Euclidean Space \((n\text{-dimensional space})\): For each positive integer \(n\), we let \(R^n\) denote the set of all ordered \(n\)-tuples of the form

\[
 u = \{u_1, \ldots, u_n\},
\]

where \(u_i \in \mathbb{R}\) for \(1 \leq i \leq n\). Elements in \(R^n\) are called vectors. However for \(n = 1\), we simply refer to them as real numbers or scalars and write \(\mathbb{R}\) rather than \(R^1\).

Henceforth, let \(u = \{u_1, \ldots, u_n\} \) and \(v = \{v_1, \ldots, v_n\} \) be vectors in \(R^n\).

0. Sum and Scalar Multiplication: (i) We define the sum of vectors \(u\) and \(v\) by

\[
 u + v = \{u_1 + v_1, \ldots, u_n + v_n\}.
\]

(ii) For \(c \in \mathbb{R}\), the scalar product \(c u\) is defined by \(c u = \{c u_1, \ldots, c u_n\}\).

We can then define the difference \(v - u\) by

\[
 v - u = v + (-1)u = \{v_1 - u_1, \ldots, v_n - u_n\},
\]

which gives the directional vector from \(u\) to \(v\).

With these operations of addition and scalar multiplication, \(R^n\) is a vector space over the field of real numbers.

Properties of Addition

1. If \(u, v \in R^n\), then \(u + v \in R^n\). (closure)
2. \((u + v) + w = u + (v + w)\) for all \(u, v, w \in R^n\). (associative)
3. \(u + v = v + u\) for all \(u, v \in R^n\). (commutative)
4. There exists a “0” element in \(R^n\), denoted \(\vec{0}\), such that \(\vec{0} + v = v + \vec{0} = v\) for all \(v \in R^n\). (additive identity) Specifically, \(\vec{0} = \{0, \ldots, 0\}\), which we call the zero vector.
5. For every \(v \in R^n\), there exists an element \(-v\) such that \(v + (-v) = \vec{0} = -v + v\) (additive inverse) Specifically, \(-\{v_1, \ldots, v_n\} = \{-v_1, \ldots, -v_n\}\).

Properties of Scalar Multiplication

1. If \(v \in R^n\) and \(c\) is any scalar (i.e., real number), then \(cv \in R^n\). (closure)
2. \((cd)v = (cd)v\) for all \(v \in R^n\) and all \(c, d \in \mathbb{R}\). (associative)
3. \(c(u + v) = cu + cv\) for all \(u, v \in R^n\) and all \(c \in \mathbb{R}\). (scalar distributive)
4. \((c + d)v = cv + dv\) for all \(v \in R^n\) and all \(c, d \in \mathbb{R}\). (vector distributive)
5. For the scalar 1, \(1v = v\) for all \(v \in R^n\). (multiplicative identity)
I. Norm: The norm (or length or magnitude) of a vector \(u \in \mathbb{R}^n \) is defined by

\[
\|u\| = \sqrt{u_1^2 + \ldots + u_n^2}.
\]

In \(\mathbb{R}^2 \), the norm of the vector \(u = (x, y) \) is simply the length of the segment from the origin \((0, 0)\) to the point \((x, y)\), and is given by \(\sqrt{x^2 + y^2} \).

Properties of Norm

(i) \(\|u\| \geq 0 \), and \(\|u\| = 0 \) if and only if \(u = \mathbf{0} \);
(ii) \(\|u\|^2 = u_1^2 + \ldots + u_n^2 \);
(iii) \(\|c u\| = |c| \|u\| \) for every scalar \(c \in \mathbb{R} \).

II. Distance: The distance \(d(u,v) \) between vectors \(u \) and \(v \) is given by the length of the vector from \(u \) to \(v \):

\[
d(u,v) = \|v - u\| = \sqrt{(v_1 - u_1)^2 + \ldots + (v_n - u_n)^2}.
\]

Properties of Distance

For all for all \(u, v \in \mathbb{R}^n \):

(i) \(d(u,v) \geq 0 \)
(ii) \(d(u,u) = 0 \) and \(d(u,v) = 0 \) if and only if \(u = v \)
(iii) \(d(u,v) = d(v,u) \).

III. Dot Product: We define the dot product \(u \cdot v \) (also called inner product) between vectors \(u \) and \(v \) in \(\mathbb{R}^n \) by \(u \cdot v = u_1 v_1 + \ldots + u_n v_n \).

Properties of Dot Product

(a) \(u \cdot u = u_1^2 + \ldots + u_n^2 = \|u\|^2 \geq 0 \).
(b) \(\|u\| = \sqrt{u \cdot u} \)
(c) \(u \cdot v = v \cdot u \)
(d) For any scalar \(c \), \((c u) \cdot v = c \times (u \cdot v)\) and \(u \cdot (c v) = c \times (u \cdot v)\).
(e) For another vector \(w \), \((u + v) \cdot w = (u \cdot w) + (v \cdot w)\).

Theorem (Cauchy-Schwarz Inequality). Let \(u \) and \(v \) be vectors in \(\mathbb{R}^n \). Then

\[
\|u \cdot v\| \leq \|u\| \|v\|.
\]
Proof. Let \(k \) be a scalar and consider the vector \(ku + v \). Then

\[
0 \leq \| ku + v \|^2 = (ku + v) \cdot (ku + v) \\
= k^2 (u \cdot u) + k (u \cdot v) + k (v \cdot u) + (v \cdot v) \\
= \| u \|^2 k^2 + 2 (u \cdot v) k + \| v \|^2.
\]

This expression defines a quadratic in \(k \) which is always non-negative; so the quadratic has zero roots or just one root. Thus the discriminant \("b^2 - 4ac" \) must be less than or equal to 0, where \(a = \| u \|^2 \), \(b = 2(u \cdot v) \), and \(c = \| v \|^2 \). (If the discriminant were positive, then the quadratic would have two roots and therefore would have to be negative over some interval.)

Thus, \(b^2 - 4ac = 4(u \cdot v)^2 - 4\| u \|^2 \| v \|^2 \leq 0 \), which implies that \((u \cdot v)^2 \leq \| u \|^2 \| v \|^2 \). By taking square roots we obtain \(|u \cdot v| \leq \| u \| \| v \| \). QED

Theorem (Triangle Inequality). Let \(u \) and \(v \) be vectors in \(\mathbb{R}^n \). Then

\[
\| u + v \| \leq \| u \| + \| v \|.
\]

Proof: We simply expand \(\| u + v \|^2 \). The first inequality below arises from the fact that the number \(u \cdot v \) is less than or equal to its absolute value. The second inequality is from Cauchy-Schwarz:

\[
\| u + v \|^2 = (u + v) \cdot (u + v) = \| u \|^2 + \| v \|^2 + 2(u \cdot v) \\
\leq \| u \|^2 + \| v \|^2 + 2 |u \cdot v| \\
\leq \| u \|^2 + \| v \|^2 + 2 \| u \| \| v \| \\
= (\| u \| + \| v \|)^2.
\]

Because the square root function is strictly increasing, we maintain the inequality by taking square roots. Thus, we obtain \(\| u + v \| \leq \| u \| + \| v \| \). QED

Note: For vectors \(u \) and \(v \) in \(\mathbb{R}^2 \), the triangle inequality states that length of the diagonal \(u + v \) can be no more than the sum of the lengths of the two sides \(u \) and \(v \) (hence, the name triangle inequality). The result can be generalized to the distance between vectors as shown next.
Shortest Distance Between Points

Theorem. Let u and v be vectors in \mathbb{R}^n. For any other vector w, we have $d(u,v) \leq d(u,w) + d(w,v)$.

Proof. We use the definition of distance and apply the triangle inequality:

$$d(u,v) = \| v - u \| = \| (v - w) + (w - u) \| \leq \| v - w \| + \| w - u \| = d(w,v) + d(u,w) = d(u,w) + d(w,v).$$

QED

The result states that the distance directly from u to v is less than or equal to the sum of the distances from u to w then from w to v. We note that if u, v, and w are collinear with w between u and v, then $d(u,v)$ will equal $d(u,w) + d(w,v)$.

Absolute Value

For $x \in \mathbb{R}$, we define the absolute value of x by

$$|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}.$$

We shall show that $|x|$ is really the norm $\| x \|$ when considering x to be an element of the Euclidean space $\mathbb{R} = \mathbb{R}^1$. So we will be able to apply all the properties of norm and distance to the absolute value function.

Properties of Absolute Value

(i) For all $x \in \mathbb{R}$, $|x| \geq 0$. If $x \geq 0$, then $|x| = x \geq 0$. If $x < 0$, then $|x| = -x > 0$.

(ii) For all $x \in \mathbb{R}$, $x \leq |x|$. If $x \geq 0$, then $x = |x|$. If $x < 0$, then $x < 0 \leq |x|$.

(iii) $|x| = 0$ if and only if $x = 0$. That is, $|0| = 0$ and $|x| > 0$ for $x \neq 0$.

(iv) For all $x \in \mathbb{R}$, $\sqrt{x^2} = |x|$.

If $x \geq 0$, then $|x| = x = \sqrt{x^2}$. If $x < 0$, then $\sqrt{x^2} = \sqrt{(-x)(-x)} = (-x) = |x|$.

From (iv), we see that $\| x \| = \sqrt{x^2} = |x|$; thus, the Euclidean norm of \mathbb{R}^1 is the same as the absolute value in \mathbb{R}.
(v) Cauchy-Schwarz: For all \(x, y \in \mathbb{R}, \) \(|xy| = |x||y|. \) Consider three cases. (i) If \(x \geq 0 \) and \(y \geq 0, \) then \(xy \geq 0 \) and thus \(|xy| = xy = |x||y|. \) (ii) If \(x < 0 \) and \(y < 0, \) then \(xy > 0 \) and \(|xy| = xy = (-1)x(-1)y = |x||y|. \) (iii) If one of \(x, y \) is negative and the other non-negative, then \(xy \leq 0; \) thus, \(|xy| = -(xy) = |x||y|. \)

(vi) \(|-x| = |x| \) Here we apply (iv) to obtain \(|-x| = |-1x| = |-1||x| = |x| = |x|. \)

(vii) \(|x|^2 = x^2 \) Here we have \(|x|^2 = \begin{cases} x^2 & \text{if } x \geq 0 \\ (-x)^2 & \text{if } x < 0 \end{cases} = x^2 \) for all \(x. \)

(viii) Triangle Inequality for Absolute Value: For all \(x, y \in \mathbb{R}, \)
\[
|x + y| \leq |x| + |y|.
\]

A direct proof in \(\mathbb{R} \) is easier than the general proof in \(\mathbb{R}^n. \) For all \(x, y \in \mathbb{R}, \)
\[
|x + y|^2 = (x + y)^2 = x^2 + 2xy + y^2 \leq x^2 + 2|xy| + y^2 = |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2.
\]

Because the square root function is strictly increasing, we maintain the inequality by taking square roots. Thus, we obtain \(|x + y| \leq |x| + |y|. \)

(ix) Distance in \(\mathbb{R}: \) For all \(x, y \in \mathbb{R}, \) we define the distance between \(x \) and \(y \) by
\[
d(x, y) = |x - y|
\]

We shall use the triangle inequality repeatedly in \(\mathbb{R} \) as
\[
|x - y| = |x - z + z - y| \leq |x - z| + |z - y|.
\]
That is, \(d(x, y) \leq d(x, z) + d(z, y). \)

Theorem. For all \(x \in \mathbb{R}, \) \(|x^n| = |x|^n \) for all integers \(n \geq 1. \)

Proof. We shall use induction on \(n. \) For \(n = 1, \) we have \(|x^1| = |x| = |x|^1 \) for all \(x \in \mathbb{R}. \)

For \(n = 2, \) we have independently shown that \(|x^2| = x^2. \) And because \(x^2 \geq 0, \) we then have \(|x|^2 = x^2 = |x^2| \) for all \(x \in \mathbb{R}. \)

Now assume that for all \(x \in \mathbb{R}, \) \(|x^n| = |x|^n \) for some particular \(n \geq 1. \) Then
\[
|x^{n+1}| = |x^n x| = |x^n||x| = |x|^n |x| = |x|^{n+1}, \text{ for all } x \in \mathbb{R}.
\]

By mathematical induction, the result holds for all integers \(n \geq 1. \)
Exercises

1. Prove that for all integers \(n \geq 1 \) and all real numbers \(x_1, x_2, \ldots, x_n \)
 \[(a) \ |x_1 + x_2 + \ldots + x_n| \leq |x_1| + |x_2| + \ldots + |x_n| \]
 \[(b) \ |x_1 \times x_2 \times \ldots \times x_n| = |x_1| \times |x_2| \times \ldots \times |x_n| . \]

2. For all real numbers \(x \) and \(y \), prove that
 \[||x| - |y|| \leq |x - y| . \]

3. Let \(u = \{u_1, \ldots, u_n\} \) and \(v = \{v_1, \ldots, v_n\} \) be vectors in \(R^n \). Consider the individual coordinates as points in \(\mathbb{R} \). Prove that for \(1 \leq i \leq n \),
 \[(a) \ |u_i| \leq \|u\| \quad \quad (b) \ d(u_i, v_i) \leq d(u, v) . \]

4. Prove the following results about the absolute value:
 \[(a) \ |x - y| = 0 \text{ if and only if } x = y . \]
 \[(b) \ |x - y| = |y - x| \]

5. Suppose that \(|x - y| < \varepsilon \) for all \(\varepsilon > 0 \). Prove that \(x = y \).