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(Simple) BROKEN-LINE Diagonals of Rectangles
(Developed, Composed & Typeset by:  J B Barksdale Jr / 05‐26‐15)

Article 00.:  Introduction.  Imagine the image of a rectangle (say, in ) with the‘#

diagonals drawn as (simple) broken-lines which SHARE a SINGLE, COMMON break-
point, say  (see Figure_01, below).  H Now, suppose the expression denotes theÐ/  0Ñ
sum of the segment lengths broken-line diagonalof the first ; and that the expression
Ð1  2Ñ denotes the  of the other  .  Thesum of the segment lengths broken-line diagonal
purpose of this developmental excursion is to demonstrate a rather curious and novel
attribute of such namely, regarding such broken-line diagonals; broken-line diagonal
segments, it always follows that

(0.1)  ,  (for /  0 œ 1  2# # # # arbitrary Rectangle e and ) .arbitrary Point H

From the above description, one would imagine the through which thebreak-point, Hß
broken-line diagonals pass, interior point rectangle.to be an  of the   However, the
following developments establish that the can actually be an point, , arbitrary point ofH
‘#  point, , interior point,(regarding the above, given details);  hence, the can be an H
exterior point, or edge point of the given rectangle.

Article 01.:  Equality &  Sums of Squared Segments.  , below, visuallyFigure_01
illustrates the descriptions of an  in ,  and  arbitrary rectangle (simple) broken-line diagonalsÐ Ñ‘#

which pass through a single as presented in , above.arbitrary break-point, , Article_00H

Figure_01: Rectangle with broken-line diagonals

By appealing to the  the following formulations regarding the distance formula (for ), broken-‘#

line diagonal segment lengths  are clearly rendered.

(1.1) and   / œ B  C 0 œ ÐB+Ñ  ÐC,Ñ# # # # # # Þ

Also,

(1.2) and   1 œ B  ÐC,Ñ 2 œ ÐB+Ñ  C# # # # # # Þ

Now, by adding the pairs of equations in each of Items (1.1) and (1.2), it follows that
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(1.3) /  0# # œ  ÒÒ B ÐC,Ñ Ó  C  ÐB+Ñ Ó œ Þ# # # # 1  2# #

The preceding developments establish the following

 Theorem 1.  Given a rectangle, e , - , - ‘œ Ö Ð +ß ,Ñ ß − Ò!ß "Ó × § #

 with   and with  , suppose thathorizontal edges vertical edgesœ + œ ,units units
 internal   have measures ofarbitrary broken-line diagonal-segment length pairs
 for a first broken-line diagonal, and value measures of    for the/ 0 2 and and g 
 other broken-line diagonal. Then,

(1.4)      ./  0 œ 1  2# # # #

   The development of Items (1.1) (1.3), and reference to Proof: Figure_01,
 above, establishes the conclusion as a consequence of the given hypothesis.  

 COROLLARY (1-A).  Item (1.4) is a consequence of the hypothesis of
 for Theorem 1 an arbitrary break-point,  H − Þ‘#

 Proof:  Figure_01 break-point  ;Although depicts the  restrictionß H − e
 actually, the  development of Items (1.1) (1.3) remains unaltered for  
  as well   Therefore, the conclusionan arbitrary point, H − Ð Ï Ñ Þ‘ e#

 of  remains intact for Theorem 1 any point  H − Þ‘# 

Article 02.:   Broken-line Diagonal Results via Vector Methods. A vector
diagram version Figure-01 Figure_02,  of  is now presented via below.  Consider the rectangle

e , - , -œ Ö Ð Ñ ß − Ò!ß "Ó ß ×a b a bÛ Û ÛÛ
 ¼   and a given which has arbitrary point D 

position vector  vector diagram referencese f g hÛ ÛÛ Û.  Now, with given    and , we define,

     
Figure_02: Vector Diagram   with broken-line diagonal vectors

(2.1) (i):   (ii): (iii): f a b e g e b h a eÛ Û Û Û Û Û ÛÛ Û Û
œ   œ  œ              

From   (so that and the equalities appearing in Item (2.1), we have   
a b a bÛ ÛÛ Û

¼ † œ !Ñ
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(2.2)          
g h e b a e e a e e b a b eÛ Û ÛÛ ÛÛ Û Û Û Û Û ÛÛ Û

† œ Ð  Ñ † Ð  Ñ œ †  †  †  †

      .  
œ † Ð   Ñ œ †e a b e e fÛ ÛÛ ÛÛ Û

Thus, the together with Items (2.1) and (2.2)  clearly establishvector diagram (Figure_02) 

  Theorem 2.  Given a rectangle  e , - , - ‘œ Ö Ð Ñ ß − Ò!ß "Ó ß × §a b a bÛ Û ÛÛ
 ¼ #

 arbitrary point  position vector and with  H − ‘#  , then the  eÛ broken-line
 diagonal-segment  vectors    e f g h  and  ,  as defined in Item (2.1) satisfy theÛ Û Û Û,
 equality,

(2.3)      .e f g h    Û ÛÛ Û
† †œ

Further examination of Item (2.1) and the vector diagram in effectively renderFigure_02 

 Theorem 3.  Given the Item (2.1) and the hypothesis of Theorem 2, vector diagram
 in Figure_02, it follows that

(2.4)       || || || || || || || ||e f g hÛ ÛÛ ÛÛ ÛÛ Û# # # # œ  × e f g h    † †œ

   Suppose the  now, inspect , and Item (2.1), to conclude thatProof: hypothesis; Figure_02 

(2.5)  e f a b a b g hÛ Û Û ÛÛ Û Û Û
 œ   œ    and   .

 
 Since  , we can conclude that, a bÛ Û

† œ !

(2.6)  || ||   || ||  || ||  a b a bÛ ÛÛ Û ÛÛ
 †# # #œ   # Ð Ña b

  || ||  || ||  || ||œ   # Ð Ñ œ Þa b a bÛ ÛÛ Û ÛÛ# # #a b 
† 

 Now, from Items (2.5) and (2.6) we have

(2.7)  || || || ||m m œ œ œ m m Þe f g hÛ Û Û ÛÛ Û Û Û
    # # # #a b a b

 Item (2.7) now yields

(2.8) || ||   || ||  || ||  e f e fÛ ÛÛ Û ÛÛ
 †# # #œ   # Ð Ñe f 

  || ||  || ||  || ||œ   # Ð Ñ œ Þg h g hÛ ÛÛ Û ÛÛ# # #g h 
† 

 Item (2.8) then renders

(2.9) || ||  || ||  || ||  || ||     Ð  Ñ  Ð  Ñ œ Ð#Ñ Ð Ñ  Ð Ñ Þe f g hÛ ÛÛ ÛÛ ÛÛ Û# # # # e f g h  
† †

 The biconditional conclusion of Item (2.4)  is now thus asserted by Item (2.9)  
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 Theorem 4.  Given a rectangle  e , - , - ‘œ Ö Ð Ñ ß − Ò!ß "Ó ß × §a b a bÛ Û ÛÛ
 ¼ #

arbitrary point  position vector and with  H − ‘#  , then the  eÛ broken-line
diagonal-segment  vectors    e f g h  and  ,  as defined in Item (2.1) satisfy theÛ Û Û Û,

 equality,

(2.10) || || || || || || || ||e f g hÛ ÛÛ Û# # # # œ 

  Suppose the and then Proof Theorems 2 and 3: hypothesis apply  , above.  

Article 03.:   Extensions to Euclidean   Spaces‘n . The above displayed vector
method developments clearly assert that the above  rely only on theTheorems & Results
vector definitions, relationships, and inner product properties.  In order to illustrate this
declaration for, say , consider vectors specified as in ,  and given by‘$ Figure_02

(3.1) . a b eÛ ÛÛ
œ Ð+ß !ß !Ñ à œ Ð!ß ,ß !Ñ à œ ÐBß Cß DÑ

Then, by applying the of   ,  as displayed in Item (2.1), it follows thatdefinitions   f g hÛ Û Û,

(3.2)    and    f g hÛ Û Û
œ Ð+Bß ,Cß DÑ à œ ÐBß C,ß DÑ à œ Ð+Bß Cß DÑ Þ

Appealing to the for notations and inner product definitions Items (2.3) and (2.10)‘$ ß
can be established by   Hence, by applying these ,direct calculation. vector presentations for  ‘$

(3.3)      e fÛ Û
† œ ÐBß Cß DÑ † Ð+Bß ,Cß DÑ œ +BB ,CC D# # #

 
œ +BB C ,C D œ ÐBß C,ß DÑ † Ð+BßCßDÑ œ † Þ# # # g hÛ Û

Also, note that,

(3.4) || || || ||e fÛ Û# # # # # # # # œ ÒB C D Ó  ÒÐ+BÑ Ð,CÑ D Ó

|| || || ||œ ÒB ÐC,Ñ D Ó  ÒÐ+BÑ C D Ó œ  Þ# # # # # # # #g hÛ Û

Reviewing this present development, observe that the vector references reside in ‘$à thus, the 
line segment (vector shafts) constitute the rectangle edges and the polyhedral edges connecting 
the given point, D, to the rectangle's vertices.  Hence,  imagine point D of Figure_01 as a point 
in ‘$ which is elevated out of the xy-plane by having, say, a positive z-coordinate.  Then, the 
opposite, broken-line diagonal red segments, e and f ,  and the opposite, broken-line green 
segments, g and h ,  of Figure_01 are actually opposite (non-adjacent) polyhedral edges. 
Curiously, however, Item (3.4), again, establishes that the lengths of such edges satisfy the 
equality therein presented.
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Article 04.:   Generalizations to Inner Product Spaces. Although extensions of the
preceding developments to an arbitrary inner product space are  without thesomewhat artificial
spatial notions of the supporting geometry, the preceding theorem results do remain intact by
supplying the appropriate  to replace that geometric support.vector notions and relationships
Hence, let denote an Note that of a   •ß  inner product space.  Figure_02 preceding Article
illustrates the following of that displayed rectangle for the geometric aspects given orthogonal
vectors  and  a bÛ Û ,

(4.1)   are the of the (i) vectors  and  edge vectors rectangle . a bÛ Û
e

 (ii)  diagonal vectors rectangle .Ð  Ñ a b a bÛ ÛÛ Û  and  (  )  are the  of the e
 (iii) vector  position vector given arbitrary break-point, D.eÛ  is the of the  
 (iv) vectors  and  Item (2.1) broken-linee f g hÛ ÛÛ Û, ,  as defined by illustrate the 
  diagonal-segment vectors vector diagram  in the so that:
  and    .e f a b g h a b BÛ Û Û ÛÛ Û Û Û

 œ  Ð Ñ  œ  Ð Ñ diag from  diag from  !

Observe that by  the of the expressionsdefining and implementing notions and relationships 
described in the state of all developments displayed in remainItems (2.1) and (4.1), Article_02 
complete, unaffected and in force.  This enforced state follows, of course, because the referenced
vectors, definitions and relationships are  in the developmental detailspreserved and unchanged
of Hence, by appealing to  here discussed, we see a ratherArticle_02.  notions and relationships
abstracted formulation of the above results which is stated below and presented as

  Theorem 5.  Given a rectangle  ,e , - , - •œ Ö Ð Ñ ß − Ò!ß "Ó ß × §a b a bÛ Û ÛÛ
 ¼

 arbitrary-point vector  ,  an  and e e f   , Û Û Û
− • broken-line diagonal-segment vectors    ,

 ,    as defined in Item (2.1), it follows thatg hÛ Ûand

(4.2)  || || || || || || || ||e f g hÛ ÛÛ Û# # # # œ 

   Suppose the  now, simply appeal to the  Proof: hypothesis; given definitions and
 relationships vectors, inner product ( ) of the  and the implementation of the  
 properties; mimic Article_02.   then,  the developmental details appearing in 

Article 05.:   Metric Formulations. In the presence of metricFigure_03 (next page), 
relationships and formulations among the , the rectangle, 6 .roken- ine iagonal segment lengths
edge lengths, angle , coordinate values of the break-point D,  the and the as modeled in)
Figure_03, Articles, can be formulated.  In the preceding it was established that given an
arbitrary rectangle an artitrary point, D , roken- ine and within such rectangle, the ÐBß CÑ B L
D BLDiagonal segment lengths: and   equality:  /ß 0 ß 1 2 satisfy the /  0 œ 1  2 Þ# # # #
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Figure_03: Rectangle with F P Hroken- ine iagonals

Clearly, given the presence of the only three of the  need be givenBLD equality, BLD segments
in order to determine the fourth such segment.  Hence, we proceed to investigate the modeling
developments resulting from being given, say:   and .  In the spirit of convenience and/ß 1 2
simplicity of formulation, one vertex of the given, aribitrary rectangle is placed at the Origin.
Also, this  locates the  at the origin.  Further,modeling development shortest BLD segment
this  supposes that the the rectangle.  With these modelingmodeling BLD break-point lies inside 
details specified, proceed to and  to the then, join BLD segments:  Break-Point, D; rotate: 1 22
and   about so that contacts the , and contacts the 1 point D segment   -axis segment  -axis.2 B 1 C
Label those The completes thecontact points:  and    resulting point EÐ+ß !Ñ FÐ!ß ,ÑÞ G +ß , 
fourth vertex of a rectangle whose   satisfy the broken-line diagonal segments: , BLD/ß 0 ß 1 2
equality.

In order to establish metric relationships among:   and  from /ß 1ß 2ß +ß ,ß Bß C à) Figure_03,
observe that,

(5.11)   (A):  (B):  .+ œ B  Ð+BÑ œ B  2  C , œ C  Ð,CÑ œ C  1  B # # # #

Note that alternative presentations of the equalities in Item (5.11) can be formualted by
inspecting:  and  now, recalling  declaresÐ+  BÑ œ 2 C Ð,  CÑ œ 1 B à# # # # # # this model
B  C œ /# # # ,  it follow that,

(5.12)    (X):     and     (Y):   .B œ C œ
+  /  2 ,  /  1

#+ #,

# # # # # #

By viewing , observe that,Figure_03

(5.2) (A):  cos    and    (B):  sin   .B œ / † C œ / †) )

Then, applying Item (5.2) to the equations displayed in Item (5.11), it follows that,

(5.3)    (A): cos sin   (B): sin cos  .+Ð Ñ œ / †  2  / ,Ð Ñ œ / †  1  /) ) ) ) ) )  # # # # # #
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Since this model supposes that the  the rectangle, then the   liespoint lies inside e-radius angleH )
in the hence,    Observe that the  is  to thefirst quadrant; e-radius hinge-linked) − Ò!ß ÓÞ1

#

BLD-segments  and  h model description, and hß 1 Þ 1Also, by the remain in contact with their
respective axes; thus, as the pivots from the e-radius counter-clockwise to  points) œ ! ß) œ 1

#

E and B track the axes graphically illustrate BLD rectangles  and (consequently)  all of the which
satisfy the BLD equality:  /  0 œ 1  2 Þ# # # #

By implementing the formulated relationships of the  presented inmodeling framework
Items (5.11), the dimensions:  and   of an  canwidth a   height b , accommodating rectangleœ œ
be determined from the given and  with and such that:  metrics data: /ß 1 2ß B C B  C œ / Þ# # #

Hence, for each  on the there first quadrant point D circle: exist a rectangleÐBß CÑ B  C œ / ß# # #

satisfying the for the given and  Note that the BLD equality data metric values:   value f/ß 1 2Þ
is specified by the :  BLD equality 0 œ 1  2  / Þ# # # #

Alternatively, by the and thedeclaring a  -value, coordinates of an interior point  ) HÐBß CÑ
accommodating rectangle dimensions are both rendered by applying Items (5.2) and (5.3).

Article 06.:   BLD-Quadratures. This is devoted to exploring the notion ofArticle_06 
deciding the of a , and/or the of a and/or existence Square edge length Square , declaring break-
point coordinates Square BLD equality broken-associated with a  which satisfies the  for given 
line diagonal segment lengths: e, g  contiuously altering  and   A achieved by the2Þ Square
dimensions of an accommodating rectangle (by increasing the -angle) ) until it becomes an
accommodating Square -  ( roken- ine iagonal is hereby declared to be a BLD Quadrature B L D
Quadrature).  Quadrature(Note:  Here,   refer to an integral nor integration method).DOES NOT

Figure_03: Rectangle with F P Hroken- ine iagonals

Inspecting and Item (5.3), it is noted that and  Figure_03 decreases increases+Ð Ñ ,) ) 
for  .  Hence,increasing ) − Ò!ß Ó1#

(6.1) DÐ Ñ œ ,Ð Ñ  +Ð Ñ ß) ) )

is a function over .  Application of the strictly increasing Intermediate Value TheoremÒ!ß Ó1#
appears to render the following conclusions:
(6.2)   (i) or   NO BLD-Quadratures exist.DÐ!Ñ  ! DÐ Ñ  !1

# Ê

(ii) and   a unique BLD-Quadrature does exist.DÐ!Ñ  ! DÐ Ñ  !1
# Ê

Application of the formulations in Item (5.3) render,
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(6.3)    and      .(i)  DÐ!Ñ œ 1  /  Ð/  2Ñ DÐ Ñ œ Ð/  1Ñ  2  / # # # #
#(ii) 1

From Item (6.3), it now follows that

(6.4)       and         (i)   (ii)DÐ!Ñ  Ð1  2  /Ñ DÐ Ñ  Ð1  2  /Ñ Þ1
#

Thus, if the  for the  are such thatrelative values BLD-segments:  /ß 1ß 2

(6.5)     and         ,(i)   (ii)Ð1  2  /Ñ  ! Ð1  2  /Ñ  !

then, it appears that:   a unique BLD-Quadrature does exist for that family of BLD rectangles.
Similary:  Ò/  Ð/2Ñ  1 9< 2  /  Ð/1Ñ Ó Ê# # # # # # NO BLD-Quadratures existÞ
A  which includes a  occurrence is presented on the next page.Vertex Graph Plot Quadrature

Article 07.:   Computational Illustrations. In the presence of  imagine thatFigure_03, 
the so that the . Given numerical values for:  e-radius rotates  -angle  increases from 0 to   ) 1

# /ß 1

and  animated illustration BLD rectangles2ß an of the family of  thus created by such rotating
motion can be By appealing to the formulations presented in the precedingmentally visualized.  
articles of this composition, all of the of such family members can be numericallymetrics 
computed.  The  regarding this composition are hereto attached amongcomputational examples
the last pages of this composition.

.  Given data:  Computational Example:  01 / œ #&à 1 œ $*à 2 œ &#Þ
For these data values, there are   However,infinitely many BLD rectangles.
for a there will exist a  for this data.specified point D, unique BLD rectangle

 So, ... Suppose    is GIVEN by declaring that) :  cos 8) œ Þ !!! Þ
This example presents the computational details to determine:  (i)  point D ;ÐBß CÑ

(ii)  rectangle width  &  rectangle height.and  +Ð Ñ œ ,Ð Ñ œ) )

.  Given data:  ;Computational Example:  02 / œ #&à 1 œ $*à 2 œ &#
also, ...  the has a  BLD rectangle Given Width of:   + œ (!Þ

(i)  Does such BLD rectangle actually exist?DETERMINE:  
(ii)  If so, ...  point (iii)  If so, ... Height Compute Compute HÐBß CÑà œ ,Þ

.  Given data:  Computational Example:  03 / œ #&à 1 œ $*à 2 œ &#Þ
    Does this data of a (i)  support the Existence BLD Quadrature?

(ii)  If so, ... Edge Length BLD Quadrature DETERMINE:  the of such œ Þ;

Article 08.:   Concluding Remarks. In the presence of the geometric visualization
of a rectangle as imagined in , or  and an imagined ‘ ‘2 $ ß arbitrary internal or external
given point, D, Theorem 5  curious, mystic novelharbors a somewhat and  tone.  However,
when stated in terms of a general then the conclusion is simplyinner product space Ð ß  Ñß•
a result from the exercise of  and the implementing vector definitions properties of an inner
product, .  hidden surprises  Hence, the generalization does not appear to have any and/or
curious aspects.



H∗ Vertex Plots of Point C Ha,bL as the e−radius
rotates and increases from: t = 0 to t = π

2
.

Note that a BLD Quadrature has a Vertex at
at Point C for: a = 6.0715 = b . Hence,

this Data Set, the BLD Quadrature has
Edge Length = q = 6.0715 ∗L

Clear@a, b, z, vD
a@t_D := e Cos@tD +

"+++++++++++++++++++++++++++++++++++++++
h2 − e2 Sin@tD2

b@t_D := e Sin@tD +
"+++++++++++++++++++++++++++++++++++++++

g2 − e2 Cos@tD2

z@t_D := b@tD − a@tD

e = 3 ;
h = 5 ;
g = 4 ;
Solve@z@tD == 0, tD êê N
88t → 0.960994178657803743 <̀, 8t → −2.90477822725276126 <̀<
v@t_D = 8a@tD, b@tD<
v@0.960994D
86.07149698285807382 ,̀ 6.07149585414752657 <̀

BLDvertex_plot_mc.nb 1

============================================================================

In this example, the variable  "t"  is used instead of the symbol "theta."  Note that from the 
Given Data:  8 = e + h  (is the largest value of  a BLD rectangle Width at t = 0;  and,

           7 = e + g  (is the largest value of a BLD rectangle Height at t = Pi/2 .

The BLD Quadrature Vertex for this Data Set occurs at:  t = 0.961 ; (angle degree-measure 
of about 55 degrees).

Referencing the above Formulations and Computations, note that:
   (i) the vertex function v[t] calculates coordinates of Point C(a,b);
   (ii) z[t*] = 0  declares:  Rectangle Width = a[t*] = b[t*] = Rectangle Height ;
  (iii) Hence, the BLD Quadrature Edge Length = q ; where:  a[t*] =  q = b[t*] .

C(q,q)

BLD Vertex Graph Plot with Quadrature  Vertex
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H∗ This COMPUTATIONAL DEVELOPMENT illustrates how to compute
the: WIDTH = a ; HEIGHT = b ; AND POINT D Hx,yL of a
BLD−rectangle from GIVEN DATA which includes:
e, g, h and the e−radius angle = θ .

========================================================= ∗L

H∗ Given: e, g, h and specify θ by: cosθ = 0.8000 ∗L

Clear@aA, bB, a, b, e, g, h, x, y, cosθ, sinθ D
e = 25 ; H∗ e = OD by declaration ∗L
g = 39 ;
h = 52 ;

f =
è++++++++++++++++++++++++++++

g2 + h2 − e2 ; H∗ The FOURTH BLD−segment from D to C . ∗L

H∗ Calculate a HθL and b HθL from: cosθ = 0.8000 ;

Hence: sinθ = 0.6000 =
è++++++++++++++++++++++++

1−H0.8L2 . Formulate
values for x and y to compute Width = a and Height = b ∗L

Clear@aA, bB, x, y, cosθ, sinθD
cosθ = 0.8000 ;
sinθ = 0.6000 ;
x = e cosθ ;
y = e sinθ ;

aA@h_, g_, x_, y_D := x +
è++++++++++++++++++++

h2 − y2 ;

bB@h_, g_, x_, y_D := y +
è++++++++++++++++++++

g2 − x2 ;

H∗ Compute values for the pair: 8 aA , bB < ∗L
a = aA@h, g, x, yD ;
b = bB@h, g, x, yD ;
8 a , b < êê N

869.7896 , 48.4813 <

H∗ Hence: a = Width = 69.7896 and b = Height = 48.4813
Now, List coordinates x and y for Point D Hx,yL . ∗L

8x, y<

820., 15.<

H∗ So, ... Point D has coordinates: D H20 , 15L ∗L

H∗ Now, ... Display Computed Values for: 8 a, b, x , y, f <. ∗L

8a, b, x, y, f< êê N

869.7896 , 48.4813 , 20., 15., 60.<

BLDrect_ex01a.nb 1Computational Example: 01
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H∗ Distance Formula Verification for: g, h and f ∗L

9 g −
"+++++++++++++++++++++++++++++++++Hb − yL2 + x2 , h −

"+++++++++++++++++++++++++++++++++Ha − xL2 + y2 , f −
"+++++++++++++++++++++++++++++++++++++++++++++++Hb − yL2 + Ha − xL2 = êê N

80., 0., 0.<

H∗ Values 80,0,0< confirm the Formulated Descriptions for
8 x , y , b < do create the correct Calculated Values
which do compute the correct measures for the
BLD−segments: g, h, e, and f and for the Height = b ∗L

BLDrect_ex01a.nb 2
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H∗ This COMPUTATIONAL DEVELOPMENT illustrates how to compute
the HEIGHT of a BLD−rectangle from GIVEN DATA which
includes: e, g, h and the Width−Value = a .

============================================================ ∗L

H∗ Given: e, g, h and declared width−value = a ∗L

Clear@bB, xD, yD, a, b, e, g, h, x, yD
e = 25 ; H∗ e = OD by declaration ∗L
g = 39 ;
h = 52 ;

f =
è++++++++++++++++++++++++++++

g2 + h2 − e2 ; H∗ The FOURTH BLD−segment from D to C . ∗L

H∗ Calculate Possible Width and Height Ranges from the
given e, g and h values;
Possible Ranges for: 8 width−range = a , height−range = b < ∗L

9 9 è+++++++++++++++++
h2 − e2 , h + e = , 9è+++++++++++++++++g2 − e2 , g + e = = êê N

8845.5961 , 77.<, 829.9333 , 64.<<

a = 70; H∗ Declared a−Value is possible Rectangle Width−Value. ∗L

H∗ Break−Point Coordinate Functions : D Hx,yL, where x2+y2=e2 ∗L
xD@e_, g_, h_D := H 1êH2 aL L∗Ha2 + e2 − h2L
yD@e_, x_D :=

è+++++++++++++++++
e2 − x2

H∗ Functions for y−axis Height Point: B H0,bL ∗L
bB@x_, y_, g_D := y +

è++++++++++++++++++
g2 − x2

H∗ Calculate: x− , y−Values for D Hx,yL; and b−Value for B H0,bL ∗L
x = xD@e, g, hD ;
y = yD@e, xD ;
b = bB@ x, y , g D ;

H∗ Display Computed Values for: 8 x, y, a , b, f < ∗L

8x, y, a, b, f< êê N

820.15 , 14.7979 , 70., 48.1892 , 60.<

BLDrect_ex02a.nb 1Computational Example: 02
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H∗ Distance Formula Verification for: g, h and f ∗L

9 g −
"+++++++++++++++++++++++++++++++++Hb − yL2 + x2 , h −

"+++++++++++++++++++++++++++++++++Ha − xL2 + y2 , f −
"+++++++++++++++++++++++++++++++++++++++++++++++Hb − yL2 + Ha − xL2 = êê N

80, 0, 0<

H∗ Values 80,0,0< confirm the Formulated Descriptions for
8 x , y , b < do create the correct Calculated Values
which do compute the correct measures for the
BLD−segments: g, h, e, and f and for the Height = b ∗L

BLDrect_ex02a.nb 2
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H∗ This COMPUTATIONAL DEVELOPMENT illustrates how to determine
if There Exists a BLD−Quadrature which will admit AND accommodate

GIVEN DATA Measures of: e , g and h .
=========================================================

Given: Data Measures for: e, g and h .
SYMBOLS: aA,bB,zZ,xD,yD are FUNCTIONS; a,b,e,g,h,θ are REALS. ∗L

Clear@aA, bB, zZ, xD, yD, a, b, e, g , h , θD
e = 25 ; H∗ e = OD by declaration ∗L
g = 39 ;
h = 52 ;

f =
è++++++++++++++++++++++++++++

g2 + h2 − e2 ; H∗ The FOURTH BLD−segment from D to C . ∗L

H∗ Referring to Item H5.3L of Article_ 05, the function a HθL
is NOW DENOTED by aA@θD in order to distinguish the
PARAMETER "a" from the FUNCTION NAME "a " , etc. ; Now,...

Examine HOW the Data affects the behavior of the strictly
increasing function: zZ HθL = bB HθL − aA HθL ;
Note that here: zZ H0L < g − h − e < 0 ; and, also
zZ H π

2
L > g − h + e > 0 ; hence by Item H6.5L, this Family

of BLD Rectangles does have a BLD Quadrature. Hence,
now proceed to Solve the equation: zZ HθL = 0 for θ .
Formulating the Mathematica Code, ... ∗L

aA@θ_D := e Cos@θD +
"++++++++++++++++++++++++++++++++++++++++++++++++

h2 − H e Sin@θD L2 ;

bB@θ_D := e Sin@θD +
"++++++++++++++++++++++++++++++++++++++++++++++++

g2 − H e Cos@θD L2 ;

zZ@θ_D := bB@θD − aA@θD ;
Solve@ zZ@θD == 0 , θ D êê N

88θ → 1.07248 <, 8θ → −3.02176 <<

H∗ Use θ = 1.07278 ε@0, π
2
D to Compute: a = aA@θD and b= bB@θD ∗L

θ = 1.07248 ;
a = aA@θD ;
b = bB@θD ;
q = a ;
8 a , b , q < êê N

859.0843 , 59.0842 , 59.0843 <

H∗ Thus, a = 59.0843 = b, so: Quadrature edge = q = 59.0843 ∗L
H∗ Now, Formulate functions xD and yD to compute D Hx,yL ∗L
xD@e_, θ_D := e Cos@θD
yD@e_, θ_D := e Sin@θD
H∗ Compute the values 8 xD , yD < for D Hx,yL ∗L
x = xD@e, θD ;
y = yD@e, θD ;
8x, y<

811.9487 , 21.9597 <

1BLDrect_ex03a.nb Computational Example: 03   
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H∗ Hence ... the Coordinates of D are:
x = 11.9487 and y = 21.9597 .
Now list 8a, b, q, x, y< ∗L

8a, b, q, x, y<

859.0843 , 59.0842 , 59.0843 , 11.9487 , 21.9597 <

H∗ Distance Formula Verification for: g, h and f ∗L

9 g −
"+++++++++++++++++++++++++++++++++Hb − yL2 + x2 , h −

"+++++++++++++++++++++++++++++++++Ha − xL2 + y2 , f −
"+++++++++++++++++++++++++++++++++++++++++++++++Hb − yL2 + Ha − xL2 = êê N

80., 0., 1.42109 × 10−14<

H∗ Values 80, 0, 1.421×10−14< confirm the Formulated Descriptions for
8a, b, q, x, y< do create the correct Calculated Values

which do compute the correct measures for the
BLD−segments: g, h, e, and f and for the Edge Length = q ∗L
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