Binary Search Tree will be covered in the exam.

I. What’s the output of the following program? [20 pts]

```java
... 
public static void main(String[] args) 
{ 
    print(4); 
} 

void print(int num) 
{ 
    if(num > 1) 
    { 
        print(num-2); 
        System.out.println(num); 
        print(num-1); 
    } 
    else 
    { 
        System.out.print(num); 
    } 
} 
```

II. Give a solution to evaluate Fib without recursion. [20 pts]

```java
int Fib(int num) 
{ 
    if(num <= 1) 
    return num; 
    else return (Fib(num-2) + Fib(num-1)); 
} 
```
III. Give the recursive implementation of delete for sorted linked list. [30 pts]

class Node
{
 int value; // holds the int value of the node
 Node next; // holds the successor
}

class LinkList
{
 Node head;

 // if it is deleted return true
 // return false otherwise
 public boolean delete(int item)
 {
 }
}

IV. Give the recursive implementation of insert for BST. [20 pts]

class BinarySearchTree<T extends Comparable>
V. Given a post-fix expression, convert it to an in-fix expression. You may add as many parenthesis as you may need. (You may assume Stack is available)[25 pts]

 // convert the post-fix expression to an in-fix expr
 // for example: 5 6 7 + * will be converted to
 // (5 * (6 + 7))
 String convert(String postExpr)
 {
 }
VI. Give the implementation of LinkList based Queue. [25 pts]

class Queue<T>
{
 class Node
 {
 T value; // all values are positive
 Node next;
 }

 Node head;
 Node tail;
 // create an empty stack
 public Queue()
 {

 }

 // enqueue item
 public enqueue(T item)
 {

// if the queue is empty return null
public T dequeue()
{

}
}

VII. What are the advantage of using LinkList implementation of Stack over array-based implementation? [20 pts]

VIII. Give the recursive implementation of the following code (you should not use while, do while or for loops in your implementation). [20 pts]

```java
int SquareFact(int num)
{
    int result = 1;
    for(int i = 1; i <= num; i++)
    {
        result = result * i * i;
    }
    return result;
}
```
IX. What’s the result of the following operations for an empty binary search tree at the beginning. [20 pts]
I 10, I 8, I 25, I 9, I 6, I 7, I 22, I 33, I 11, D 9, D 10