right]=\|\overrightarrow{\mathbf{g}}\|^{2}+\|\overrightarrow{\mathbf{h}}\|^{2}
\end{align*}
$$

Reviewing this present development, observe that the vector references reside in $\mathbb{R}^{3}$; thus, the line segment (vector shafts) constitute the rectangle edges and the polyhedral edges connecting the given point, $D$, to the rectangle's vertices. Hence, imagine point D of Figure_01 as a point in $\mathbb{R}^{3}$ which is elevated out of the xy-plane by having, say, a positive $z$-coordinate. Then, the opposite, broken-line diagonal red segments, $\mathbf{e}$ and $\mathbf{f}$, and the opposite, broken-line green segments, $\mathbf{g}$ and $\mathbf{h}$, of Figure_01 are actually opposite (non-adjacent) polyhedral edges. Curiously, however, Item (3.4), again, establishes that the lengths of such edges satisfy the equality therein presented.

Article 04.: Generalizations to Inner Product Spaces. Although extensions of the preceding developments to an arbitrary inner product space are somewhat artificial without the spatial notions of the supporting geometry, the preceding theorem results do remain intact by supplying the appropriate vector notions and relationships to replace that geometric support. Hence, let $(\mathbb{V}, \odot)$ denote an inner product space. Note that Figure_02 of a preceding Article illustrates the following geometric aspects of that displayed rectangle for the given orthogonal vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$,
(4.1) (i) vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are the edge vectors of the rectangle $\mathcal{R}$.
(ii) $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})$ and $(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})$ are the diagonal vectors of the rectangle $\mathcal{R}$.
(iii) vector $\overrightarrow{\mathbf{e}}$ is the position vector of the given arbitrary break-point, $D$.
(iv) vectors $\overrightarrow{\mathbf{e}}, \overrightarrow{\mathbf{f}}, \overrightarrow{\mathbf{g}}$ and $\overrightarrow{\mathbf{h}}$ as defined by Item (2.1) illustrate the broken-line diagonal-segment vectors in the vector diagram so that: $\overrightarrow{\mathbf{e}}+\overrightarrow{\mathbf{f}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}(\operatorname{diag}$ from $\mathbf{0})$ and $\overrightarrow{\mathbf{g}}+\overrightarrow{\mathbf{h}}=\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}(\operatorname{diag}$ from $\mathbf{B})$.

Observe that by defining and implementing the notions and relationships of the expressions described in Items (2.1) and (4.1), the state of all developments displayed in Article_02 remain complete, unaffected and in force. This enforced state follows, of course, because the referenced vectors, definitions and relationships are preserved and unchanged in the developmental details of Article_02. Hence, by appealing to notions and relationships here discussed, we see a rather abstracted formulation of the above results which is stated below and presented as

Theorem 5. Given a rectangle $\mathcal{R}=\{(\kappa \overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{b}}) \mid \kappa, \lambda \in[0,1], \overrightarrow{\mathbf{a}} \perp \overrightarrow{\mathbf{b}}\} \subset \mathbb{V}$, an arbitrary-point vector $\overrightarrow{\mathbf{e}} \in \mathbb{V}$, and broken-line diagonal-segment vectors $\overrightarrow{\mathbf{e}}, \overrightarrow{\mathbf{f}}$, $\overrightarrow{\mathbf{g}}$, and $\overrightarrow{\mathbf{h}}$ as defined in Item (2.1), it follows that

$$
\begin{equation*}
\|\overrightarrow{\mathbf{e}}\|^{2}+\|\overrightarrow{\mathbf{f}}\|^{2}=\|\overrightarrow{\mathbf{g}}\|^{2}+\|\overrightarrow{\mathbf{h}}\|^{2} \tag{4.2}
\end{equation*}
$$

Proof: Suppose the hypothesis; now, simply appeal to the given definitions and relationships of the vectors, and the implementation of the inner product ( $\odot$ ) properties; then, mimic the developmental details appearing in Article_02.

Article 05.: Metric Formulations. In the presence of Figure_03 (next page), metric relationships and formulations among the broken-line diagonal segment lengths, the rectangle edge lengths, the angle $\theta$, and the coordinate values of the break-point $D$, as modeled in Figure_03, can be formulated. In the preceding Articles, it was established that given an arbitrary rectangle and an artitrary point, $D(x, y)$, within such rectangle, the Broken-Line Diagonal segment lengths: $e, f, g$ and $h$ satisfy the BLD equality: $e^{2}+f^{2}=g^{2}+h^{2}$.


Clearly, given the presence of the BLD equality, only three of the BLD segments need be given in order to determine the fourth such segment. Hence, we proceed to investigate the modeling developments resulting from being given, say: $e, g$ and $h$. In the spirit of convenience and simplicity of formulation, one vertex of the given, aribitrary rectangle is placed at the Origin. Also, this modeling development locates the shortest BLD segment at the origin. Further, this modeling supposes that the BLD break-point lies inside the rectangle. With these modeling details specified, proceed to join BLD segments: $g$ and $h$ to the Break-Point, $D$; then, rotate: $h$ and $g$ about point $D$ so that segment $h$ contacts the $x$-axis, and segment $g$ contacts the $y$-axis. Label those contact points: $A(a, 0)$ and $B(0, b)$. The resulting point $C(a, b)$ completes the fourth vertex of a rectangle whose broken-line diagonal segments: $e, f, g, h$ satisfy the BLD equality.

In order to establish metric relationships among: $e, g, h, a, b, x, y$ and $\theta$; from Figure_03, observe that,

$$
\begin{equation*}
\text { (A): } a=x+(a-x)=x+\sqrt{h^{2}-y^{2}} \tag{5.11}
\end{equation*}
$$

$$
\text { (B): } b=y+(b-y)=y+\sqrt{g^{2}-x^{2}}
$$

Note that alternative presentations of the equalities in Item (5.11) can be formualted by inspecting: $(a-x)^{2}=h^{2}-y^{2}$ and $(b-y)^{2}=g^{2}-x^{2}$; now, recalling this model declares $x^{2}+y^{2}=e^{2}$, it follow that,

$$
\begin{equation*}
(\mathrm{X}): x=\frac{a^{2}+e^{2}-h^{2}}{2 a} \quad \text { and } \quad(\mathrm{Y}): y=\frac{b^{2}+e^{2}-g^{2}}{2 b} . \tag{5.12}
\end{equation*}
$$

By viewing Figure_03, observe that,

$$
\begin{equation*}
\text { (A): } x=e \cdot \cos \theta \text { and } \quad(\mathrm{B}): y=e \cdot \sin \theta . \tag{5.2}
\end{equation*}
$$

Then, applying Item (5.2) to the equations displayed in Item (5.11), it follows that,

[^0]Since this model supposes that the point $D$ lies inside the rectangle, then the e-radius angle $\theta$ lies in the first quadrant; hence, $\theta \in\left[0, \frac{\pi}{2}\right]$. Observe that the $e$-radius is hinge-linked to the $B L D$-segments, $g$ and $h$. Also, by the model description, $g$ and $h$ remain in contact with their respective axes; thus, as the e-radius pivots counter-clockwise from $\theta=0$ to $\theta=\frac{\pi}{2}$, the points $A$ and B track the axes and (consequently) graphically illustrate all of the BLD rectangles which satisfy the BLD equality: $e^{2}+f^{2}=g^{2}+h^{2}$.

By implementing the formulated relationships of the modeling framework presented in Items (5.11), the dimensions: width $=a$ and height $=b$, of an accommodating rectangle can be determined from the given metrics data: $e, g$ and $h$, with $x$ and $y$ such that: $x^{2}+y^{2}=e^{2}$. Hence, for each first quadrant point $D(x, y)$ on the circle: $x^{2}+y^{2}=e^{2}$, there exist a rectangle satisfying the BLD equality for the given data metric values: $e, g$ and $h$. Note that the value $f$ is specified by the BLD equality: $f^{2}=g^{2}+h^{2}-e^{2}$.

Alternatively, by declaring a $\theta$-value, the coordinates of an interior point $D(x, y)$ and the accommodating rectangle dimensions are both rendered by applying Items (5.2) and (5.3).

Article 06.: BLD-Quadratures. This Article_06 is devoted to exploring the notion of deciding the existence of a Square, and/or the edge length of a Square , and/or declaring breakpoint coordinates associated with a Square which satisfies the BLD equality for given brokenline diagonal segment lengths: $e, g$ and $h$. A Square achieved by contiuously altering the dimensions of an accommodating rectangle (by increasing the $\theta$-angle) until it becomes an accommodating Square is hereby declared to be a BLD-Quadrature (Broken-Line Diagonal Quadrature). (Note: Here, Quadrature DOES NOT refer to an integral nor integration method).


Inspecting Figure_03 and Item (5.3), it is noted that $a(\theta)$ decreases and $b(\theta)$ increases for increasing $\theta \in\left[0, \frac{\pi}{2}\right]$. Hence,
(6.1) $z(\theta)=b(\theta)-a(\theta)$,
is a strictly increasing function over $\left[0, \frac{\pi}{2}\right]$. Application of the Intermediate Value Theorem appears to render the following conclusions:
(i) $z(0)>0$ or $z\left(\frac{\pi}{2}\right)<0 \Rightarrow$ NO BLD-Quadratures exist.
(ii) $\quad z(0)<0$ and $z\left(\frac{\pi}{2}\right)>0 \Rightarrow$ a unique BLD-Quadrature does exist.

Application of the formulations in Item (5.3) render,

$$
\begin{equation*}
\text { (i) } z(0)=\sqrt{g^{2}-e^{2}}-(e+h) \text { and (ii) } z\left(\frac{\pi}{2}\right)=(e+g)-\sqrt{h^{2}-e^{2}} \text {. } \tag{6.3}
\end{equation*}
$$

From Item (6.3), it now follows that

$$
\text { (i) } z(0)<(g-h-e) \quad \text { and } \quad \text { (ii) } z\left(\frac{\pi}{2}\right)>(g-h+e) \text {. }
$$

Thus, if the relative values for the BLD-segments: $e, g, h$ are such that

$$
\text { (i) }(g-h-e)<0 \quad \text { and } \quad \text { (ii) } \quad(g-h+e)>0 \text {, }
$$

then, it appears that: a unique BLD-Quadrature does exist for that family of BLD rectangles. Similary: $\left[e^{2}+(e+h)^{2}<g^{2}\right.$ or $\left.h^{2}>e^{2}+(e+g)^{2}\right] \Rightarrow$ NO BLD-Quadratures exist. A Vertex Graph Plot which includes a Quadrature occurrence is presented on the next page.

Article 07.: Computational Illustrations. In the presence of Figure_03, imagine that the $e$-radius rotates so that the $\theta$-angle increases from 0 to $\frac{\pi}{2}$. Given numerical values for: $e, g$ and $h$, an animated illustration of the family of BLD rectangles thus created by such rotating motion can be mentally visualized. By appealing to the formulations presented in the preceding articles of this composition, all of the metrics of such family members can be numerically computed. The computational examples regarding this composition are hereto attached among the last pages of this composition.

Computational Example: 01. Given data: $e=25 ; g=39 ; h=52$.
For these data values, there are infinitely many BLD rectangles. However, for a specified point $D$, there will exist a unique BLD rectangle for this data. So, ... Suppose $\theta$ is GIVEN by declaring that: $\cos \theta=.8000$. This example presents the computational details to determine: (i) point $D(x, y)$; and (ii) $a(\theta)=$ rectangle width $\& b(\theta)=$ rectangle height.

Computational Example: 02. Given data: $e=25 ; g=39 ; h=52$;
also, ... the BLD rectangle has a Given Width of: $a=70$.
DETERMINE: (i) Does such BLD rectangle actually exist?
(ii) If so, ... Compute point $D(x, y)$; (iii) If so, ... Compute Height $=b$.

Computational Example: 03. Given data: $e=25 ; g=39 ; h=52$.
(i) Does this data support the Existence of a BLD Quadrature?
(ii) If so, ... DETERMINE: the Edge Length $=q$ of such BLD Quadrature.

Article 08.: Concluding Remarks. In the presence of the geometric visualization of a rectangle as imagined in $\mathbb{R}^{2}$, or $\mathbb{R}^{3}$, and an imagined arbitrary internal or external given point, $D$, Theorem 5 harbors a somewhat curious, mystic and novel tone. However, when stated in terms of a general inner product space $(\mathbb{V}, \odot)$, then the conclusion is simply a result from the exercise of implementing vector definitions and the properties of an inner product, $\odot$. Hence, the generalization does not appear to have any hidden surprises and/or curious aspects.

```
(* Vertex Plots of Point \(C(a, b)\) as the e-radius
    rotates and increases from: \(t=0\) to \(t=\frac{\pi}{2}\).
    Note that a BLD Quadrature has a Vertex at
    at Point C for: \(a=6.0715=b . H e n c e\),
    this Data Set, the BLD Quadrature has
    Edge Length \(=\mathbf{q}=6.0715\)
Clear [a, b, z, v]
\(a\left[t_{-}\right]:=e \operatorname{Cos}[t]+\sqrt{h^{2}-e^{2} \operatorname{Sin}[t]^{2}}\)
\(b\left[t_{-}\right]:=e \operatorname{Sin}[t]+\sqrt{g^{2}-e^{2} \operatorname{Cos}[t]^{2}}\)
\(z\left[t_{-}\right]:=b[t]-a[t]\)
e = 3 ;
h = 5 ;
\(\mathrm{g}=4\);
Solve[z[t] ==0, t] / / N
\(\{\{t \rightarrow 0.960994178657803743 `\},\{t \rightarrow-2.90477822725276126 `\}\)
\(\mathrm{v}\left[\mathrm{t}_{-}\right]=\{\mathrm{a}[\mathrm{t}], \mathrm{b}[\mathrm{t}]\}\)
v[0.960994]
\{6.07149698285807382`, 6.07149585414752657 ` \(\}\)
```

In this example, the variable " t " is used instead of the symbol "theta." Note that from the Given Data: $8=\mathrm{e}+\mathrm{h}$ (is the largest value of a BLD rectangle Width at $\mathrm{t}=0$; and, $7=\mathrm{e}+\mathrm{g}$ (is the largest value of a BLD rectangle Height at $\mathrm{t}=\mathrm{Pi} / 2$.

The BLD Quadrature Vertex for this Data Set occurs at: $t=0.961$; (angle degree-measure of about 55 degrees).

Referencing the above Formulations and Computations, note that:
(i) the vertex function $v[t]$ calculates coordinates of Point $\mathrm{C}(\mathrm{a}, \mathrm{b})$;
(ii) $z\left[t^{*}\right]=0$ declares: Rectangle Width $=a\left[t^{*}\right]=b\left[t^{*}\right]=$ Rectangle Height ;
(iii) Hence, the BLD Quadrature Edge Length $=q$; where: $a\left[t^{*}\right]=q=b\left[t^{*}\right]$.
(* This COMPUTATIONAL DEVELOPMENT illustrates how to compute the: WIDTH = a ; HEIGHT = b ; AND POINT $D(x, y)$ of a BLD-rectangle from GIVEN DATA which includes:
$e, g, h$ and the e-radius angle $=\theta$.

(* Given: e, g, h and specify $\theta$ by: $\cos \theta=0.8000$

Clear[aA, bB, $a, b, e, g, h, x, y, \cos \theta, \sin \theta$ ]
$\mathrm{e}=25$; (* $\mathrm{e}=\mathrm{OD}$ by declaration *)
g= 39 ;
$h=52$;
$f=\sqrt{g^{2}+h^{2}-e^{2}} ;(*$ The FOURTH BLD-segment from $D$ to $C$.

(* Calculate $a(\theta)$ and $b(\theta)$ from: $\cos \theta=0.8000$;
Hence: $\sin \theta=0.6000=\sqrt{1-(0.8)^{2}}$. Formulate
values for $x$ and $y$ to compute Width $=\mathbf{a}$ and Height $=\mathbf{b}$ *)

Clear [aA, bB, $x, y, \cos \theta, \sin \theta]$
$\cos \theta=0.8000$;
$\sin \theta=0.6000$;
$x=e \cos \theta$;
$y=e \sin \theta$;
$a A\left[h_{-}, g_{-}, x_{-}, y_{-}\right]:=x+\sqrt{h^{2}-y^{2}} ;$
$b B\left[h_{-}, g_{-}, x_{-}, y_{-}\right]:=y+\sqrt{g^{2}-x^{2}} ;$
(* Compute values for the pair: \{ $a A, b B$ \}
*)
$a=a A[h, g, x, y]$;
$b=b B[h, g, x, y]$;
$\{\mathbf{a}, \mathrm{b}\} / / \mathrm{N}$
\{69.7896, 48.4813 \}
(* Hence: $a=$ Width $=69.7896$ and $b=$ Height $=48.4813$
Now, List coordinates $x$ and $y$ for Point $D(x, y)$. *)
$\{\mathrm{x}, \mathrm{y}\}$
\{20., 15. \}
(* So, ... Point $D$ has coordinates: $D(20,15)$
*)
(* Now, ... Display Computed Values for: \{ a, b, x , y, f \} . *)
$\{a, b, x, y, f\} / / N$
$\{69.7896,48.4813,20 ., 15 ., 60$.
(* Distance Formula Verification for: $g$, $h$ and $f$
*)
$\left\{g-\sqrt{(b-y)^{2}+x^{2}}, h-\sqrt{(a-x)^{2}+y^{2}}, f-\sqrt{(b-y)^{2}+(a-x)^{2}}\right\} / / N$
$\{0 ., 0 ., 0$.
(* Values $\{0,0,0\}$ confirm the Formulated Descriptions for \{ $x, y, b$ \} do create the correct Calculated Values which do compute the correct measures for the BLD-segments: $g$, $h, e$, and $f$ and for the Height $=b \quad$ )
(* This COMPUTATIONAL DEVELOPMENT illustrates how to compute the HEIGHT of a BLD-rectangle from GIVEN DATA which includes: $e, g, h$ and the Width-Value $=a$.

(* Given: $e, g, h$ and declared width-value $=\mathbf{a}$
Clear [bB, xD, yD, a, b, e, g, h, x, y]
$\mathrm{e}=25$; (* e = OD by declaration *)
g = 39 ;
$h=52$;
$f=\sqrt{g^{2}+h^{2}-e^{2}} ;(*$ The FOURTH BLD-segment from $D$ to $C$.

(* Calculate Possible Width and Height Ranges from the given e, $g$ and $h$ values;
Possible Ranges for: \{ width-range = $\mathbf{a}$, height-range = b \} *)
$\left\{\left\{\sqrt{\mathbf{h}^{2}-\mathbf{e}^{2}}, \mathbf{h}+\mathbf{e}\right\},\left\{\sqrt{\mathbf{g}^{2}-\mathbf{e}^{2}}, \mathbf{g}+\mathbf{e}\right\}\right\} / / \mathrm{N}$
$\{\{45.5961,77\},.\{29.9333,64\}$.
$a=70 ;$ (* Declared a-Value is possible Rectangle Width-Value. *)
(* Break-Point Coordinate Functions : $D(x, y)$, where $\left.x^{2}+y^{2}=e^{2} \quad *\right)$ $x D\left[e_{-}, g_{-}, h_{-}\right]:=(1 /(2 a)) *\left(a^{2}+e^{2}-h^{2}\right)$
$y D\left[e_{-}, x_{-}\right]:=\sqrt{e^{2}-x^{2}}$

```
(* Functions for \(y\)-axis Height Point: \(B(0, b)\)
*)
\(b B\left[x_{-}, y_{-}, g_{-}\right]:=y+\sqrt{g^{2}-x^{2}}\)
```

(* Calculate: $x$ - , $y$-Values for $D(x, y)$; and $b-V a l u e$ for $B(0, b)$ *)
$x=x D[e, g, h]$;
$y=y D[e, x]$;
$b=b B[x, y, g] ;$
(* Display Computed Values for: $\{\mathbf{x}, \mathrm{y}, \mathrm{a}, \mathrm{b}, \mathrm{f}\}$
*)
$\{\mathbf{x}, \mathbf{y}, \mathbf{a}, \mathbf{b}, \mathrm{f}\} / / \mathrm{N}$
$\{20.15,14.7979,70 ., 48.1892,60$.
(* Distance Formula Verification for: $g$, $h$ and $f$ *)
$\left\{g-\sqrt{(b-y)^{2}+x^{2}}, h-\sqrt{(a-x)^{2}+y^{2}}, f-\sqrt{(b-y)^{2}+(a-x)^{2}}\right\} / / N$
$\{0,0,0\}$
(* Values $\{0,0,0\}$ confirm the Formulated Descriptions for \{ $x, y, b$ \} do create the correct Calculated Values which do compute the correct measures for the BLD-segments: $g, h, e$, and $f$ and for the Height $=b$
(Revised Copy)
(* This COMPUTATIONAL DEVELOPMENT illustrates how to determine if There Exists a BLD-Quadrature which will admit AND accommodate GIVEN DATA Measures of: $\mathrm{e}, \mathrm{g}$ and h .

Given: Data Measures for: $e, g$ and $h$.
SYMBOLS: $a A, b B, z Z, x D, y D$ are FUNCTIONS; $a, b, e, g, h, \theta$ are REALS. *)
Clear [aA, bB, zZ, xD, yD, a, b, e, g, h, e]
e=25 ; (* e = OD by declaration *)
g = 39 ;
$h=52$;
$f=\sqrt{g^{2}+h^{2}-e^{2}} ;(*$ The FOURTH BLD-segment from D to $C$.
*)

```
(* Referring to Item (5.3) of Article_05, the function a ( \(\theta\) ) is NOW DENOTED by aA [ \(\theta\) ] in order to distinguish the PARAMETER "a" from the FUNCTION NAME "a" , etc. ; Now,... Examine HOW the Data affects the behavior of the strictly increasing function: \(z Z(\theta)=b B(\theta)-a A(\theta)\);
Note that here: \(z Z(0)<g-h-e<0\); and, also \(z Z\left(\frac{\pi}{2}\right)>g-h+e>0\); hence by Item (6.5), this Family of BLD Rectangles does have a BLD Quadrature. Hence, now proceed to Solve the equation: \(z Z(\theta)=0\) for \(\theta\). Formulating the Mathematica Code, ...
(* Referring to Item (5.3) of Article_05, the function a (0)
    PARAMETER "a" from the FUNCTION NAME "a " , etc. ; Now,...
    Examine HOW the Data affects the behavior of the strictly
    #: zZ (0) = bB (0) - aA (0) ;
    Note that here: zZ (0) < g - h - e < 0 ; and, also
    zZ (\frac{\pi}{2}) > g - h + e > 0 ; hence by Item (6.5), this Family
    now proceed to Solve the equation: zZ (0)=0 for }0\mathrm{ .
    Formulating the Mathematica Code, ...
```



```
aA[0_] := e Cos[0] + \sqrt{}{\mp@subsup{h}{}{2}-(e\operatorname{Sin}[0]\mp@subsup{)}{}{2}}\mathrm{ ;}
bB[0_] := e Sin[0] + \sqrt{}{\mp@subsup{g}{}{2}-(e\operatorname{Cos[0]\mp@subsup{)}{}{2}}}\mathrm{ ;}
zZ[0_] := bB[0] - aA[0] ;
```



```
{{0->1.07248},{0->-3.02176 }}
(* Use 0 = 1.07278 \epsilon[0, \frac{\pi}{2}] to Compute: a = aA[0] and b= bB[0] *)
0 = 1.07248;
a = aA [0] ;
b = bB[0];
q = a ;
{a,b,q} // N
{59.0843, 59.0842, 59.0843}
(* Thus, a = 59.0843 = b, so: Quadrature edge = q = 59.0843 *)
(* Now, Formulate functions xD and yD to compute D (x,y)
*)
xD[e_, 的] := e Cos[0]
yD[e_, 识] := e Sin[0]
(* Compute the values { xD , yD } for D (x,y) *)
x = xD[e, 0] ;
y = yD[e, 0] ;
{x,y}
{11.9487, 21.9597 }
```

(* Hence ... the Coordinates of $D$ are:
$x=11.9487$ and $y=21.9597$.
Now list $\{a, b, q, x, y\}$ *)
$\{a, b, q, x, y\}$
$\{59.0843,59.0842,59.0843,11.9487,21.9597\}$
(* Distance Formula Verification for: g, h and f
*)
$\left\{g-\sqrt{(b-y)^{2}+x^{2}}, h-\sqrt{(a-x)^{2}+y^{2}}, f-\sqrt{(b-y)^{2}+(a-x)^{2}}\right\} / / N$
$\left\{0 ., 0 ., 1.42109 \times 10^{-14}\right\}$
(* Values $\left\{0,0,1.421 \times 10^{-14}\right\}$ confirm the Formulated Descriptions for $\{a, b, q, x, y\} d o$ create the correct Calculated Values which do compute the correct measures for the
BLD-segments: $g, h, e$, and $f$ and for the Edge Length $=q$ *)


[^0]:    (A): $a(\theta)=e \cdot \cos \theta+\sqrt{h^{2}-e^{2} \sin ^{2} \theta}$
    (B): $b(\theta)=e \cdot \sin \theta+\sqrt{g^{2}-e^{2} \cos ^{2} \theta}$.

