The Sample Mean

Let \(x_1, x_2, \ldots, x_n \) be a random sample of size \(n \) of a population measurement \(X \) with unknown mean \(\mu \) and standard deviation \(\sigma \). Let \(\bar{x} \) be the sample mean. A sample mean is only an estimate of the true population mean \(\mu \). When sampling with replacement or from a “large” population, the collection of all possible sample means \(\bar{x} \) has the following properties:

\[
\mu_{\bar{x}} = \mu \quad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}
\]

The average of all possible sample means is the true population average \(\mu \), but its standard deviation is a fraction of the population’s standard deviation.

Central Limit Theorem

(i) When sampling from normally distributed measurements, \(X \sim N(\mu, \sigma) \), then for all sample sizes \(n \), we have \(\bar{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \). That is, the distribution of all possible sample means is also normally distributed with mean \(\mu \) and standard deviation \(\sigma / \sqrt{n} \).

(ii) When sampling a non-normally distributed measurement, then for large sample sizes \(n \), we have that \(\bar{x} \) is approximately \(N\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \). That is, the distribution of all possible sample means is close to a normal distribution with mean \(\mu \) and standard deviation \(\sigma / \sqrt{n} \), provided we have a large enough sample.

Normal Calculations

Using these results, we can compute probabilities such as \(P(\bar{x} < b) \) or \(P(a \leq \bar{x} \leq b) \) using the normal distribution with a mean of \(\mu \) and a standard deviation of \(\sigma / \sqrt{n} \). We also can compute inverse normal calculations with the \texttt{invNorm} command.

Example. The blood cholesterol level of men aged 20 to 34 is normally distributed with mean \(\mu = 188 \text{ mg/dL} \) and standard deviation \(\sigma = 41 \text{ mg/dL} \). You measure the cholesterol level of 100 such men chosen at random and calculate the sample mean \(\bar{x} \).

(a) What is the population \(\Omega \)? What is the measurement \(X \) and its distribution?
(b) From random samples of size 100, what is the distribution of all \(\bar{x} \) values?
(c) From random samples of size 100, how often is \(\bar{x} \) less than 180?
(d) What cholesterol level is such that 90% of all \(\bar{x} \) are below this level?
(e) Using \(z \)-scores, between what two values should 95% of sample means lie from samples of size \(n = 100 \)?
Solution. (a) \(\Omega = \text{Men aged 20 to 34}; X = \text{blood cholesterol level}; X \sim N(188, 41). \)

(b) For samples of size \(n = 100 \), then \(\bar{x} \sim N\left(188, \frac{41}{\sqrt{100}}\right) = N(188, 4.1). \)

(c) We simply compute \(P(\bar{x} < 180) \) for \(\bar{x} \sim N(188, 4.1) \) using the command `normalcdf(-1E99,180,188,4.1)` to obtain \(P(\bar{x} < 180) \approx 0.0255 \). So \(\bar{x} \) less than 180 about 2.55% of the time.

(d) We use the command `invNorm(.9,188,4.1)` to obtain a level of about 193.254.

(e) The 95% \(z \)-score is 1.96; thus, 95% of sample means should lie within 188 \(\pm 1.96 \times 4.1 \), or from 179.964 to 196.036.

A Confidence Interval for \(\mu \)

From past observations, adult heights are assumed to be normally distributed with a standard deviation of about \(\sigma = 4 \) inches. Suppose that the mean \(\mu \) is unknown. With random samples of 64 adults, where should 95% of sample means lie? Suppose \(\bar{x} = 68.2 \) from one sample of size 64, how can we estimate \(\mu \) ?

Because \(\bar{x} \sim N\left(\mu, \frac{4}{\sqrt{64}}\right) = N(\mu, 0.5) \), then 95% of all \(\bar{x} \) should be within \(\mu \pm 1.96 \times 0.5 = \mu \pm 0.98 \). But that also means that 95% of the time \(\mu \) is within \(\bar{x} \pm 0.98 \) with samples of size \(n = 64 \).

If one such sample yields \(\bar{x} = 68.2 \), then we can say \(\mu = 68.2 \pm 0.98 \), or that \(\mu \) is probably from 67.22 to 69.18, which is a 95% confidence interval for \(\mu \).

Exercise. A controlled test group of diabetic patients are monitored one hour after drinking a soda. After weeks of studying this procedure, their glucose levels are found to be normally distributed with \(\mu = 125 \text{ mg/dl} \) and \(\sigma = 10 \text{ mg/dl} \).

(a) What is the population \(\Omega \) under study? What is the measurement \(X \) and its distribution?
(b) If 16 such subjects are selected and tested at random, then what is the distribution of their \(\bar{x} \) values?
(c) For sample of size 16, what is the probability that \(\bar{x} \) is above 127? From 123 to 127?
(d) Find the level \(L \) such that there is only 0.05 probability that the mean glucose level of 16 test results falls above \(L \).
(e) Using \(z \)-scores, between what two values should 98% of sample means lie from samples of size 16?
Answers

(a) $\Omega =$ this control group of diabetic patients (it may not be representative of all diabetics due to the controlled situation); $X =$ glucose level one hour after drinking soda; $X \sim N(125, 10)$.

(b) For samples of size $n = 16$, then $\bar{x} \sim N\left(125, \frac{10}{\sqrt{16}}\right) = N(125, 2.5)$.

(c) $P(\bar{x} > 127) = \text{normalcdf}(127, 1\times10^9, 125, 2.5) \approx 0.2118$

$P(123 \leq \bar{x} \leq 127) = \text{normalcdf}(123, 127, 125, 2.5) \approx 0.5763$

(d) $L = \text{invNorm}(0.95, 125, 2.5) = 129.112$

(e) Within $125 \pm 2.326 \times 2.5$