(Simple) BROKEN-LINE Diagonals of Rectangles

(Developed, Composed & Typeset by: J B Barksdale Jr / 05-26-15)

Article 00.: Introduction. Imagine the image of a rectangle (say, in R?) with the
diagonals drawn as (simple) broken-lines which SHARE a SINGLE, COMMON break-
point, say D (see Figure_01, below). Now, suppose the expression (e + f) denotes the
sum of the segment lengths of the first broken-line diagonal; and that the expression

(g + h) denotes the sum of the segment lengths of the other broken-line diagonal. The
purpose of this developmental excursion is to demonstrate a rather curious and novel
attribute of such broken-line diagonals; namely, regarding such broken-line diagonal
segments, it always follows that

(0.1) €%+ f?2 = ¢* + h?, (for arbitrary Rectangle R and arbitrary Point D) .

From the above description, one would imagine the break-point, D, through which the
broken-line diagonals pass, to be an interior point of the rectangle. However, the
following developments establish that the point, D, can actually be an arbitrary point of
R? (regarding the above, given details); hence, the point, D, can be an interior point,
exterior point, or edge point of the given rectangle.

Article 01.: Equality & Sums of Squared Segments. Figure 01, below, visually
illustrates the descriptions of an arbitrary rectangle (in R?), and (simple) broken-line diagonals
which pass through a single arbitrary break-point, D, as presented in Article_00, above.
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Figure_01: Rectangle with broken-line diagonals

By appealing to the distance formula (for R?), the following formulations regarding the broken-
line diagonal segment lengths are clearly rendered.

(11) e =22+ y* and f% = (z—a)’ + (y—b)>.

Also,

(12) ¢* = 22+ (y—b)* and h* = (z—a)’ +9° .

Now, by adding the pairs of equations in each of Items (1.1) and (1.2), it follows that
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(1.3)

4 [ = a2 + (y=b)?* + [P + (z—a)?) = ¢+ 17,

The preceding developments establish the following

(1.4)

Theorem 1. Given a rectangle, R = { (ka, Ab) ‘ K, A €1[0,1] } C R?

with horizontal edges = a units and with vertical edges = b units , suppose that
arbitrary internal broken-line diagonal-segment length pairs have measures of
e and f for a first broken-line diagonal, and value measures of g and 4 for the
other broken-line diagonal. Then,

‘62+f2292+h2‘.

Proof: The development of Items (1.1) — (1.3), and reference to Figure_01,
above, establishes the conclusion as a consequence of the given hypothesis. [

COROLLARY (1-A). Item (1.4) is a consequence of the hypothesis of
Theorem 1 for an arbitrary break-point, D € R2.

Proof: Although Figure_01 depicts the break-point restriction, D € R;
actually, the development of Items (1.1) — (1.3) remains unaltered for
an arbitrary point, D € (R*\'R) as well. Therefore, the conclusion

of Theorem 1 remains intact for any point D € R?. O

Article 02.: Broken-line Diagonal Results via Vector Methods. A vector

diagram version of Figure-01 is now presented via Figure_02, below. Consider the rectangle
R={(ka +2b) ‘ k,A€[0,1],a L b } andagiven arbitrary point D which has
position vector & . Now, with given vector diagram references ¥ , g and h , we define

(2.1)

|
a
B(0,5), _ Cla,b)
L~
b b
g W
> X
0(0,0) E ) A(s,0)
Figure_02: Vector Diagram with broken-line diagonal vectors

i) T =a +b —¢ (i) g =¢ -b (i) h =a —-¢

From a LG (so thata - b = 0) and the equalities appearing in Item (2.1), we have
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22) §0h = (¢ -B)(7 -€)=¢ @ -¢ -€ -b -a+b -¢

— e -(@+b —¢) =¢e -T.
Thus, the vector diagram (Figure_02) together with Items (2.1) and (2.2) clearly establish

Theorem 2. Givenarectangle R = { (k@ +Ab )|x,Ae[0,1],a LB } CcR?

and arbitrary point D € R? with position vector e, then the broken-line

diagonal-segment vectors e and T , 0, h asdefined in Item (2.1) satisfy the
equality,

(2.3) e -f =g -h

Further examination of Item (2.1) and the vector diagram in Figure_02 effectively render

Theorem 3. Given the hypothesis of Theorem 2, Item (2.1) and the vector diagram
in Figure_02, it follows that

(2.4) IeP+IFTIRP=I1TIP+Ih|P < e - T =g -h

Proof: Suppose the hypothesis; now, inspect Figure_02 , and Item (2.1), to conclude that
25) € +f =a +b anda —-b =7 +h.
Since a - b = 0, we can conclude that,

26) @ +DI>=lIZIP+ID|* +2@ -D)
== P +IDIP-2@ ‘B)==a -Db |

Now, from Items (2.5) and (2.6) we have
@n e +TIP=la +bIP=l@ -DIP =g +h |
Item (2.7) now yields

28) e +TIP=lIe P +ITIP+2@ -T)
=IgIP+IRIP+2(@ -F)=1Ig +h |

Item (2.8) then renders
@9 (el +ITI) - ATE+ITI)] = 2] - T)-@ 7))

The biconditional conclusion of Item (2.4) is now thus asserted by Item (2.9)



Theorem 4. Givenarectangle R = { (k@ +Ab )| x,Ae[0,1],a LB} CR?

and arbitrary point D € R? with position vector e, then the broken-line
diagonal-segment vectors € and T , T, h asdefined in Item (2.1) satisfy the
equality,

210) [Ie P +IF I =1IgI*+Ih P

Proof: Suppose the hypothesis and then apply Theorems 2 and 3, above. [1

Article 03.: Extensions to Euclidean IR" Spaces. The above displayed vector
method developments clearly assert that the above Theorems & Results rely only on the
vector definitions, relationships, and inner product properties. In order to illustrate this
declaration for, say R?, consider vectors specified as in Figure_02, and given by

(31 @ = (a,0,0); B =(0,b,0); T =(z,y,2).
Then, by applying the definitions of T .0, h asdisplayed in Item (2.1), it follows that

(32) T\ = ((Z—.CC, b_y> —Z) ) U\ = (33, y_b7 Z); and F\ = (CL—SIZ, -, _Z) .

Appealing to the notations and inner product definitions for R? , Items (2.3) and (2.10)
can be established by direct calculation. Hence, by applying these vector presentations for R?,

(B3) e T = (z,y,2) (a—=, b—y, —2) = az—a> +by—1? —2>

—N

= az—2’ —y’+by —2* = (2,y=b,2)- (a—x,—y,—2) =g -h.

Also, note that,
B4) TP +ITIP = [2*+y?+22] + [(a—2)+(b—y)*+27]
= [2%+(y=b)2+2% + [(a—2)*+y*+22] = TP + 17 |2.

Reviewing this present development, observe that the vector references reside in R?; thus, the
line segment (vector shafts) constitute the rectangle edges and the polyhedral edges connecting
the given point, D, to the rectangle's vertices. Hence, imagine point D of Figure_01 as a point
in R3which is elevated out of the xy-plane by having, say, a positive z-coordinate. Then, the
opposite, broken-line diagonal red segments, e and f, and the opposite, broken-line green
segments, g and h, of Figure_01 are actually opposite (non-adjacent) polyhedral edges.
Curiously, however, Item (3.4), again, establishes that the lengths of such edges satisfy the
equality therein presented.




Article 04.: Generalizations to Inner Product Spaces. Although extensions of the
preceding developments to an arbitrary inner product space are somewhat artificial without the
spatial notions of the supporting geometry, the preceding theorem results do remain intact by
supplying the appropriate vector notions and relationships to replace that geometric support.
Hence, let (V, ® ) denote an inner product space. Note that Figure_02 of a preceding Article
illustrates the following geometric aspects of that displayed rectangle for the given orthogonal
vectors @ and b ,

4.1 vectors @ and b are the edge vectors of the rectangle R.
(i) (& +Db) and (& —b) are the diagonal vectors of the rectangle R.
(iii)  vector & is the position vector of the given arbitrary break-point, D.
(iv) vectors € ,F , g and h asdefined by Item (2.1) illustrate the broken-line
diagonal-segment vectors in the vector diagram so that:
€ +f =a +b (diagfrom0)and § + h = & — b (diagfromB).

Observe that by defining and implementing the notions and relationships of the expressions
described in Items (2.1) and (4.1), the state of all developments displayed in Article_02 remain
complete, unaffected and in force. This enforced state follows, of course, because the referenced
vectors, definitions and relationships are preserved and unchanged in the developmental details
of Article_02. Hence, by appealing to notions and relationships here discussed, we see a rather
abstracted formulation of the above results which is stated below and presented as

Theorem 5. Givenarectangle R = {(x@ +Ab )| x,A€[0,1],a LB} CV,

an arbitrary-point vector e €V, and broken-line diagonal-segment vectors e, T,
T ,and h asdefined in Item (2.1), it follows that

@2 [ElP+1F 1P =1gI+1h |

Proof: Suppose the hypothesis; now, simply appeal to the given definitions and
relationships of the vectors, and the implementation of the inner product (®)
properties; then, mimic the developmental details appearing in Article_02. [

Article 05.:  Metric Formulations. In the presence of Figure_03 (next page), metric
relationships and formulations among the broken-line diagonal segment lengths, the rectangle
edge lengths, the angle ¢, and the coordinate values of the break-point D, as modeled in
Figure_03, can be formulated. In the preceding Articles, it was established that given an
arbitrary rectangle and an artitrary point, D(x, y), within such rectangle, the Broken-Line
Diagonal segment lengths: e, f, gand h satisfy the BLD equality: e? + f> = ¢*> + h>.
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Figure_03: Rectangle with Broken-Line Diagonals

Clearly, given the presence of the BLD equality, only three of the BLD segments need be given
in order to determine the fourth such segment. Hence, we proceed to investigate the modeling
developments resulting from being given, say: e, g and h. In the spirit of convenience and
simplicity of formulation, one vertex of the given, aribitrary rectangle is placed at the Origin.
Also, this modeling development locates the shortest BLD segment at the origin. Further,

this modeling supposes that the BLD break-point lies inside the rectangle. With these modeling
details specified, proceed to join BLD segments: gand A to the Break-Point, D; then, rotate: h
and g about point D so that segment h contacts the x-axis, and segment g contacts the y-axis.
Label those contact points: A(a,0) and B(0,b). The resulting point C'(a,b) completes the
fourth vertex of a rectangle whose broken-line diagonal segments: e, f, g, h satisfy the BLD
equality.

In order to establish metric relationships among: e, g, h,a, b, z,y and 0; from Figure_03,
observe that,

(5.11) | (A):a = = + (a—x) = x4+ \/h% — >

B):b =y +(b-y) = y+ g —a?

Note that alternative presentations of the equalities in Item (5.11) can be formualted by
inspecting: (a — z)? = h?—y* and (b — y)? = g>—2%; now, recalling this model declares
x? 4+ 9> = €2, it follow that,

T2 _ 2 b2+ o2 _ o2
512) | (X 2="TC"" and (v y= 1 C 9
2a 2b

By viewing Figure_03, observe that,

(52) [(A): z=e-cosf and (B): y=e-sinf |.

Then, applying Item (5.2) to the equations displayed in Item (5.11), it follows that,

(5.3) | (A):a(f) =e-cosf+ \/h%—e?sinZ 0 H (B):b(0) = e-sin® + +/g> — e*cos? 0 |.




Since this model supposes that the point D lies inside the rectangle, then the e-radius angle 6 lies
in the firstquadrant; hence, 6 € [0, 5]. Observe that the e-radius is hinge-linked to the
BLD-segments, g and h. Also, by the model description, g and h remain in contact with their
respective axes; thus, as the e-radius pivots counter-clockwise from ¢ = 0 to ¢ = 7, the points
A and B track the axes and (consequently) graphically illustrate all of the BLD rectangles which
satisfy the BLD equality: e + f> = ¢* + h2.

By implementing the formulated relationships of the modeling framework presented in

Items (5.11), the dimensions: width = a and height = b, of an accommodating rectangle can
be determined from the given metrics data: e, gand h, with z and y such that: z? + 3? = 2.
Hence, for each first quadrant point D(z, y) on the circle: x? + y* = €2, there exist a rectangle
satisfying the BLD equality for the given data metric values: e, g and h. Note that the value f
is specified by the BLD equality: f? = ¢*> + h? — 2.

Alternatively, by declaring a #-value, the coordinates of an interior point D(x,y) and the
accommodating rectangle dimensions are both rendered by applying Items (5.2) and (5.3).

Article 06.: BLD-Quadratures. This Article_06 is devoted to exploring the notion of
deciding the existence of a Square, and/or the edge length of a Square , and/or declaring break-
point coordinates associated with a Square which satisfies the BLD equality for given broken-
line diagonal segment lengths: e, g and . A Square achieved by contiuously altering the
dimensions of an accommodating rectangle (by increasing the 6-angle) until it becomes an
accommodating Square is hereby declared to be a BLD-Quadrature (Broken-Line Diagonal
Quadrature). (Note: Here, Quadrature DOES NOT refer to an integral nor integration method).
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Figure_03: Rectangle with Broken-Line Diagonals

Inspecting Figure_03 and Item (5.3), it is noted that a(¢) decreases and b(#) increases
forincreasing 0 € [0, 5]. Hence,

(6.1) 2(0) = 0(0) —a(0) ,

is a strictly increasing function over [0, 5]. Application of the Intermediate Value Theorem

appears to render the following conclusions:
6.2) (i) 2(0) >0 or z(3) <0 = NO BLD-Quadratures exist.

(i)  2(0) <0and z(35) >0 = aunique BLD-Quadrature does exist.
Application of the formulations in Item (5.3) render,
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6.3) (i) 2(0) = /> — €2 —(e+h) and (i) 2(Z) = (e+g)— Vh2—e2.
From Item (6.3), it now follows that

(6.4) (i) 2(0)<(g—h—e) and (i) 2(5)> (9—h+e).

Thus, if the relative values for the BLD-segments: e, g, h are such that

65) (i) (9—h—€e)<0 and (i) (g—h+e)>0,

then, it appears that: a unique BLD-Quadrature does exist for that family of BLD rectangles.
Similary: [e? + (e+h)? < ¢* or h* > € + (e+g)?] = NO BLD-Quadratures exist.
A Vertex Graph Plot which includes a Quadrature occurrence is presented on the next page.

Article 07.: Computational Illustrations. In the presence of Figure 03, imagine that
the e-radius rotates so that the §-angle increases from 0 to 5. Given numerical values for: e, g
and h, an animated illustration of the family of BLD rectangles thus created by such rotating
motion can be mentally visualized. By appealing to the formulations presented in the preceding
articles of this composition, all of the metrics of such family members can be numerically
computed. The computational examples regarding this composition are hereto attached among
the last pages of this composition.

Computational Example: 01. Givendata: e = 25; g = 39; h = 52.

For these data values, there are infinitely many BLD rectangles. However,

for a specified point D, there will exist a unique BLD rectangle for this data.

So, ... Suppose 6 is GIVEN by declaring that: cos # = .8000 .

This example presents the computational details to determine: (i) point D(zx, y);
and (ii) a(@) = rectangle width & b(#) = rectangle height.

Computational Example: 02. Given data: e = 25; g = 39; h = 52;
also, ... the BLD rectangle has a Given Width of: a = 70.
DETERMINE: (i) Does such BLD rectangle actually exist?

(i) If so, ... Compute point D(zx,y); (iii) If so, ... Compute Height = b.

Computational Example: 03. Given data: e = 25; g = 39; h = 52.
(i) Does this data support the Existence of a BLD Quadrature?
(ii) Ifso, ... DETERMINE: the Edge Length = ¢ of such BLD Quadrature .

Article 08.: Concluding Remarks. In the presence of the geometric visualization
of a rectangle as imagined in R?, or R?, and an imagined arbitrary internal or external
given point, D, Theorem 5 harbors a somewhat curious, mystic and novel tone. However,
when stated in terms of a general inner product space (V, ® ), then the conclusion is simply
a result from the exercise of implementing vector definitions and the properties of an inner
product, ® . Hence, the generalization does not appear to have any hidden surprises and/or
curious aspects.




BLDvertex_plot mcnb  BLD Vertex Graph Plot with Quadrature Vertex 1

(» Vertex Plots of Point C (a,b) as the e-radius #F
rotates and increases from: t = 0 to t = gu
Note that a BLD Quadrature has a Vertex at
at Point C for: a = 6.0715 = b . Hence,
this Data Set, the BLD Quadrature has
Edge Length = q = 6.0715

B C(qu)

Clear[a, b, z, V]

a[t_] := eCos[t] +\ h? - e2Sin[t]?
b[t_] :=eSin[t] + /g2 - e2 Cos[t]? gt

z[t_ ] :=b[t] -a[t]

e =3
h=5 % i :
g =4

Solve[z[t] ==0, t] //N
{{t -» 0.9609941786578037437}, {t » -2.904778227252761267}}
v[t_]={a[t], b[t]}

v[0.960994]

{6.07149698285807382", 6.07149585414752657 "}

In this example, the variable "t" is used instead of the symbol "theta." Note that from the
Given Data: 8 =e + h (is the largest value of a BLD rectangle Width att =0; and,
7 =e +g (is the largest value of a BLD rectangle Height at t = Pi/2 .

The BLD Quadrature Vertex for this Data Set occurs at: t =0.961 ; (angle degree-measure
of about 55 degrees).

Referencing the above Formulations and Computations, note that:
(i)  the vertex function v[t] calculates coordinates of Point C(a,b);
(ii)  z[t*] =0 declares: Rectangle Width = a[t*] = b[t*] = Rectangle Height ;
(iii) Hence, the BLD Quadrature Edge Length = g ; where: a[t*] = g =b[t*].




sLrect exotany  Computational Example: 01 1

(* This COMPUTATIONAL DEVELOPMENT illustrates how to compute
the: WIDTH = a ; HEIGHT = b ; AND POINT D (x,y) of a
BLD-rectangle from GIVEN DATA which includes:

e, g, h and the e-radius angle = 6 .

Y
(* Given: e, g, h and specify @ by: cose = 0.8000
Cla,b
_ B(0,b) (a.b)
Clear[aA, bB, a, b, e, g, h, X, y, cose, sine ] ;
e= 25 ; (x e = 0D by declaration =) g
g = 39 ;
h= 52 ; P Dixy)
5 a h
f = vg2+h2-e2 ; (+ The FOURTH BLD-segment from D to C . 3\
0(0,0) A(a,0)

(» Calculate a (6) and b (6) from: cose = 0.8000 ;

Hence: sine = 0.6000 = 1-(0.8)? . Formulate
values for x and y to compute Width = a and Height = b x)

Clear[aA, bB, x, y, cose, sine]
cose = 0.8000 ;
sine 0.6000 ;

X = €C0S6 ;

y = esine ;

aAlh_, g ,x_,y 1l:
bB[h_,0_ ,x ,y ]:

X+ Vh2 - y2

y+ Vg2 -2 ;

(» Compute values for the pair: { aA , bB } *)
a = aAfh, g, x, y] ;

b = bB[h, g, X, y] ;

{a, b} //N

(69.7896 , 48.4813 }

(* Hence: a = Width = 69.7896 and b = Height = 48.4813

Now, List coordinates x and y for Point D (X,y) - *)
{x, ¥}
{20., 15.}
(* So, ... Point D has coordinates: D (20 , 15) *)
(» Now, ... Display Computed Values for: { a, b, x , y, £ }. %)

{a, b, x,y, f} // N

(69.7896 , 48.4813, 20., 15., 60. )

-10 -



BLDrect_ex01

a.nb

(*

{9-

{0.,

(*

Distance Formula Verification for: g, h and f *)
'\/(b—y)2+x2 , h-\/(a—x)2+y2 ,f—\/(b—y)2+(a—x)2 } 77N
0.,0.}

Values {0,0,0} confirm the Formulated Descriptions for
{X ,y , b} do create the correct Calculated Values
which do compute the correct measures for the

BLD-segments: g, h, e, and ¥ and for the Height = b *)
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sLDrect exozand  Computational Example: 02 1

(* This COMPUTATIONAL DEVELOPMENT illustrates how to compute
the HEIGHT of a BLD-rectangle from GIVEN DATA which
includes: e, g, h and the Width-Value = a .

(* Given: e, g, h and declared width-value = a v
Cla,b

Clear[bB, xD, yD, a, b, e, g, h, X, y] B(0,b) (@.p]
e= 25 ; (+ e = 0D by declaration *) g f
g = 39 ;
h= 52 ; o D{xy)
f = 4/gZ+h2-e2 ; (x The FOURTH BLD-segment from D to C . ee\ h

0(0,0) A(a,0)

(» Calculate Possible Width and Height Ranges from the
given e, g and h values;
Possible Ranges for: { width-range = a , height-range = b } *)

{{Vh-e?, hse } , {Vg2-e? , g+e} }//N

({45.5961, 77.}, {29.9333, 64.}}

a = 70; (x Declared a-Value is possible Rectangle Width-Value. =)

(+ Break-Point Coordinate Functions : D (Xx,y), where x2+y?=e? )
xD[e_, 9 ,h ]1:= (1/(2a)) * (a%2+e?-h?)

yD[e_, x ] = Ve2-x2

(» Functions for y-axis Height Point: B (0,b) *)

bB[X ,VY ,0 1]:=y+Vg2-x2

(» Calculate: x- , y-Values for D (x,y); and b-Value for B (0,b) =)
x=xD[e, g, h] ;

y=yD[e, x] ;

b=bB[ X, VY, g]:;

(* Display Computed Values for: { x, y, a , b, ¥} *)

{x,y,a,b, f} // N

(20.15, 14.7979 , 70., 48.1892 , 60. }
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BLDrect_ex02a.nb

(* Distance Formula Verification for: g, h and f *)
{g-\“b-yﬁ+x2, h- (a-x)2+y2 ,f—V(b—w2+(a—m2 } 77N
{0, 0, 0}

(» Values {0,0,0} confirm the Formulated Descriptions for
{X ,y , b} do create the correct Calculated Values
which do compute the correct measures for the
BLD-segments: g, h, e, and ¥ and for the Height = b *)

-13 -



BLDrect exo3an  COmputational Example: 03

(Revised Copy)

(* This COMPUTATIONAL DEVELOPMENT illustrates how to determine

if There Exists a BLD-Quadrature which will admit AND accommodate

GIVEN DATA Measures of: e , g and h .

Given: Data Measures for: e, g and h .
SYMBOLS: aA,bB,zZ,xD,yD are FUNCTIONS; a,b,e,g,h,6e are REALS. «)
Clear[aA, bB, zZ, xD, yD, a, b, e, g, h, o]

e= 25 ; (* e = 0D by declaration =)
g= 39 ;
h= 52 ;
T = \/gZ +h2-e2 ; (» The FOURTH BLD-segment from D to C . *)
(» Referring to Item (5.3) of Article_05, the function a (e)
is NOW DENOTED by aA[e] in order to distinguish the B(0,b)

PARAMETER *"a' from the FUNCTION NAME "a'™ , etc. ; Now,..
Examine HOW the Data affects the behavior of the strictly
increasing function: zZ (6) = bB (6) - aA (e) ;

Note that here: zZ (0) < g - h - e < 0 ; and, also

2Z (%) >9g - h+e >0 ; hence by Item (6.5), this Family

of BLD Rectangles does have a BLD Quadrature. Hence, 0(0,0)

now proceed to Solve the equation: zZ (6) = 0 for e .

Formulating the Mathematica Code, ... *)
aA[e_] := eCos[e] + \/h2 - (eSin[e])?

bB[e_] := eSin[6] + \/92 - (eCos[e])? ;
zZ[e_] := bB[e] - aA[e] ;
Solve[ zZ[e] ==0, 6] //N

({6 51.07248}, {6 > -3.02176 }}

(* Use © = 1.07278€ [0, =] to Compute: a = aA[e] and b= bB[e] =*)

6 = 1.07248 ;
a = aA[e] ;
b = bB[e] ;
qg=a ;
{a, b, g} //N

{59.0843, 59.0842, 59.0843 }

(* Thus, a = 59.0843 = b, so: Quadrature edge = q = 59.0843 «x)
(* Now, Formulate functions xD and yD to compute D (X,Y) *)
xD[e_, 6 ] :=e Cos[e]

yD[e_, 6_] := eSin[e]

(» Compute the values { xD , yD } for D (X,y) *)
X =XxD[e, 6] ;

y = yD[e, o] ;

{x, y}

(11.9487 , 21.9597 }
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BLDrect_ex03a.nb

(* Hence ... the Coordinates of D are:

X = 11.9487 and y = 21.9597 .

Now list {a, b, g, X, y} *)
{a, b, g, x, y}

{59.0843, 59.0842, 59.0843, 11.9487 , 21.9597 }

(# Distance Formula Verification for: g, h and f *)

{g—'\/(b—y)2+xz , h-a/(@a-x)%+y2 ,f—'\/(b—y)2+(a—x)2 }7/N

{0., 0., 1.42109 x 10}

(» Values {0, 0, 1.421x10**} confirm the Formulated Descriptions for
{a, b, q, X, y} do create the correct Calculated Values
which do compute the correct measures for the
BLD-segments: g, h, e, and ¥ and for the Edge Length = q *)
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