Lemmas on Polynomial Operators

(From: J B Barksdale, Jr || Profiles \& Perspectives of p-Biomial Sequences) (06/25/2018)

Introduction. Consider the following developmental details which render the below displayed Lemmas regarding Polynomial (differential) Operators of Order n defined on subspaces, $\mathbb{P}^{n} \subset \mathbb{P}^{\infty}$, of the vector space of polynomials over the real field. In the discussions which follow, $\mathbb{P}^{n}=\{$ subspace of real polynomials of degree $\leq n\}$.

LEMMA \#01. Given a $n^{\text {th }}$-order $\left(\lambda_{n} \neq 0\right)$, unit degree decreasing $\left(\lambda_{1} \neq 0\right)$ polynomial (differential) operator L defined by: $L=L(D)=\sum_{k=1}^{n} \lambda_{k} D^{k}$, then there exists a $m^{\text {th }}$-order $\left(\mu_{m} \neq 0\right)$ degree preservinging $\left(\mu_{0} \neq 0\right)$ polynomial operator, $Q(D)=\sum_{j=0}^{m} \mu_{j} D^{j}$, such that: $(L Q) p=D p$ for each polynomial $p \in \mathbb{P}^{m+1}$.

Proof of LEMMA \#01 . Let such $n^{\text {th }}$ order Operator L, as above, be given. Noting the order of ascending powers of $L(D)$, repeatedly apply steps of the Division Algorithm as described, detailed and presented in Item (1.1), below. Note that the DA application is continued until a $\mu_{m} \neq 0$ is created, where $m=\inf (M)$, and $M=\left\{k \in \mathbb{N} \mid k \geq n \wedge \mu_{k} \neq 0\right\}$. Then,

$$
\begin{equation*}
\frac{D}{L}=\frac{D}{L(D)}=\frac{D}{\sum_{k=1}^{n} \lambda_{k} D^{k}}=\sum_{j=0}^{m} \mu_{j} D^{j}+\frac{R(D)}{L(D)}=Q(D)+\frac{R}{L} \tag{1.1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
D=L Q+R(D) \tag{1.2}
\end{equation*}
$$

where $R(D)=D^{m+2} \sigma(D)$, and σ denotes a polynomial of degree $(n-2)$. Note the remainder, $R(D)$, does have minimal order ($m+2$). Hence, from the above details, the Division Algorithm was executed until quotient Q did achieve order m, and so that the remainder R would have minimal order $(m+2)$. Therefore, $p \in \mathbb{P}^{m+1}$ implies

$$
\begin{equation*}
D p=(L Q+R) p=(L Q+R) p=(L Q) p, \quad \text { since } \mathbb{P}^{m+1} \subset \operatorname{Ker}(R) \tag{1.3}
\end{equation*}
$$

Lemmas on Polynomial Operators

(From: J B Barksdale, Jr || Profiles \& Perspectives of p-Biomial Sequences) (06/25/2018)

LEMMA \#02. Given a $m^{\text {th }}$-order $\left(\mu_{m} \neq 0\right)$, degree preserving $\left(\mu_{0} \neq 0\right)$ polynomial (differential) operator Q defined by: $Q=Q(D)=\sum_{j=0}^{m} \mu_{j} D^{j}$, then there exists a $n^{\text {th }}$-order $\left(\lambda_{n} \neq 0\right)$, unit degree decreasing $\left(\lambda_{1} \neq 0\right)$ polynomial operator L defined by: $L=L(D)=\sum_{k=1}^{n} \lambda_{k} D^{k}$ such that: $(L Q) p=D p$ for each polynomial $p \in \mathbb{P}^{n}$.

Proof of LEMMA \#02 . Let such $m^{\text {th }}$ order Operator Q, as above, be given. Noting the order of ascending powers of $Q(D)$, repeatedly apply steps of the Division Algorithm as described, detailed and presented in Item (2.1), below. Note that the DA application is continued until a $\lambda_{n} \neq 0$ is created, where $n=\inf (N)$, and $N=\left\{k \in \mathbb{N} \mid k \geq m \wedge \lambda_{k} \neq 0\right\}$. Then,

$$
\begin{equation*}
\frac{D}{Q}=\frac{D}{Q(D)}=\frac{D}{\sum_{j=0}^{m} \mu_{j} D^{j}}=\sum_{k=1}^{n} \lambda_{k} D^{k}+\frac{R(D)}{Q(D)}=L(D)+\frac{R}{Q} \tag{2.1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
D=Q L+R(D) \tag{2.2}
\end{equation*}
$$

where $R(D)=D^{n+1} \sigma(D)$, and σ denotes a polynomial of degree ($m-1$). Note the remainder, $R(D)$, does have minimal order ($n+1$). Hence, from the above details, the Division Algorithm was executed until quotient L did achieve order n, and so that the remainder R would have minimal order ($n+1$). Therefore, $p \in \mathbb{P}^{n}$ implies

$$
\begin{equation*}
D p=(Q L+R) p=(Q L) p, \quad \text { since } \mathbb{P}^{n} \subset \operatorname{Ker}(R) \tag{2.3}
\end{equation*}
$$

Lemmas on Polynomial Operators

(From: J B Barksdale, Jr || Profiles \& Perspectives of p-Biomial Sequences) (06/25/2018)

LEMMA \#03. Given a $n^{\text {th }}$-order $\left(\lambda_{n} \neq 0\right)$, unit degree decreasing $\left(\lambda_{1} \neq 0\right)$ polynomial (differential) operator L defined by: $L=L(D)=\sum_{k=1}^{n} \lambda_{k} D^{k}$, then: $\mathbb{P}^{m}=L\left(\mathbb{P}^{m+1}\right)$ for each finite subspace $\mathbb{P}^{m} \subset \mathbb{P}^{\infty}$.

Proof of LEMMA \#03 . Let such $n^{\text {th }}$ order Operator L, as above, be given. Then: $p \in \mathbb{P}^{m+1} \Longrightarrow(L p) \in \mathbb{P}^{m}$. Hence, $L\left(\mathbb{P}^{m+1}\right) \subseteq \mathbb{P}^{m}$. Now, let $\mathbb{B}=\left\{\beta_{k}\right\}_{k=0}^{k=m+1}$ denote a basis for \mathbb{P}^{m+1}. Since L is a u.d.d operator, then $\mathbb{S}=\left\{L \beta_{k} \mid 1 \leq k \leq m+1\right\}$ contains one polynomial of each degree $d, 0 \leq d \leq m$. Consequently, \mathbb{S} is a basis for \mathbb{P}^{m}. Hence, $p \in \mathbb{P}^{m} \Longrightarrow p=\sum_{k=1}^{m+1} c_{k}\left(L \beta_{k}\right)=\sum_{k=1}^{m+1} L\left(c_{k} \beta_{k}\right)=L\left(\sum_{k=1}^{m+1} c_{k} \beta_{k}\right)$, where $\sum_{k=1}^{m+1} c_{k} \beta_{k}=f \in \mathbb{P}^{m+1}$. Thus, $p \in \mathbb{P}^{m} \Longrightarrow \exists f \in \mathbb{P}^{m+1}$. э. $p=L f \in L\left(\mathbb{P}^{m+1}\right)$.

The prior implication renders the inclusion $\mathbb{P}^{m} \subseteq \mathrm{~L}\left(\mathbb{P}^{m+1}\right)$, and the asserted equality $\mathbb{P}^{m}=L\left(\mathbb{P}^{m+1}\right)$ is hereby established.

Lemmas on Polynomial Operators

(From: J B Barksdale, Jr || Profiles \& Perspectives of p-Biomial Sequences) (06/25/2018)

LEMMA \#04. Given a $n^{\text {th }}$-order $\left(\lambda_{n} \neq 0\right)$, unit degree decreasing $\left(\lambda_{1} \neq 0\right)$ polynomial (differential) operator L defined by: $L=L(D)=\sum_{k=1}^{n} \lambda_{k} D^{k}$, then there exists a Unique $\underline{m}^{\text {th }}$-Order $\left(\mu_{m} \neq 0\right)$ degree preservinging $\left(\mu_{0} \neq 0\right)$ polynomial operator, $Q(D)=\sum_{j=0}^{m} \mu_{j} D^{j}$, such that: $(L Q) p=D p$ for each polynomial $p \in \mathbb{P}^{m+1}$.

Proof of LEMMA \#04 . Let such $n^{\text {th }}$ order Operator L, as above, be given. Now, applying Lemma \#01, $\exists Q . \ni . p \in \mathbb{P}^{m+1} \Rightarrow(L Q) p=D p$, where $Q=\sum_{j=0}^{m} \mu_{j} D^{j}$ and $\mu_{0} \neq 0 \neq \mu_{m}$. In order to establish that Q is a unique such operator, suppose that both Q and \bar{Q} satisfy the hypothesis of Lemma \#01. Then, $p \in \mathbb{P}^{m+1} \Longrightarrow$ $(L Q) p=D p=(L \bar{Q}) p$, where $\bar{Q}=\sum_{j=0}^{m} \bar{\mu}_{j} D^{j}$ and $\bar{\mu}_{0} \neq 0 \neq \bar{\mu}_{m}$. Consequently, $(Q L) p=(L Q) p=(L \bar{Q}) p=(\bar{Q} L) p$, for all $p \in \mathbb{P}^{m+1}$. Now, from Lemma \#03, recall that $L\left(\mathbb{P}^{m+1}\right)=\mathbb{P}^{m}$. Hence, $p \in \mathbb{P}^{m+1}$ implies that: $0=(Q L) p-(\bar{Q} L) p$. Hence, $0=(Q-\bar{Q})[L p]=(Q-\bar{Q}) f$, where $f=(L p) \in L\left(\mathbb{P}^{m+1}\right)=\mathbb{P}^{m}$. Consequently, $\mathbb{P}^{m} \subseteq \operatorname{Ker}(Q-\bar{Q})$. Therefore, $\frac{x^{m}}{m!} \in \mathbb{P}^{m} \Longrightarrow 0=(Q-\bar{Q})\left[\frac{x^{m}}{m!}\right]=\sum_{j=0}^{m}\left(\mu_{j}-\bar{\mu}_{j}\right) D^{j}\left[\frac{x^{m}}{m!}\right]$ $\Longrightarrow 0=\sum_{j=0}^{m}\left(\mu_{j}-\bar{\mu}_{j}\right)\left[\frac{x^{m-j}}{(m-j)!}\right] \Longrightarrow 0=\left(\mu_{j}-\bar{\mu}_{j}\right)$, for $0 \leq j \leq m$, $\Longrightarrow \mu_{j}=\bar{\mu}_{j}$, for $0 \leq j \leq m$, by noting that $X=\left\{\left.\frac{x^{m-j}}{(m-j)!} \right\rvert\, 0 \leq j \leq m\right\}$
is a linearly independent set by virtue of serving as a basis for \mathbb{P}^{m}. Accordingly, $Q=\bar{Q}$; thus, the demonstration asserting such unique, companion operator for a given L is hereby complete.

Lemmas on Polynomial Operators

(From: J B Barksdale, Jr || Profiles \& Perspectives of p-Biomial Sequences)
(06/25/2018)
LEMMA \#05. Given a $n^{\text {th }}$-order $\left(\lambda_{n} \neq 0\right)$, unit degree decreasing $\left(\lambda_{1} \neq 0\right)$ polynomial (differential) operator L defined by: $L=L(D)=\sum_{k=1}^{n} \lambda_{k} D^{k}$, then there exists a Unique $\underline{m}^{\text {th }}$-Order $\left(\mu_{m} \neq 0\right)$ degree preservinging $\left(\mu_{0} \neq 0\right)$ polynomial operator, $Q(D)=\sum_{j=0}^{m} \mu_{j} D^{j}$, such that: $(L Q) p=D p$ for each polynomial $p \in \mathbb{P}^{m+1}$. (Note: Viewing the symbol D as an indeterminant, the below referenced polynomial operators can be viewed as elements of the Euclidean ring E of polynomials (\mathbb{P}^{∞}) over the field of real numbers).

Proof of LEMMA \#05 . Let such $n^{\text {th }}$ order Operator L, as above, be given. Noting the order of ascending powers of $L(D)$, repeatedly apply steps of the Division Algorithm as described, detailed and presented in Item (5.1), below. Note that application of the $D A$ is continued until $\mu_{m} \neq 0$ is created, where $m=\inf (M)$, and $M=\left\{k \in \mathbb{N} \mid k \geq n \wedge \mu_{k} \neq 0\right\}$. Then,

$$
\begin{equation*}
\frac{D}{L}=\frac{D}{L(D)}=\frac{D}{\sum_{k=1}^{n} \lambda_{k} D^{k}}=\sum_{j=0}^{m} \mu_{j} D^{j}+\frac{R(D)}{L(D)}=Q(D)+\frac{R}{L} \tag{5.1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
D=L Q+R(D)=L Q+R \tag{5.2}
\end{equation*}
$$

where $R(D)=D^{m+2} \sigma(D)$, and σ denotes a polynomial of degree $(n-2)$. Note the remainder, $R(D)$, does have minimal order ($m+2$). Hence, from the above details, the Division Algorithm was executed to construct the quotient Q and the remainder R so that Q achieved order $m=\inf (M)$, and R consequently, achieved order $(n+m)$, and with minimal order $(m+2)$. Hence, via the application of the Division Algorithm to the polynomial ring elements $D, L \in E$ belonging to the Euclidean Ring E, ring elements Q and R were constructed via the Division Algorithm for Euclidean Rings (Domains). Such ring (domain) elements are thus related as displayed in Item (5.2). Hence,

$$
\begin{equation*}
L Q=(D-R) \text {, via the Division Algorithm. } \tag{5.3}
\end{equation*}
$$

From Item (5.3) and the unique factorization property for Euclidean ring elements, the operators $L, Q \in E$ constitute a unique pair of factors as a consequence of the Division Algortithm applied to given Euclidean ring elements $L, D \in E$.

Hence, from the above details, the Division Algorithm was executed until quotient Q did achieve order m, and so that the remainder R would have minimal order ($m+2$). Therefore, $p \in \mathbb{P}^{m+1}$ implies

$$
\begin{equation*}
D p=(L Q+R) p=(L Q) p, \text { since } \mathbb{P}^{m+1} \subset \operatorname{Ker}(R) \tag{5.4}
\end{equation*}
$$

