
A Simple Way to Construct NFA with Fewer States and
Transitions

Guangming Xing
Department of Computer Science

Western Kentucky University
Bowling Green, KY 42101

Guangming.Xing@wku.edu

ABSTRACT
The problem of converting a regular expression to NFA is a
fundamental problem that has been well studied. However,
the two basic construction algorithms: (1) Thompson, (2)
McNaughton-Yamada and Glushkov, does not yield the best
solution in terms of the number of states and transitions. In
this paper, we show: For a regular expression with l literals,
we can construct an NFA with 2l states and 4l transitions in
the worst case. Our algorithm runs in linear time with re-
spect to the length of the regular expression. This improves
the construction algorithm given by Chang in [5], which con-
structs an NFA with 5l/2 states and (10l − 5)/2 transitions
in the worst case. The method presented here is much sim-
pler and easier to understand, as we use only naive ideas:
divide and conquer.

1. INTRODUCTION
The construction of finite automata from regular expres-

sions is of central importance to string pattern matching [1,
10], lexical scanning [3], content-based network service [8],
and computational biology [10].

There are two basic methods converting a regular ex-
pression to an NFA, one is due to Thompson [11] and the
other is due to McNaughton and Yamada [9] and Glushkov
[7]. Based on these two constructions, many papers were
published reporting the optimizing techniques for improve-
ment. Chang presented an algorithm in [5] that computes
the same NFA in the same asymptotic time O(n) as Berry
and Sethi [4], but it improves the auxiliary space to O(l),
where n is the length of the regular expression and l is the
number of literals. In Chang’s construction [5], the result
has 5l/2 states and 5l transitions. It is a version of Mc-
Naughton and Yamada’s construction which he called CN-
NFA. And he proved that there are no more transitions than
in Thompson’s construction without optimization, and the
CNNFA is more efficient than the Thompson’s original con-
struction for string matching. Antimirov gave a construction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE’04 Huntsville, AL USA
Copyright 2003 ACM 1-58113-675-7/03/03 ...$5.00.

algorithm in [2] using partial derivatives. He showed that for
a regular expression with l literals, the number of states is
bounded by l +1 and the size of the NFA is smaller in some
cases than those by McNaughton and Yamada [9], Chang
[5], and Berry and Sethi [4].

This paper is organized as follows: First, a parsing al-
gorithm is presented that can produce a parse tree with
fewer nodes. Second, based on the parsing algorithm, it is
shown that NFA with fewer states and transitions can be
constructed by a simple methods.

2. DEFINITIONS AND TERMINOLOGY
We follow the same notations as used in [3]. By an al-

phabet, we mean a finite non-empty set of symbols. In this
paper, we use Σ to denote an alphabet. If Σ is an alphabet,
Σ∗ denotes the set of all finite strings of symbols in Σ. The
empty string is denoted by ε. Any subset of Σ∗ is a language
over Σ.

Definition 1 A regular expression over an alphabet Σ
is defined as follows [3]:

1. ε, φ and a for each a ∈ Σ are regular expressions de-
noting the regular language {ε}, the empty set and {a}
respectively;

2. If r1, r2 are regular expressions denoting the languages
L1, L2, respectively, then (r1 + r2), (r1r2) and (r∗1) are
regular expressions, denoting L1 ∪ L2, L1L2 and L∗

1,
which we call alternation, concatenation, and star, re-
spectively;

3. All regular expressions can be defined by the above
rules.

For each symbol in Σ∪{ε} occurrence in a regular expres-
sion, we call it a literal.

Definition 2 A nondeterministic finite automaton (NFA
for short) N is defined as a 5-tuple

(S, Σ, δ, s0, F),

where

1. S is the finite set of states of the control;

2. Σ is the alphabet from which input symbols are chosen;

3. δ is the state transition function which maps S × (Σ ∪
{ε}) to the set of subsets of S;

4. s0 in S is the initial state of the finite control;

5. F ⊆ S is the set of final (or accepting) states.

The function δ can be extended to a function δ̂ mapping
Q × Σ∗ to the set of subsets of Q as follows [3]:

1. δ̂(q, ε) = {q}

2. δ̂(q, wa) = {p | for some stater ∈ δ̂(q, w), p ∈ δ(r, a)}

A language accepted by M , denoted by LM , is defined as

LM := {x ∈ Σ∗ | δ̂({s0}, x) ∩ F 6= φ}

We illustrate Thompson’s method by Figure 1.

a

empty set aempty string

star operation

concatenation

alternation

Figure 1: Thompson’s Construction of NFA

It is easy to see that the number of states and transitions
from above construction are linear with respect to the length
of the regular expression, and this is usually true for the
number of literals unless arbitrary number of Kleene stars
are added to the regular expression.

In [3], it is shown that the NFA simulation time is O(emn),
where n is the length of the string, m is the number of the
states and e is the upper bound of the number of transitions
leaving each state with the same label. It is also shown that
eliminating all auxiliary states and ε-transitions does not
necessarily yield a better NFA for simulation, because al-
though m gets smaller when we delete some auxiliary states,
e may get larger.

As pointed in [6], shortest matching is useful for search-
ing text formatted with markup languages, and they gave
an algorithm in [6] for shortest matching that runs in time
O(emn), where e is the upper bound of |δ(q, a)|, where q ∈ Q
and a ∈ Σ ∪ {ε}. So the number of states and transitions of
an NFA is important for NFA simulation.

3. SMART PARSING
In this section, we show: From a regular expression with

l literals, we can construct a parse tree with l leaf nodes

(corresponding to the l literals in the regular expression),
(l − 1) alternation and concatenation nodes and at most l
stars.

As a regular expression may contain an arbitrary number
of parentheses to make it more understandable, it is useful
to translate a regular expression to a parse tree.

Below is a of list the properties of regular expressions that
are useful to reduce the size of the parse tree for regular
expressions.

(A∗)∗ = A∗ (1)

(A∗|B∗)∗ = (A|B)∗ (2)

(A∗B∗)∗ = (A|B)∗ (3)

(A∗|B)∗ = (A|B)∗ (4)

It should be noted that the above list is not exhaustive,
more rules can be added to the list by symmetry. Also, it
should be noted that if we add more complicated proper-
ties, it is possible to get smaller parse trees at the expense
of running time. Use the above properties, we can reduce
the size of the parse tree as we will see later, but this opti-
mization is local in the parse tree. It should be noted that
that rewriting a regular expression to its simplest form is a
PSPACE-complete problem.

Fig. 2 illustrates the difference between the smart parsing
algorithm and the usual parsing algorithm.

* *

* *

a b

a b

Parse Tree by Usual Parsing Parse Tree by Smart Parsing

. |

Figure 2: Parse Tree Comparison between Smart

and Usual Parsing

3.1 Algorithm Description
From a regular expression, we have four kinds of nodes

in the parse tree: leaf (literal) nodes which correspond to
characters in the regular expression, and stars, alternations
and concatenations which correspond to the three operators
allowed in the regular expression.

We call a node (corresponding to a sub-expression) r of a
parse tree nullable if it is

1. a star node in the parse tree,

2. an alternation of a node with an empty string,

3. a concatenation of which both children are nullable,

4. an alternation of which at least one of the children is
nullable.

A regular expression is nullable, if the root of its parse tree
is nullable. It is easy to see that r is nullable iff ε ∈ L(r).
And a node non-nullable if it is not nullable.

Whenever a star node is created, the following procedure
denull(root) will be invoked. The argument root identifies
the node over which the star will be placed.

algorithm denull(root)
Input: A Parse Tree
Output: A Parse Tree without Star over nullable node

if not nullable(root) then

// do nothing
else if root.Op =‘*’ then

root = root.Child
else if root.Op =‘.’ then

// both Lchild and Rchild are nullable,
// so (Lchild.Rchild)∗ = (Lchild|Rchild)∗

root.Op =‘|’
denull(root.Lchild)
denull(root.Rchild)

else if root.Op = ‘|’ then

denull(root.Lchild)
denull(root.Rchild)

fi

return root
end

Algorithm 1 denull Procedure

Because the algorithm described above behaves smarter than
the “usual” parsing algorithm, we call it the “smart” parsing
algorithm. It is easy to show that Smart parsing produces
a parse tree which is equivalent to the one produced by the
usual parsing algorithm. Moreover, the new parse tree con-
tains no star nodes with a nullable child.

For the whole paper, we are assuming that no ε occurs in
a regular expression. To handle ε in a regular expression,
we could add a flag, say null, to the node in the parse
tree. Whenever we do an alternation between a node with
ε, make null to be true unless the node is already nullable
(because if r is nullable, then r|ε = r); whenevr we do a
concatenation between a node with ε, just return the node
(because rε = r); whenever we do a star over ε, just return
ε. By doing this, the result parse tree will not have any ε
node except the case it is the only node in the tree.

3.2 Upper Bound on the Number of Nodes in
the Parse Tree

We have the following theorem that bounds the number
of nodes in the parse tree.

Theorem 1. For a regular expression with l literals, we
could construct a parse tree with internal nodes labeled with
concatenation, alternation or star, and each leaf node la-
beled with a literal. There are exactly l leaf nodes, (l − 1)
alternations and concatenations, and at most l stars.

Proof. Let’s analyze the generation of the parse tree of
a regular expression. There are three kinds of nodes in a
parse tree:

1. Leaf nodes;

2. Internal nodes with out-degree 1 (star);

3. Internal nodes with out-degree 2 (concatenation and
alternation).

In the construction, each leaf node corresponds to one
alphabet character (or it will be merged with other nodes).
So there are exactly l leaves.

By a standard property of trees, we know
∑

degin(v) =
∑

degout(v),

so the number of leaves is 1 more than the binary nodes
(alternation and concatenation).

Because we have at most l leaf nodes,

l = #(alternation) + #(concatenation) + 1

The key new property of our parse tree is: No star node
has a nullable child. By using this property, we show that a
tree with l leaves having l stars must be nullable.

The base case obviously holds, for a regular expression
with 1 literal a, we know it has at most 1 star, in the form
a∗.

Induction step: Suppose for any regular expression with l
literals, if it has l stars, it must be nullable.

For any regular expression with (l + 1) literals, if the root
is a star, we know the child of the root can not be a star
as we do not have a star over a nullable node. If the child
is marked with alternation, the two subtrees have l1 and
l2 literals respectively; we know that neither T1 nor T2 can
have l1 or l2 stars, or the new node is nullable. Similarly,
we have the same for the child labeled with concatenation.

So, we have an equivalent parse tree having at most (3l−1)
nodes.

Based on the above theorem, for a regular expression with
l literals, we rewrite the regular expression from a parse tree.
We add at most (l − 1) pairs of parentheses to make the
regular expression unambiguous, and we have the following
lemma about the property of a regular expression:

Lemma 1. For each regular expression with l literals, there
is an equivalent one with length ≤ 5l.

This is an improvement over the 14(l−1)+5 upper bound
based on the optimization algorithm proposed in Chang’s
thesis [5]. It is also easier to understand.

4. CONSTRUCTION ALGORITHM
In this section, we give a construction method similiar to

Thompson’s methods. It takes the parse tree from smart
parsing, recursively constructs the NFA similiar to Thomp-
son’s construction, but with different base cases and fewer
states and transitions added in recursion step.

Just like other divide and conquer algorithms, our algo-
rithm consists of two stages: First, the construction method
for regular expressions that are small; second, combining the
NFAs constructed from sub-expressions.

For 1-literal and 2-literal regular expressions (this is the
case for small regular expressions), we construct NFAs as
illustrated in Figure 3:

a

a

a*

a

a b

a

b

a

b

a

b

a

b

ab

a*b

ab*

a*| b

 a*| b*

a

b

b (ab)*

(a*b)*

(ab*)*

a

b

b

a

a

b

a b

 a*b*

Figure 3: NFA from 1,2-literal r.e.

The combining procedure is very similar with naive Thomp-
son’s construction, but it does special construction for alter-
nation and concatenation illustrated by Figure 4, 5 and 6.
In alternation, the start and final states of the two NFA
are merged, instead of creating two new states and four
ε−transitions in original Thompson’s construction. In con-
catenation case, we will merge the final state of first NFA
with the start state of the second NFA (illustrated by Figure
5), and when χ(n1, n2) = 1, the final state of the first NFA

and start state of the second NFA are removed (illustrated
by Figure 6).

Alternation

merge the start state and the final state

Figure 4: Illustration of Alternation

After Concatenation

Figure 5: Illustration of Concatenation

c
Concatenation

c

c

c

a single in-transition

Final State has

deleted
N N1 2

Figure 6: Illustration of Concatenation when

χ(n1, n2) = 1

5. ANALYSIS
For an NFA n, we Sn to denote the number of states and

Tn to denote the number of transitions. We define χ(n1, n2)
to be 1 if and only if there is only one transition to the final
state of n1 and all the transitions from the start state of n2

is labeled with ε, or there is only one transition from the
start state of n2 and all the transitions from the final state
of n1 is labeled with ε.

Going through the NFAs in Figure 3, it is easy to verify:

Lemma 2. For each regular expression r with 1 literal,
there is an NFA n s.t Sn = 2, Tn = 1 if r is not nullable,
and Sn ≤ 3, Tn ≤ 3 if it is.

Lemma 3. For each regular expression r with 2 literals,
there is an NFA n s.t Sn = 3, Tn = 3 if r is not nullable,
and Sn ≤ 4, Tn ≤ 6 if it is.

Based on the combining algorithm illustrated in, we have
the following recursive relation:

Sn1n2
= Sn1

+ Sn2
− 1 − χ(n1, n2) (5)

Sn1|n2
= Sn1

+ Sn2
− 2 (6)

Sn
∗

1
= Sn1

+ 2 (7)

Tn1n2
= Tn1

+ Tn2
(8)

Tn1|n2
= Tn1

+ Tn2
(9)

Tn∗
1

= Tn1
+ 4 (10)

And we know for any regular expression r and any char-
acter c, we have χ(r∗, c) = 1 and χ(c, r∗) = 1.

Based on the above recursive relation and the facts about
the NFAs from regular expressions with 1 or 2 literals, we
have the main theorem in this note:

Theorem 2. For each regular expression with l ≥ 3 lit-
erals, the resulting NFA from the above construction has

1. 2l− 2 states and 4l− 6 transitions if it is not nullable;

2. 2l − 1 states and 4l − 3 transitions if it is nullable but
the root is not a star;

3. 2l states and 4l − 2 transitions if the root is a star.

6. TIME AND SPACE ANALYSIS
The following two theorems will bound the time needed

for this algorithm:

Theorem 3. The construction of the parse tree can be
done in linear time w.r.t the size of the regular expression.

Proof. During the construction, each node will be marked
as nullable or non-nullable, but once a node is marked as
non-nullable, it will not be visited anymore (except one test
when it is a root and we try to put it as a child for a star).

And the time needed for other operations is to scan the
regular expression from left to right, so the overall time for
the construction is linear w.r.t the size of the regular expres-
sion.

Theorem 4. The overall time for the NFA construction
from a parse tree is bounded by the number of nodes in the
parse tree.

This is obvious because each operation in Thompson’s
construction takes constant time, and there are at most 3l
steps.

7. CONCLUSION
We presented a very simple algorithm to construct NFA

with fewer states and transitions which improves Chang’s
work in [5]. No elaborate data structures are required in
this algorithm, and it is very easy to implement.

8. REFERENCES
[1] A. Aho. Pattern matching in strings. In Formal

Language Theory(R. Book ed). Academic Press, 1980.

[2] V. Antimirov. Partial derivatives of regular
expressions and finite automata construction.
Theoretical Computer Science, 155:291–319, 1996.

[3] J. H. A. Aho and J. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading,
Mass., 1974.

[4] G. Berry and R. Sethi. From regular expressions to
deterministic automata. Theoretical Computer
Science, 48:117–126, 1986.

[5] C. Chang. Ph.D Thesis. Department of Computer
Science, Courant Institute, New York, 1992.

[6] G. C. C. Clark. On the use of regular expressions for
searching text. ACM Trans. on Programming
Languages and Systems, 19(3):413–426, 1997.

[7] V. Glushkov. The abstract theory of automata.
Russian Math. Surveys, 16:1–53, 1961.

[8] P. P. G. Apostolopoulos, V. Peris. L5: A self learning
layer 5 switch. In Technical Report RC21461. IBM,
T.J. Watson Research Center, 1999.

[9] R. McNaughton and H. Yamada. Regular expressions
and state graphs for automata. Trans. IRS,
EC(9):39–47, 1960.

[10] E. Meyer. A four-russians algorithm for regular
expression pattern matching. Journal of ACM,
39(2):432–448, 1992.

[11] K. Thompson. Regular expression search algorithm.
Communications of the ACM, 11(6):410–422, 1968.

