Paired Sample Studies

- Paired Sample studies compare the same individuals before and after they have been subjected to certain treatment.
- The goal of such study is to determine whether the treatment caused a statistically significant change in response variable.

Example: Does exercise help lose weight?

- Subjects: 5 volunteers
- Treatment: exercise
- Response variable: weight

• Data: Before After	180	3 220 209	4 150 151	5 170 170

Example: Does exercise help lose weight?

- Null Hypothesis: Exercise makes no difference. Average weight loss = 0
- Alternative Hypothesis Exercise helps lose weight Average weight loss <0

Example: Does exercise help lose weight?

- This is a small sample → use *t*-statistic to do the significance test.
- Significance test: $t_4 = \frac{\bar{x} \mu}{s/\sqrt{n}} = \frac{-5 0}{5.24/\sqrt{5}} = -2.13$
- P-value: 0.049
- Conclusion: There is significant evidence against Ho

Example: Does exercise help lose weight?

- What can be concluded from this study?
 - We have statistically significant evidence to show that exercise helps lose weight.
 - We might have stronger evidence that exercise helps if we had a bigger sample.
 - Yes, we rejected Ho, but *how much* does the exercise really help?

Paired Sample Study

- Preceeding Weight Loss Example is a paired sample study.
- There is a pair of variables for each observation: "before" and "after".
- Instead of using the actual data, we calculate the difference between "before" and "after" and test whether the average difference is significantley different from zero.

Two-Sample Study

- Two-sample study compares two groups which are, typically, control and treatment group (e.g. compare the weight loss of people who were on a diet and those who weren't)
- If we find that those who dieted lost more weight, then we can say that weight loss was not due to *Placebo effect* and exercise really works.
- Two-Sample studies also can be used to compare two different groups males vs. females, doctors vs. lawyers etc.

Typical desing of the two-sample study:

- Null Hypothesis: The two groups are the same.
- Alternative Hypothesis The two groups are not the same.

How to calculate test statistic for two samples

To compare two samples that don't have equal number of observations, we use this version of *t*statistic:

)

$$t = \frac{\left(\overline{x_{1}} - \overline{x_{2}}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$$

where \overline{x}_1 and \overline{x}_2 are the sample averages from the first and second sample and s_1^2 and s_2^2 are their variances.

How to calculate test statistic for two samples

If the null hypothesis is that means our equal (like in our case) – we can simplify our test statistic:

$$t = \frac{\left(\overline{x_1} - \overline{x_2}\right) - \left(\mu - \mu\right)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{\left(\overline{x_1} - \overline{x_2}\right)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Appropriate degrees of freedom are from the smaller sample.

Is There a Difference Between AM and PM classes?

- **Background Information**: Academic Performance may be different due to various factors:
 - more students with full time jobs in PM class;
 - students are tired;
 - two shorter meetings per week vs. one long meeting;
 - different academic backgrounds of students;
 - instructional quality is not the same.

Is There a Difference Between AM and PM classes?

• Study Design:

- Subjects are 92 students in Pr. L.'s class
 - 48 students in AM class
 - 44 students in PM class
- Subject choose which class they want to take
- Subjects are given 9 quizzes during the semester
- Response variable: Quiz score
- Explanatory variable: Section (AM or PM)

Stating Hypotheses

- Null Hypothesis: *H*₀: μ_{PM}=μ_{AM} Average quiz score in AM class is the same as the average quiz score in PM class.
- Alternative Hypothesis
 H_a: μ_{PM}≠μ_{AM}
 Average quiz score in AM class is NOT the same
 as the average quiz score in PM class.

Is There a Difference Between AM and PM classes?

- Conclusion:
 - Yes there is a difference!
 - Test results may be invalid because distributions are not normal.
 - Test DOES NOT prove that a student's scores would be higher if he/she were to enroll in the morning class.