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Abstract

The problem of converting a regular expression to NFA is a fundamen-
tal problem that has been well studied. However, the two basic construc-
tion algorithms: (1) Thompson, (2) McNaughton-Yamada and Glushkov,
both have disadvantages. In this paper: First, a “smart” parsing algo-
rithm is developed which constructs a parse tree with at most (3l − 1)
nodes form a regular expression with l literals; Second, we propose an
algorithm that works on the resulting NFA from Thompson’s construc-
tion, eliminating as many auxiliary states as possible while maintaining
Thompson’s properties. It is shown that the resulting NFA is minimized.
This means that no auxiliary states can be eliminated without violating
the defining properties of Thompson NFA. The time and space require-
ment for the above algorithms are linear with respect to the length of the
regular expression. To the author’s knowledge, this is the first linear time
algorithm minimizing an NFA in a precise technical sense.

1 Background

The construction of finite automata from regular expressions is of central im-
portance to string pattern matching [3, 12], approximate string pattern match-
ing [10], lexical scanning [1], computational biology [12], and DFA construction
from regular expressions.

There are two basic methods converting a regular expression to an NFA, one
is due to Thompson [7] and the other is due to McNaughton and Yamada [5] and
Glushkov [6]. Based on these two constructions, many papers were published
reporting the optimizing techniques for improvement. Chang presented an al-
gorithm in [8] that computes the same NFA in the same asymptotic time O(n)
as Berry and Sethi [11], but it improves the auxiliary space to O(l), where n is
the length of the regular expression and l is the number of literals. In Chang’s
construction [8], the result has 5l/2 states and 5l transitions. It is a version of
McNaughton and Yamada’s construction which he called CNNFA. He proved
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that there are no more transitions than in Thompson’s construction without
optimization, and the CNNFA is more efficient than the Thompson’s original
construction for string matching. Antimirov gave a construction algorithm in
[9] using partial derivatives. He showed that for a regular expression with l
literals, the number of states is bounded by l + 1 and the size of the NFA is
smaller in some cases than those by McNaughton and Yamada [5], Chang [8],
and Berry and Sethi [11].

This paper is organized as follows: First, a parsing algorithm is presented
that can produce a parse tree with fewer nodes. Second, based on the parsing
algorithm, it is shown that we can minimize the Thompson NFA in linear time.

2 Definitions and Terminology

We follow the same notations as used in [1]. By an alphabet, we mean a finite
non-empty set of symbols. In this paper, we use Σ to denote an alphabet. If
Σ is an alphabet, Σ∗ denotes the set of all finite strings of symbols in Σ. The
empty string is denoted by ε. Any subset of Σ∗ is a language over Σ.

Definition 1 A regular expression over an alphabet Σ is defined as fol-
lows [1]:

1. ε, φ and a for each a ∈ Σ are regular expressions denoting the regular
language {ε}, the empty set and {a} respectively;

2. If r1, r2 are regular expressions denoting the languages L1, L2, respectively,
then (r1|r2), (r1r2) and (r∗1) are regular expressions, denoting L1∪L2, L1L2

and L∗

1, which we call alternation, concatenation, and star, respectively;

3. All regular expressions can be defined by the above rules.

For each symbol in Σ∪ {ε}, an occurrence in a regular expression, we call it
a literal.

Definition 2 A nondeterministic finite automaton (NFA for short) N is
defined as a 5-tuple

(Q, Σ, δ, q0, F ),

where

1. Q is the finite set of states of the control;

2. Σ is the alphabet from which input symbols are chosen;

3. δ is the state transition function which maps Q × (Σ ∪ {ε}) to the set of
subsets of Q;

4. q0 in Q is the initial state of the finite control;

5. F ⊆ Q is the set of final (or accepting) states.

The function δ can be extended to a function δ̂ mapping Q × Σ∗ to the set
of subsets of Q as follows [1]:
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1. δ̂(q, ε) = {q}

2. δ̂(q, wa) = {p | for some state r ∈ δ̂(q, w), p ∈ δ(r, a)}

A language accepted by M , denoted by LM , is defined as

LM := {x ∈ Σ∗ | δ̂({s0}, x) ∩ F 6= φ}

We illustrate Thompson’s method by Fig. 1. Unlabeled edges are used to
represent ε-transitions.

a

empty set aempty string

star operation

concatenation

alternation

Figure 1: Thompson’s Construction of NFA

For the above diagram, we call the procedure constructing the NFAs for
empty set, empty string and single character as atomic nfa, the procedure to
construct NFA that is an alternation, concatenation and star of the sub-NFAs
as mk alt, mk cat and mk star respectively.

In an NFA, we call a state auxiliary if it has only ε-transitions from other
states; otherwise, we call it a transition state. Auxiliary states are the candidates
in our algorithm for deletion.

In [1], it is shown that the NFA simulation time is O(emn), where n is the
length of the string, m is the number of the states and e is the upper bound
of the number of transitions leaving each state with the same label. It is also
shown that eliminating all auxiliary states and ε-transitions does not necessarily
yield a better NFA for simulation, because although m gets smaller when we
delete some auxiliary states, e may get larger.
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As pointed in [13], shortest matching is useful for searching text formatted
with markup languages, and they gave an algorithm in [13] for shortest matching
that runs in time O(emn), where e is the upper bound of |δ(q, a)|, where q ∈ Q
and a ∈ Σ ∪ {ε}.

For the NFAs constructed using Thompson’s method, we know e ≤ 2. Be-
cause this property is important for NFA simulation, we call this property
Thompson’s property, and an NFA with this property a Thompson NFA (TNFA
for short). From [1, 13], we know e is an important factor for an NFA. Also,
when e ≤ 2, the representation can be simplified, and the size of an NFA is
bounded by O(em|Σ|).

3 Smart Parsing

In this section, we show: From a regular expression with l literals, we can
construct a parse tree with l leaf nodes (corresponding to the l literals in the
regular expression), (l − 1) alternation and concatenation nodes and at most l
stars.

As a regular expression may contain an arbitrary number of parentheses to
make it more understandable, it is useful to translate a regular expression to a
parse tree.

Below is a list of the properties of regular expressions that are useful to
reduce the size of the parse tree for regular expressions.

(A∗)∗ = A∗ (1)

(A∗|B∗)∗ = (A|B)∗ (2)

(A∗B∗)∗ = (A|B)∗ (3)

(A∗|B)∗ = (A|B)∗ (4)

It should be noted that the above list is not exhaustive, the goal is to make
sure there is no star over a nullable node. In fact, if we add more complicated
properties (like (A|A′)∗ = A∗ if L(A′) ⊆ L(A)), it is possible to get even smaller
parse trees at the expense of running time, but as we know regular expression
minimization problem in general is a PSPACE-hard problem.

Use the above properties, we can reduce the size of the parse tree as we will
see later, but this optimization is localized in the parse tree.

Fig. 2 illustrates the difference between the smart parsing algorithm and
the usual parsing algorithm.

3.1 Algorithm Description

From a regular expression, we have four kinds of nodes in the parse tree: leaf
(literal) nodes which correspond to characters in the regular expression, and
stars, alternations and concatenations which correspond to the three operators
allowed in the regular expression.
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Figure 2: Parse Tree Comparison between Smart and Usual Parsing

We call a node (corresponding to a sub-expression) r of a parse tree nullable
if it is

1. a star node in the parse tree,

2. an alternation of a node with an empty string,

3. a concatenation of which both children are nullable,

4. an alternation of which at least one of the children is nullable.

A regular expression is nullable, if the root of its parse tree is nullable. It is
easy to see that r is nullable iff ε ∈ L(r). And a node non-nullable if it is not
nullable.

Whenever a star node is created, the following procedure denull(root) will
be invoked. The argument root identifies the node over which the star will be
placed.

algorithm denull(root)
Input: A Parse Tree
Output: A Parse Tree without Star over nullable node

if not nullable(root) then

// do nothing
else if root.Op =‘*’ then

root = root.Child
else if root.Op =‘.’ then

// both Lchild and Rchild are nullable,
// so (Lchild.Rchild)∗ = (Lchild|Rchild)∗

root.Op =‘|’
denull(root.Lchild)
denull(root.Rchild)
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else if root.Op = ‘|’ then

denull(root.Lchild)
denull(root.Rchild)

fi

return root
end

Algorithm 1 denull Procedure

Because the algorithm described above behaves smarter than the “usual”
parsing algorithm, we call it the “smart” parsing algorithm. It is easy to show
that Smart parsing produces a parse tree which is equivalent to the one produced
by the usual parsing algorithm. Moreover, the new parse tree contains no star
nodes with a nullable child.

Note 1: For the whole paper, we are assuming that no ε occurs in a regular
expression. To handle ε in a regular expression, we could add a flag, say epsilon,
to the node in the parse tree.

1. Whenever we do an alternation between a node r with ε, make epsilon to
be true unless the node is already nullable (because if r is nullable, then
r|ε = r) and then return the node.

2. Whenever we do a concatenation between a node r with ε, just return
node (because rε = r).

3. Whenever we do a star over ε, just return ε.

By doing this, the result parse tree will not have any ε node except the case it
is the only node in the tree.

3.2 Upper Bound on the Number of Nodes in the Parse

Tree

We have the following theorem that bounds the number of nodes in the parse
tree.

Theorem 1 For a regular expression with l literals, we could construct a parse
tree with internal nodes labeled with concatenation, alternation or star, and each
leaf node labeled with a literal. There are exactly l leaf nodes, (l−1) alternations
and concatenations, and at most l stars.

Proof Let’s analyze the generation of the parse tree of a regular expression.
There are three kinds of nodes in a parse tree:

1. Leaf nodes;

2. Internal nodes with out-degree 1 (star);
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3. Internal nodes with out-degree 2 (concatenation and alternation).

In the construction, each leaf node corresponds to one alphabet character
(or it will be merged with other nodes). So there are exactly l leaves.

By a standard property of trees, we know

∑
degin(v) =

∑
degout(v),

so the number of leaves is 1 more than the binary nodes (alternation and con-
catenation).

Because we have at most l leaf nodes,

l = #(alternation) + #(concatenation) + 1

The key new property of our parse tree is: No star node has a nullable child.
By using this property, we show that a tree with l leaves having l stars must be
nullable.

The base case obviously holds, for a regular expression with 1 literal a, we
know it has at most 1 star, in the form a∗.

Induction step: Suppose for any regular expression with l literals, if it has l
stars, it must be nullable.

For any regular expression with (l +1) literals, if the root is a star, we know
the child of the root can not be a star as we do not have a star over a nullable
node. If the child is marked with alternation, the two subtrees have l1 and l2
literals respectively; we know that neither T1 nor T2 can have l1 or l2 stars, or
the new node is nullable. Similarly, we have the same for the child labeled with
concatenation.

So, we have an equivalent parse tree having at most (3l − 1) nodes. �

Based on the above theorem, for a regular expression with l literals, we
rewrite the regular expression from a parse tree. We add at most (l − 1) pairs
of parenthesis to make the regular expression unambiguous, and we have the
following lemma about the property of a regular expression:

Lemma 1 For each regular expression with l literals, there is an equivalent one
with length ≤ 5l.

This is a better result than the 14(l− 1) + 5 upper bound in Chang’s thesis
[8].

3.3 Time and Space Analysis

The following theorem bounds the time needed for this algorithm:

Theorem 2 The construction of the parse tree can be done in linear time w.r.t
the size of the regular expression.
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Proof During the construction, each node will be marked as nullable or
non-nullable, but once a node is marked as non-nullable, it will not be visited
anymore (except one test when it is a root and we try to put it as a child for a
star) during denull from the algorithm. So the time for denull is bounded by
the number of nodes generated from the regular expression, which is bounded
by the length of the regular expression.

The time needed for other operations is to scan the regular expression from
left to right and construct the parse tree using procedure atomic nfa, mk alt,
mk cat and mk star, so the overall time for the construction is linear w.r.t the
size of the regular expression.

�

For space complexity, Chang gave an algorithm in [8] based on operator
grammar [2] and showed the extra space needed is bounded by the l, which is the
number of literals in the regular expression. We can apply the same technique to
our parsing algorithm as “smart parsing” is a just ordinary parsing with denull
procedure making sure that no star has a nullable child.

4 Minimized Thompson NFA

In this section, we give a construction algorithm for minimized NFA with
Thompson’s property (TNFA for short). To our knowledge, this is the first
algorithm that could minimize a TNFA in polynomial time, and in fact, all the
time needed for this algorithm is linear w.r.t the length of the regular expression.

4.1 Algorithm

Based on smart parsing, we could use Thompson’s method presented in the
previous section to construct an NFA, this is the NFA to which we will apply
the minimization algorithm.

To proceed, let’s analyze how transition states and auxiliary states get gen-
erated. From Fig. 1, we know there are at most l transition states in TNFA for
a regular expression with l literals, which are the final states when we generate
the TNFA for a character. All other states are auxiliary states.

When we try to delete some auxiliary states, we need to make sure the
resulting NFA will not violate the defining property of TNFA. Intuitively, we
need to examine all subsets of the auxiliary states, which will make the overall
run time exponential. To get a polynomial (in fact linear) time algorithm,
we will show a modified topological sorting algorithm to get the order of the
auxiliary state to examine for deletion. Just as with the ordinary topological
sorting algorithm, the sorting result is not unique. Based on the order (which
is not unique), we may not get a unique minimized Thompson NFA. But each
minimized Thompson NFA is minimized in the sense that no auxiliary states
may be deleted without violating the defining property of Thompson NFA. This
may be regarded as the most significant contribution in this paper.
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We call a set of auxiliary states deletable if the resulting NFA after the
deletion is still a TNFA. And we call a set undeletable if it is not deletable. If
there are more than two transitions labeled with c leaving state q, we say state
q has a c-violation. One property about the deletable set is that there may be
some undeletable states in a deletable set. Because when we talk about the set,
we only care about the fact that the resulting NFA is a TNFA, but we need not
guarantee that it is a TNFA after deletion of a single auxiliary state.

For ease of analysis, we use the following notation. For any two auxiliary
states p, q, we define

p � q iff there is an ε-transition from p to q

and

p �+ q iff there is an ε-transition path from p to q touches auxiliary states only

We define a relation brother(x, y) (illustrated by Fig. 3) over auxiliary states
if there exists another state z such that z � x and z � y. And we use B(x) to
denote x’s brother if its brother exists and F (x) to denote the set of states z
such that z � x.

1

2

2

3

31 4

Alternation

Star

Figure 3: Illustration of Brother Relation

In Fig. 3, for alternation and star cases, state 2 and state 3 are brothers
with each other. One comment about the star construction case is that 2 and 3
have two parents, which are states 1 and 4.

Property 1: There is no auxiliary state cycle in the TNFA constructed
from the tree by smart parsing.

Referring to Fig. 1, the first time an ε-cycle can appear in the TNFA is
during the star construction. However, even then, an ε-cycle is created only if
the child node already contains an ε-path running from the start to the final.
However, since we always assume that the child of a star is not nullable, this
will not happen.
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If there is no cycle at the beginning, as we delete auxiliary states, we know
the remaining auxiliary states are still separated by the transition states. So
there is no auxiliary state cycle in the process of deleting auxiliary states.

From this property, we know�+ is a partial order, and by topological sorting,
we can get the order of the auxiliary states that we could examine for deletion
from the TNFA.

In the following pseudo-code, for an auxiliary state p, we mark it as Ready if
“All of p’s children are either transition states or have been visited (can not be
deleted)”. Each continue will transfer the control to the next iteration (repeat).

algorithm Minimization
Input: a TNFA
Output: a TNFA without deletable auxiliary state set

for each auxiliary state p
mark p as unvisited
put it to queue if there is no auxiliary
state q such that p � q and mark
p as ready

repeat the following until the queue is empty:
take one state p out of the queue
case p marked as deleted

continue

case p is deletable
mark it as deleted
merge its transitions to F (p)’s transitions
add its F (p) to queue if isReady(F (p))
mark F (p) as ready
continue

case p is not deletable and
B(p) is ready
if {p, B(p)} is deletable

mark p and B(p) as deleted
merge their transitions to F (p)’s transition
else

mark p as undeletable
fi

add its F (p) to queue if isReady(F (p))
mark F (p) as ready
continue

case p is not deletable and
B(p) is not ready
continue

end(repeat)
end
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Algorithm 2 Procedure to Eliminate ε-transitions

Note 2: One property about the queue used in the above algorithm is that
we need to access the elements that are not at the front of the queue. So we
need to have pointers to each element in the queue. We still have the same
Enqueue and Dequeue procedure as in other queue implementation, but each
element in the queue will be marked as ready, deleted (ready means that
it is enqueued, deleted means that it had been deleted with its brother at
the same time, the other possibility is unvisited means that it had not been
enqueued yet. Although this is not related with the implementation of the
queue, it is about the elements in the queue). When we do the Dequeue in the
above procedure, first examine whether or not the dequeued node was marked
deleted (because it may be deleted at the same time with its brother), if yes,
just Dequeue and do nothing else. Overall, the queue is a normal queue, but
the procedure is a modified topological sorting, the states are not examined in
the order they get dequeued, the brother relation may make a state examined
before it get dequeued.

Based on the above algorithm, we have the following properties about the
auxiliary states in the TNFA.

Property 2: For any p � q, there is no auxiliary state s s.t s � p and s � q.

Proof The auxiliary states that contain two out ε-transitions in the TNFA
constructed are:

1. the start state of an alternation,

2. the start state of a star,

3. the final state of an NFA to which the last star operation is applied.

For each state with two ε-transitions, the two auxiliary states are either
in two sub-NFAs that do not have any transition in between (case i), or are
separated by one or more transition states (cases ii and iii). �

Using the above two properties of the TNFA, we have the following lemma:

Lemma 2 For an auxiliary state set Q and a state q ∈ Q, where there is no
r ∈ Q such that q � r, if we can neither delete q first, and then delete Q−{q},
nor delete {q, B(q)} first, and then delete Q−{q, B(q)}, then Q is not a deletable
set.

Proof If we can neither delete q nor delete {q, B(q)}, there must be a
state p ∈ F (q) that has more transitions to violate the degree bound property
of TNFA. From Property 2, we know p 6= B(q).

If p ∈ Q, when delete Q, all p’s out-transitions will be merged to its ances-
tor’s, and cause some states have more transitions to violate the degree bound
of TNFA. This makes Q not deletable.

If p 6∈ Q, if the violation is from a symbol other than ε, we know the deletion
of the other states will not remove this violation. If the violation is from ε,
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the only way that can remove the violation is delete some auxiliary states that
this state has ε-transition to. But from Property 1, we know such states do not
exist. �

Property 3: Each auxiliary state has at most one brother state.
This can be verified by Thompson’s construction.
We have the following theorem about the TNFA after applying the Minimization

algorithm:

Theorem 3 The TNFA produced by procedure Minimization does not have a
non-empty deletable auxiliary state subset.

Before proving the theorem, we need the following lemma:

Lemma 3 For any two auxiliary states p and q, if p �+ q and q is not deletable,
then {p, q} is not deletable.

Proof Suppose {p, q} is deletable. Then for any state s ∈ F (p)∪F (q)/{p}
will not violate the Thompson’s property (there are no more than two transitions
with the same label), but there exists an auxiliary state r ∈ F (q).

If r = p, then p can not have any c-violations for each c ∈ Σ ∪ {ε}, or these
violations will be propagated to those states in F (p). This will make {p, q} not
deletable.

If r 6= p, from property 2, there is no ε-transition from r to p, so the deletion
of p will not affect the transitions of r, and {p, q} is not deletable. �

Now, we are ready to give the proof for the theorem:

Proof Based on the description, we know there is no state p such that {p}
is deletable, as we have examined each auxiliary state one at a time.

Suppose there is a state set {s1, s2, ..., sk} that is deletable. Because there
is no auxiliary state cycle, we can partition this deletable set into paths. And
each state set in a path can not make the other states in other paths deletable.
So we only need to consider an auxiliary state set {s′1, s

′

2, ..., s
′

k′}, such that
s′1 �+ s′2, ..., s

′

k′−1
�+ s′

k′ , using lemma 3 (k−1) times, we know {s′1, s
′

2, ..., s
′

k′}
is not deletable.

So the non-empty deletable set does not exist. �

From this theorem, we know that the resulting TNFA is minimized in the
sense that no more auxiliary states could be deleted without violating Thomp-
son’s property.

5 Time and Space Analysis of the Algorithm

We know the algorithm consists of three parts: smart parsing, Thompson’s
construction and the minimization procedure.
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Theorem 4 The overall time for the deletion of the auxiliary states is bounded
by the number of the states in the TNFA.

Proof Notice the number of ε-transitions is bounded by the number of the
nodes in the parse tree, and the overall number of states in the list will never
increase. The work on each node is bounded a constant (it is related with the
size of the alphabet).

So the overall time needed is O(#of ε-transitions + # of auxiliary states) =
O(l). �

The extra space needed during the construction is the parse tree and the lists
for each auxiliary state that keeps which states have ε-transition in. Because
the bound of the number of ε-transitions, this is also in O(l).

6 Conclusion

We presented a TNFA minimization algorithm taking a TNFA as input and
delete as many auxiliary state as possible. It is shown that the resulting TNFA is
minimized in a sense that no auxiliary states could be deleted without violating
the defining property of TNFA. As for future work, it is interesting to consider
a generalized version of this problem: if we insist that the resulting NFA have
certain property, could we minimize NFA in polynomial time.
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[15] A. Brüggemann-Klein, Regular Expressions into Finite Automata, Theo-
retical Computer Science 120:2, 197-213, (1993).

[16] J. Ullman, Computational Aspects of VLSI, Computer Science Press,
Rockville, MD, (1984).

14


