Index XML Data Using Extended Order and Path Index

Guangming Xing
Department of Computer Science
Western Kentucky University
Bowling Green, KY 42101

Guangming.Xing@wku.edu

ABSTRACT

The eXtensible Markup Language (XML) is becoming a new
standard for information representation and exchange over
the Internet. How to index XML data for efficient query
processing and XML transformation is an important subject
in the XML community. In this paper, based on extended
preorder indexing method, we add path information as part
of the index. It is shown that the number of path joins can be
reduced to the number of the “interested points”, but not
related the length of the path expression in a query. The
extra space needed is about the same as extended preorder
labeling method.

1. INTRODUCTION AND REVIEW

The eXtensible Markup Language (XML) is becoming a
new standard for information representation and exchange
over the Internet [8]. To retrieve XML data from data repos-
itory, various query languages are proposed [6, 2, 7]. One
key component of all these query languages is XPath, which
allows regular path expressions in a query. There are three
parts in an XPath expression [4]:

1. Node test: which specifies the node type and expanded-
name of the nodes selected by the location step;

2. Axis: which specifies the tree relationship between the
nodes selected by the location step and the context
node;

3. Predicate: which use arbitrary expressions to further
refine the set of nodes selected by the location step.

Because wildcard can appear in node test and descendent
axis can represent any sequence of elements between two lo-
cation steps in an XPath expression, XPath has the power
to express regular path expressions. Users can navigate
through arbitrary long paths in the XML data by using reg-
ular path expressions which coincide with capabilities of ar-
bitrary nesting in XML. Also using wildcard in regular path
expressions allows the user to retrieve data from documents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

that are not well-structured or whose structure is not known.
We can expedite the processing of SQL queries over rela-
tional data by using index over tables. But unlike relational
data, XML data is difficult to index as it lacks of structure.
There are two reported methods to index XML data: the
first is called path index like DataGuide [6] and Index Fab-
ric [3], and the other uses extended preorder to index path
information as described in [5]. These two methods offer dif-
ferent approaches to handle regular paths. For path index,
take Index Fabric [3] as an example, it can handle child axis
efficiently as it indexes the tag information from the root
to the leaf. But it can not handle regular path expression
explicitly. Several techniques were proposed to handle this,
these include using existing query, or path pruning based
on the schema to convert the regular path expressions into
definite path expressions without wildcard and descendent
axis. We will briefly discuss these two methods in the next
two sections. Interested reader should refer [3] and [5] for
more details.

1.1 Extended Preorder Labeling

In [5], extended preorder labeling was proposed to index
the path information for XML data. The idea is based on
the fact that we can view an XML document as an ordered
labeled tree (forest). For each node (element or attribute) in
an XML tree, it is labeled with an integer pair (order, size).
We use order(x) to denote the node z's order and size(x)
to denote node size of the subtree rooted at x. The or-
der and size is not exactly the same as traditional preorder
traversal labeling. It is extended in the sense that it satisfies
the following conditions that are typically only apply to the
preorder labeling:

1. For node y with parent (or ancestor) z, order(z) <
order(y), and order(y) + size(y) < order(z)+ size(z).
This means that node x properly covers the subtree
rooted at y.

2. For sibling nodes = and y, if x is the predecessor of y
in the preorder traversal, then order(z) + size(z) <
order(y), which means that = appears to the left of y.

Based on the above observation, the following theorem was
stated in [5].

THEOREM 1. For two given nodes x and y, x is an an-
cestor of y iff order(x) < order(y) < order(z) + size(x).

In contrast to path indexing methods, extended preorder
indexing, on the other hand, does not support traversing
from a node to its children (descendents) directly based on

the node test as in the original document stored in files,
because there is no physical links between a node with its
children and vice versa. Instead, different elements (and
attributes) are stored in different “bag”s which can be im-
plemented as a Bt-tree. When we need to go from E; to
FEs, it does not matter whether it is child axis or descendent
axis, (if child axis is insisted, we need to add level informa-
tion in the index, this is an obvious extension to [5]) we just
get all the elements stored in bag Eq and E>, based on theo-
rem 1, we can efficiently determine the ancestor-descendent
relation based on the index.

To handle the location steps in an XPath expression, the
following three path joins was proposed in [5]:

1. Element-Element Join
2. Element-Attribute Join
3. Kleene-Closure

For more detail about these three kinds of join, please refer
the original paper.

Another advantage of the extended preorder labeling method

which is not mentioned in [5] is that it can handle a path
expression in either top-down direction (descendent axis) or
bottom-up direction (ancestor axis), as determining the an-
cestor relation is the same as determining the descendent
relation. But for Index Fabric, it is difficult to process a
path expression in bottom-up direction, as there is no ex-
plicit link between an element and its ancestors unless we
add a sperate parent link (but we still can not solve the
ancestor axis problem).

One disadvantage of using extended preorder labeling is
that it prefers short path expression. Suppose we have a
path expression like the following:

Ev//E2//E3//Es/]Es[QA = v]

From the algorithm presented in [5], we have to start from
the set of elements of E1, then get F2, F3, E4, E5 and those
FEs with attribute A of value v. Our question is, could we
eliminate these Element-Element joins and just use a sin-
gle Element-Attribute join instead? The answer is yes as
long as Fs is the only point we are interested in. In fact we
do not have to process those E5 elements that do not have
E.//E>//E3//E4 as prefix. Unlike other indexing methods
preferring more definite path expression, a shorter path ex-
pression (even with more descendent axis and wildcard) will
make the query more efficient. We will propose a solution
to handle this problem, and this is the main contribution of
this paper.

1.2 Path Index Review

Various path indexing methods such as DataGuide and
Index Fabric were proposed to expedite XML query pro-
cessing. Both methods offer good performance when the
path is fixed (no wildcard or descendent axis) as navigating
on the data is just following the path. But when there is
wildcard or descendent axis in the path expression, there is
no explicit method to navigate the data efficiently except
traversing the whole data tree (path pruning is still a possi-
ble solution when schema is available).

Consider the following XML data segment from ACM Sig-
ModRecord at http://www.acm.org/sigmod/record/xml..

<SigmodRecord>

<issues>

<issue>
<volume>15</volume>
<number>2</number>

<articles>

<article>

<title articleCode="152037">A formal view integration

method</title>
<authors>

<author AuthorPosition="02">Bernhard Convent</author>

<author AuthorPosition="01">Joachim Biskup</author>

</authors>

</article>
</issue>
</issues>
<SigmodRecord>

For the above XML data segment, we have the following

SigmodRecord

path index:

AtticleCode

AuthorPosition

Figure 1: Path Index for SigMod Data

2. COMBINED METHOD

Although XML tags consume considerable amount of space
for XML data, the size of the DataGuide (unique paths)
tends to be small, regardless of the DTD and real data size
[9]. We can get this from the above example, as we can
have as many data entries as we like, but the the size of the
DataGuide is very small as illustrated by Figure 2.

Based on this observation, if we can organize the data
based on the path (absolute path starting from the root
element) as well as label the XML data using extended pre-
order as presented in [5], we could combine the advantages
of both methods. As DataDuide is a tree, there is a unique
path from the root to each node. So for a tree with n nodes,
there are n unique paths from the root. Based on this idea,
the running time of our algorithm is only related to the num-

ber of “interested points” that will be defined later, but not
related to the length of the XPath expression in an XQuery.
As the first step to handle this problem, we only consider
the following three axis: child, descendent and attribute.

To process a path expression, we need to convert it to a
regular expression whose alphabet is the set of tags. To facil-
itate the processing, we can think a tag is a special character
called designator as used in [3].

For ease of description, we call each element that has pred-
icate associated with it as an “interested point” (those ele-
ments and attributes for output must be “interested point”
also because we need to pick those elements out, but we will
not consider that case here as we only talk about the XPath
here, that’s the reason why we call it “interested point”
not just use predicate). “Interested points” are those nodes
whose presence makes the difference when we process a path
expression.

We call two segments adjacent if there is no “interested
point” in between. Based on the definition of “interested
point”, each path expression has a number of such “inter-
ested points”. For the prefix of a path expression ending
with that “interested point” but without all previous inter-
ested points, we call it a segment. It is obvious the number
of “interested points” is equal to the number of segments.

These segments P will be used to filter the elements (or
attributes) whose path P are generated by these path seg-
ments. Take the following path expression as an example:

El/EQ [@A2 = UQ]//Eg/E4/E5 [@A5 = U5]
There are two “interested points” and

E1FE3As

FE1EsEsE FE5As

are all possible segments for the above path expression.

Then the next question is how can we use this index to
do faster XML query processing. Now let us consider the
following XPath expression:

El/Eg [@Ag = UQ]//EB/E4/E5[@A5 = U5]

There will be four Element-Element joins and two Element-
Attribute joins if we use the extended preorder labeling
naively. But, we really do not need to make Element-Element
Join between E; and E2, F3 E4, E4 and E5. We only need
to compute the ancestor relation for those E2 and Fs as they
are the elements that we are interested in.

The idea is to have only one path join for two path seg-
ments here, as we have two “interested points” based on
the selection of @A; = vy and @As = vs. (One segment
for each “interested point” and predicate). Instead of going
through the path joins one by one, we just do the join for
two adjacent segments.

The remaining question is how to determine which ele-
ment (attribute) matches the “interested point” in the path
expression? We treat the path expression as a regular ex-
pression in which we omit the predicate but leaves the other
parts untouched. Then we can just use traditional regu-
lar expression membership [1] to determine whether or not
the absolute path for the element (attribute) can be gen-
erated by the path expression. For the above example, we
can view the whole path expression as the following expres-
sion: F1FE2As and Fh1FE2 x EsE4E5As. We will explain this
in more detail when we present the algorithm.

We can apply the following procedure to get the result:

1. Convert the tags in the regular path expression to des-
ignators and regular path expression into a regular ex-
pression;

2. Find all “interested points”;

3. Divide the regular expression into segments based on
the “interested points”;

4. Convert each segment to a regular expression;

5. Find the bag that hold the the last element (or at-
tribute) of the segment using regular expression mem-
bership procedure as in [1];

6. Do the Element-Element or Element-Attribute join as
specified in [5].

Take the above expression
E1/E2 [@AQ = UQ]//Eg/E4/E5 [@A5 = U5]

as an example, we follow the above procedure working on
the expression as follows:

1. If we treat E1, E2, E3, Fu, 5, A2, As as designators, do
nothing for this step;

2. As we have two predicate associated with As and As,
so As and As are two “interested points” in this ex-
pression;

3. Based on the “interested points”: [@QAs; = wv2] and
[@A5 = vs], and we have two segments:

El/EQ[@AQ = ’02]
and
E1/E2//E3/E4/E5[@A5 = ’05]

it is easy to convert them into regular expressions as
E1E2A2 and E1E2 * E3E4E5A5

4. Use the regular expression membership procedure to
determine which element’s absolute path from the root
can be generated by the regular expressions;

5. Use Element-Element, Element-Attribute, and Kleene-
Closure Joins as presented in [5].

One comment is we do not need Element-Attribute Joins
in most cases as this is included in the attribute’s path. This
will also improve the efficiency for query processing.

3. IMPLEMENTATION ISSUES

Due to time constraints, this method has not been fully
implemented in an XML database management system, so
there is no experimental comparison between this method
and other existing methods.For implementation, we can have
the same system architecture illustrated by Figure 2 as XISS
in [5] by adding an intermediate layer, called path index to
refine the elements (attributes) with the same name. We
will have separate storage for those elements (attributes)
having the same path, so this intermediate layer works as
DataGuide while can handle regular path expression effi-
ciently.

B-Trel /Book/Author

/Journal/lssue/Article/Authors/Author

Figure 2: System Architecture

To process a path expression, first we follow the link to
all the paths ending with the same element (or attribute)
name. Then for each path p, we determine whether or not
it can be generated by path expression P. If it is not, then
we can just omit this bag of elements. If yes, we will use
the same algorithm presented in [5] for Element-Element,
Element-Attribute and Kleene-Closure join.

4. CONCLUSION AND FUTURE WORK

We presented a method using extended preorder label-
ing and path information to index XML data. It is shown
that the running time does not depend on the length of the
path expression in the query, but the number of “interested
point”s. It combines the advantages of both path index-
ing method like DataGuide [6] and order indexing method
like extended preorder [5]. Although this is a simple com-
bination of these two existing indexing method, but to the
author’s knowledge, this has not been used in any known
system to index XML data. It will be interesting to fully
implement this method and compare the performance with
the existing methods: Index Fabric and Extended Preorder.

5. REFERENCES

[1] J. U. A. Aho, J. Hopocroft. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, Mass.,
1974.

[2] D. F. D. Chamberlin, J. Robie. Quilt: An xml query
language for heterogeneous data sources. In Proceedings
of WebDB 2000 Conference, Lecture Notes in
Computer Science, Springer-Verlag, 2000.

[3] M. F.-e. F. Cooper, N. Sample. A fast index for
semistructured data. In Proceedings of the 27th VLDB
Conference, Roma, Italy, 2001.

[4] S. D. J. Clark. XPath Language (XPath). Version 1.0
W3C Recommendation,
http://www.w3.org/TR/xpath, 1999.

[5] B. M. Q. Li. Indexing and querying xml data for
regular path expressions. In Proceeding of the 27th
VLDB Conference, Roma, Italy, 2001.

[6] J. W. R. Goldman, J. McHugh. From semistructured
data to xml: Migrating the lore data model and query
language. In Proceedings of the 2nd International
Workshop on the Web and Databases (WebDB ’99),
Philadelphia, Pennsylvania, 1999.

[7] M. F.-e. S. Boag, D. Chamberlin. XQuery 1.0: An
XML Query Language. W3C Working Draft,
http://www.w3.org/TR/xquery/, 2002.

[8] C. S.-M. E. M. T. Bray, J. Paoli. Fztensible markup
language (XML) 1.0 second edition. World Wide Web

Consortium, 2000.

[9] M. O.-D. S. T. Green, M. Miklau. Processing xml
streams with deterministic automata. In Proceedings of
ICDT, 2003.

