The Monotone Convergence Theorem

Here we are going to describe, illustrate, and prove a famous and important theorem from measure theory as applied to discrete random variables.

Theorem. Let X be a discrete random variable and let $\{X_n\}_{n=1}^{\infty}$ be a sequence of discrete random variables such that, for almost every ω,

(i) $0 \leq X_1(\omega) \leq X_2(\omega) \leq X_3(\omega) \leq \ldots \leq X_n(\omega) \leq \ldots \leq X(\omega)$ and
(ii) $\lim_{n \to \infty} X_n(\omega) = X(\omega)$.

Then $\lim_{n \to \infty} E[X_n] = E[X]$.

Note: The phrase “for almost every ω” means that (i) and (ii) hold for all ω except for possibly on a set having probability 0. The phrase is often stated as “almost surely” abbreviated “a.s.”, or “almost everywhere” abbreviated “a.e.”.

To prove the theorem, we shall need several background results.

Lemma 1. Let Y be a discrete random variable such that $Y \geq 0$ a.s. Then $E[Y] \geq 0$.

Proof. Let $\{y_i\}$ be all the non-negative values in the range of Y. Any negative values occur with probability 0 and therefore will not affect the mean. Thus,

$$E[Y] = \sum_{i} y_i \times P(Y = y_i) \geq 0.$$

Corollary 1. Let Y and W be a discrete random variables such that $W \leq Y$ a.s. Then $E[W] \leq E[Y]$.

Proof. The random variable $Y - W$ is still discrete and $Y - W \geq 0$ a.s. Thus, by Lemma 1, we have $0 \leq E[Y - W] = E[Y] - E[W]$.

Lemma 2. Given a nested increasing sequence of events $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \subseteq A_n \subseteq \ldots$ we have $\lim_{n \to \infty} P(A_n) = P(\bigcup_{i=1}^{\infty} A_i)$.

Proof. We first disjointify the events as follows: Let $B_1 = A_1$, $B_2 = A_2 - A_1$, \ldots, $B_n = A_n - A_{n-1}$. Then $\bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i = A_n$, for all n, and $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$. Hence,

$$\lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} B_i\right) = \lim_{n \to \infty} \sum_{i=1}^{n} P(B_i) = \sum_{i=1}^{\infty} P(B_i) = P\left(\bigcup_{i=1}^{\infty} B_i\right) = P\left(\bigcup_{i=1}^{\infty} A_i\right).$$
Corollary 2. Given a nested decreasing sequence of events \(A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots \supseteq A_n \supseteq \ldots \) we have \(\lim_{n \to \infty} P(A_n) = P \left(\bigcap_{i=1}^{\infty} A_i \right) \).

Proof. The complements of the events are nested increasing: \((A_1)^c \subseteq (A_2)^c \subseteq (A_3)^c \subseteq \ldots\) Thus, by Lemma 2 and DeMorgan’s Law, we have

\[
\lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} 1 - P((A_n)^c) = 1 - \lim_{n \to \infty} P((A_n)^c) = 1 - P \left(\bigcup_{i=1}^{\infty} (A_i)^c \right)
= 1 - P \left(\bigcap_{i=1}^{\infty} A_i \right) = P \left(\bigcap_{i=1}^{\infty} (A_i)^c \right).
\]

Lemma 3. Given random variables such that \(W \leq Y \) a.s., then a.s.,

\[
\{ \omega : W(\omega) \leq t \} \supseteq \{ \omega : Y(\omega) \leq t \}, \text{ for any given } t.
\]

Proof. Let \(\omega \) be in the set of probability 1 where \(W \leq Y \). If \(Y(\omega) \leq t \), then \(W(\omega) \leq t \) also because \(W(\omega) \leq Y(\omega) \leq t \); hence, we have the required set containment.

The final preliminary result below follows immediately from Lemma 3 and Corollary 2:

Corollary 3. If \(0 \leq X_1(\omega) \leq X_2(\omega) \leq X_3(\omega) \leq \ldots \leq X_n(\omega) \leq \ldots \) a.s., then for all \(t \),

\[
\lim_{n \to \infty} P(X_n \leq t) = P \left(\bigcap_{i=1}^{\infty} \{ X_i \leq t \} \right).
\]

To illustrate the Monotone Convergence Theorem, consider a population of three students \(\Omega = \{ \omega_1, \omega_2, \omega_3 \} \), and let \(X_i \) be the number of hours earned after the students’ \(i \)th semester, and let \(X \) be the total number of hours finally earned. The chart that follows gives an example of the conditions of the theorem. Notice that

(i) Each \(X_i \) has a different range, and the values are not necessarily integers.

(ii) For each \(\omega \), \(0 \leq X_1(\omega) \leq X_2(\omega) \leq X_3(\omega) \leq \ldots \leq X_n(\omega) \leq \ldots \leq X(\omega) \)

(iii) \(E[X_1] \leq E[X_2] \leq E[X_3] \leq \ldots \leq E[X] \)

(iv) \(P(X_1 \leq t) \geq P(X_2 \leq t) \geq P(X_3 \leq t) \geq P(X_4 \leq t) \geq \ldots \geq \ldots \)
Proof of MCT – Case I: Assume $E[X] < \infty$. Let $\epsilon > 0$ be given. Because $X \geq 0$ a.s., we only need to sum over the positive values $\{k_i\}$ in its range in order to compute its mean. We shall assume that $0 < k_1 < k_2 < k_3 < \ldots$.

Now because $E[X] = \sum_{i=1}^{\infty} k_i P(X = k_i) = \lim_{n \to \infty} \sum_{i=1}^{n} k_i P(X = k_i)$, there exists an integer $N \geq 1$ such that $\sum_{i=1}^{N} k_i P(X = k_i) > E[X] - \frac{\epsilon}{3}$. That is, $\sum_{i=N+1}^{\infty} k_i P(X = k_i) < \frac{\epsilon}{3}$. Because

$$\sum_{i=N+1}^{\infty} P(X = k_i) \leq \sum_{i=N+1}^{\infty} k_i P(X = k_i) < \frac{\epsilon}{3},$$

virtually all of the weight and all of the weighted average of X occurs for $1 \leq X \leq k_N$. Then because each $X_n \leq X$, virtually all their weights and weighted averages will also occur for $1 \leq X_n \leq k_N$.

By Corollary 3, for any fixed t, the sequence $\{P(X_n \leq t)\}_n$ converges to $P\left(\bigcap_{i=1}^{\infty} \{X_i \leq t\}\right)$. But what is this intersection? If $X_i(\omega) \leq t$ for all i, then $X(\omega) = \lim_{i \to \infty} X_i(\omega) \leq t$. And if $X(\omega) \leq t$, then $X_i(\omega) \leq X(\omega) \leq t$ for all i. Hence, a.s., the intersection is $\{X \leq t\}$. Therefore, $\lim_{n \to \infty} P(X_n \leq t) = P\left(\bigcap_{i=1}^{\infty} \{X_i \leq t\}\right) = P(X \leq t)$.

Because there is separation between the k_i ($k_1 < k_2 < k_3 < \ldots < k_N$), we can choose a $\delta > 0$ with $0 < \delta < \epsilon / 3$, such that $k_{i-1} < k_i - \delta < k_i$, for $2 \leq i \leq N$, forming disjoint intervals

$$A_1 = (k_1 - \delta, k_1] \quad A_2 = (k_2 - \delta, k_2] \quad \ldots, \quad A_N = (k_N - \delta, k_N]$$
For each of these finite number of intervals, we have

\[\lim_{n \to \infty} P(X_n \in A_i) = \lim_{n \to \infty} (P(X_n \leq k_i) - P(X_n \leq k_i - \delta)) = P(X \leq k_i) - P(X \leq k_i - \delta) = P(X = k_i). \]

So there exists an integer \(M \geq 1 \) such that if \(n \geq M \) then

\[|P(X_n \in A_i) - P(X = k_i)| < \frac{\varepsilon}{3NkN} \quad \text{for all } i = 1, \ldots, N. \]

Then for all \(n \geq M \),

\[
\begin{align*}
E[X_n] &\geq \sum_{i=1}^{N} E[X_n \mid X_n \in A_i] \times P(X_n \in A_i) \\
&\geq \sum_{i=1}^{N} (k_i - \delta) \times P(X_n \in A_i) \\
&\geq \sum_{i=1}^{N} k_i \left(P(X = k_i) - \frac{\varepsilon}{3NkN} \right) - \delta \\
&= \sum_{i=1}^{N} k_i \left(P(X = k_i) \right) - \frac{\varepsilon}{3NkN} \sum_{i=1}^{N} k_i - \delta \\
&\geq \sum_{i=1}^{N} k_i \left(P(X = k_i) \right) - \frac{\varepsilon N k_N}{3NkN} - \delta \\
&> E[X] - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} \\
&= E[X] - \varepsilon.
\end{align*}
\]

Thus for all \(n \geq M \), we have \(E[X] - \varepsilon < E[X_n] \leq E[X] \), which proves that

\[\lim_{n \to \infty} E[X_n] = E[X]. \]

Proof of MCT – Case II: Assume \(E[X] = \infty \). Let \(L > 0 \) be given. Then there exists an integer \(M \geq 1 \) such that \(\sum_{i=1}^{N} k_i P(X = k_i) > L + 1 \). We now choose a \(\delta > 0 \) with \(0 < \delta < 1/2 \), such that \(k_{i-1} < k_i - \delta < k_i \), for \(2 \leq i \leq N \), forming the disjoint intervals

\[A_1 = (k_1 - \delta, k_1], \quad A_2 = (k_2 - \delta, k_2], \ldots, \quad A_N = (k_N - \delta, k_N] \]

Again we have \(\lim_{n \to \infty} P(X_n \in A_i) = P(X = k_i) \) for each interval, so there exists an integer \(M \geq 1 \) such that if \(n \geq M \) then

\[|P(X_n \in A_i) - P(X = k_i)| < \frac{1}{2NkN} \quad \text{for all } i = 1, \ldots, N. \]
Then for all \(n \geq M \),

\[
E[X_n] \geq \sum_{i=1}^{N} E[X_n \mid X_n \in A_i] \times P(X_n \in A_i) \geq \sum_{i=1}^{N} (k_i - \delta) \times P(X_n \in A_i)
\]

\[
= \sum_{i=1}^{N} k_i P(X_n \in A_i) - \delta \sum_{i=1}^{N} P(X_n \in A_i)
\]

\[
\geq \sum_{i=1}^{N} k_i \left(P(X = k_i) - \frac{1}{2N k_N} \right) - \delta
\]

\[
= \sum_{i=1}^{N} k_i P(X = k_i) - \frac{N k_N}{2N k_N} \sum_{i=1}^{N} k_i - \delta
\]

\[
\geq \sum_{i=1}^{N} k_i P(X = k_i) - \frac{N k_N}{2N k_N} \approx L + 1 - \frac{1}{2} - \frac{1}{2}
\]

\[
= L.
\]

Thus \(\lim_{n \to \infty} E[X_n] = \infty \).