A quadratic function has the form

\[f(x) = ax^2 + bx + c \]

where \(a \neq 0 \). The graph of the function is a parabola that opens upward if \(a > 0 \), and opens downward for \(a < 0 \).

Given such a parabolic function, we will

(a) Find the vertex. (b) State the \(y \)-intercept. (c) Find the \(x \)-intercepts.

(d) Graph the function. (e) Solve the equation \(f(x) = d \).

(f) Use the solution from (e) to solve the inequalities \(y \leq d \), \(y < d \), \(y \geq d \), or \(y > d \).

As an example throughout, we will use the function

\[y = 3x^2 - 12x + 6 \]

The Vertex

The vertex \((x, y)\) is the point at which the graph changes from decreasing to increasing. The \(x \)-coordinate of the vertex is given by

\[x = \frac{-b}{2a} \]

We then substitute this \(x \)-value into the function to find the \(y \)-coordinate of the vertex.
For \(y = 3x^2 - 12x + 6 \), the \(x \)-coordinate of the vertex is

\[
x = \frac{-b}{2a} = \frac{-(12)}{2(3)} = \frac{12}{6} = 2.
\]

The \(y \)-coordinate is then \(3(2)^2 - 12(2) + 6 = -6 \). So the vertex is the point \((2, -6)\).

The \(y \)-intercept

The \(y \)-intercept of the function \(y = ax^2 + bx + c \) is always given by the constant term \(c \). That is, when \(x = 0 \), then \(y = c \). For \(y = 3x^2 - 12x + 6 \), the \(y \)-intercept is 6.

The \(x \)-intercepts

To find the \(x \)-intercepts of the quadratic \(y = ax^2 + bx + c \), we set \(y = 0 \) and solve for \(x \). That is, we must solve the quadratic equation

\[
ax^2 + bx + c = 0.
\]

If the quadratic does not factor, then we can use the quadratic formula

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.
\]

Note: The expression under the radical \(b^2 - 4ac \) is called the “discriminant” which determines how many solutions there are to the equation \(ax^2 + bx + c = 0 \).

(i) If \(b^2 - 4ac > 0 \), then there are two \(x \)-intercepts.
(ii) If \(b^2 - 4ac = 0 \), then there is one \(x \)-intercept.
(iii) If \(b^2 - 4ac < 0 \), then there are no solutions to \(ax^2 + bx + c = 0 \) and no \(x \)-intercepts.
(iv) If \(b^2 - 4ac \) is a perfect square, then the quadratic \(ax^2 + bx + c \) will factor.

<table>
<thead>
<tr>
<th>(y)</th>
<th>(y)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b^2 - 4ac > 0)</td>
<td>(b^2 - 4ac = 0)</td>
<td>(b^2 - 4ac < 0)</td>
</tr>
<tr>
<td>Two (x)-intercepts</td>
<td>One (x)-intercept</td>
<td>No (x)-intercepts</td>
</tr>
</tbody>
</table>
Consider \(y = 2x^2 - x - 10 \). The discriminant is \(b^2 - 4ac = (-1)^2 - 4(2)(-10) = 1 + 80 = 81 \), which is positive and a perfect square. So there are two \(x \)-intercepts that can be found by factoring: \(2x^2 - x - 10 = (2x - 5)(x + 2) = 0 \) \(\rightarrow 2x - 5 = 0 \) or \(x + 2 = 0 \). Thus,

\[
x = \frac{5}{2} \quad \text{and} \quad x = -2
\]

are the \(x \)-intercepts.

We now will find the \(x \)-intercepts of \(y = 3x^2 - 12x + 6 \) by using the quadratic formula:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

\[
= \frac{-(-12) \pm \sqrt{(-12)^2 - 4(3)(6)}}{2(3)}
\]

\[
= \frac{12 \pm \sqrt{144 - 72}}{6} = \frac{12 \pm \sqrt{72}}{6} = 2 \pm \frac{6 \sqrt{2}}{6} = 2 \pm \sqrt{2}
\]

The approximate decimal values are \(2 - \sqrt{2} \approx 0.585786 \) and \(2 + \sqrt{2} \approx 3.4142 \).

Graphing

Once we have found the vertex, the \(y \)-intercept, and the \(x \)-intercepts, we can graph the parabola by plotting these points.

For \(y = 3x^2 - 12x + 6 \), the vertex is (2, –6), the \(y \)-intercept is 6 and the \(x \)-intercepts are \(2 \pm \sqrt{2} \), which are about 0.585786 and 3.4142.
Solving Other Equations

Given the quadratic function \(f(x) = ax^2 + bx + c \), we also can solve for the \(x \) that makes \(f(x) = d \). That is, we can solve the equation \(ax^2 + bx + c = d \). To do so, always set the equation equal to 0 by subtracting the \(d \) term, and then either factor or use the quadratic formula to solve the resulting equation.

Consider again the function \(f(x) = 3x^2 - 12x + 6 \). When does \(y = 21 \)?

Here we must solve the equation \(3x^2 - 12x + 6 = 21 \). By subtracting 21 we obtain

\[
3x^2 - 12x - 15 = 0
\]

If we divide by 3, we obtain \(x^2 - 4x - 5 = 0 \) which factors as \((x - 5)(x + 1) = 0\). So the solutions are \(x = -1 \) and \(x = 5 \).

![Graph of the quadratic function with points (-1, 21) and (5, 21)](image)

Solving Inequalities

Using the solution from above, solve the inequalities \(y \leq 21 \), \(y < 21 \), \(y > 21 \), and \(y \geq 21 \). From the graph, we see that

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y \leq 21)</td>
<td>(-1 \leq x \leq 5) i.e., for (x) in ([-1, 5])</td>
</tr>
<tr>
<td>(y < 21)</td>
<td>(-1 < x < 5) i.e., for (x) in ((−1, 5))</td>
</tr>
<tr>
<td>(y > 21)</td>
<td>(x < -1) or (x > 5) i.e., for (x) in ((−∞, -1) \cup (5, ∞))</td>
</tr>
<tr>
<td>(y \geq 21)</td>
<td>(x \leq -1) or (x \geq 5) i.e., for (x) in ((−∞, -1] \cup [5, ∞))</td>
</tr>
</tbody>
</table>
Exercises

1. Let \(y = 3x^2 - 4x - 6 \).
 (a) Find the vertex.
 (b) Find the \(y \)-intercept.
 (c) Find the \(x \)-intercepts.
 (d) Graph. Show the intercepts and vertex.
 (e) Solve the equation \(y = -2 \) by factoring.
 (f) For which \(x \) is \(y \leq -2 \)? For which \(x \) is \(y > -2 \)?

2. Let \(y = -2x^2 + 12x - 10 \).
 (a) Find the vertex.
 (b) Find the \(y \)-intercept.
 (c) Find the \(x \)-intercepts.
 (d) Graph. Show the intercepts and vertex.
 (e) Solve the equation \(y = 6 \) by factoring.
 (f) For which \(x \) is \(y \geq 6 \)? For which \(x \) is \(y < 6 \)?
Solutions

1. (a) The x-coordinate of the vertex is \(x = \frac{-b}{2a} = \frac{-(4)}{2 \times 3} = \frac{4}{6} = \frac{2}{3} \). The y-coordinate is \(3\left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right) - 6 = -\frac{22}{3} \). So the vertex is \(\left(\frac{2}{3}, -\frac{22}{3}\right) \).

(b) When $x = 0$, the y-intercept is $y = -6$.

(c) To find the x-intercepts, we will solve $3x^2 - 4x - 6 = 0$ with the quadratic formula. For our equation, $a = 3$, $b = -4$, and $c = -6$; hence, the solutions are:

\[
\begin{align*}
x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(4) \pm \sqrt{(-4)^2 - 4(3)(-6)}}{2(3)} \\
&= \frac{4 \pm \sqrt{88}}{6} = \frac{4 \pm 2\sqrt{22}}{6} = \frac{2 \pm \sqrt{22}}{3}
\end{align*}
\]

The approximate numerical solutions are $x \approx 2.23$ and $x \approx -0.8968$.

(e) Now solve $3x^2 - 4x - 6 = -2$, which is equivalent to $3x^2 - 4x - 4 = 0$. We can factor as $(3x + 2)(x - 2) = 0$. So $(3x + 2) = 0$ or $(x - 2) = 0$. The solutions to $y = 2$ are then $x = -2/3$ and $x = 2$.

(f) When $-2/3 \leq x \leq 2$, then $y \leq -2$. When $x < -2/3$ or $x > 2$, then $y > -2$.
2. \(y = -2x^2 + 12x - 10 \)
 (a) The \(x \)-coordinate of the vertex is \(x = \frac{-b}{2a} = \frac{-12}{2(-2)} = 3 \). The \(y \)-coordinate is \(-2(3)^2 + 12(3) - 10 = 8\) So the vertex is \((3, 8)\).
 (b) When \(x = 0 \), we obtain \(y = -10 \) for the \(y \)-intercept.
 (c) To find the \(x \)-intercepts, we must solve \(-2x^2 + 12x - 10 = 0\). Dividing by \(-2\), we instead can solve \(x^2 - 6x + 5 = 0\), which factors as \((x - 5)(x - 1) = 0\), so \(x = 1\) and \(x = 5\) are the \(x \)-intercepts.
 Or, using the quadratic formula on the original equation \(-2x^2 + 12x - 10 = 0\), we obtain
 \[
 x = \frac{-12 \pm \sqrt{12^2 - 4(-2)(-10)}}{2(-2)} \\
 = \frac{-12 \pm \sqrt{64}}{-4} = \frac{-12 \pm 8}{-4} = 3 \pm 2
 \]
 (d) Now we must solve \(-2x^2 + 12x - 10 = 6\), which is equivalent to \(-2x^2 + 12x - 16 = 0\). Dividing by \(-2\), we have \(x^2 - 6x + 8 = 0\), which factors as \((x - 4)(x - 2) = 0\). Thus, \(x = 4\) and \(x = 2\) are the solutions to \(y = 6\).
 (e) We have \(y \geq 6\) when \(2 \leq x \leq 4\). And \(y < 6\) when \(x < 2\) or \(x > 4\).